1. NAME OF THE MEDICINAL PRODUCT

Herceptin 150 mg powder for concentrate for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

One vial contains 150 mg of trastuzumab, a humanised IgG1 monoclonal antibody produced by mammalian (Chinese hamster ovary) cell suspension culture and purified by affinity and ion exchange chromatography including specific viral inactivation and removal procedures.

The reconstituted Herceptin solution contains 21 mg/mL of trastuzumab.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Powder for concentrate for solution for infusion.

White to pale yellow lyophilised powder.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Breast cancer

Metastatic breast cancer

Herceptin is indicated for the treatment of adult patients with HER2 positive metastatic breast cancer: (MBC):

- as monotherapy for the treatment of those patients who have received at least two chemotherapy regimens for their metastatic disease. Prior chemotherapy must have included at least an anthracycline and a taxane unless patients are unsuitable for these treatments. Hormone receptor positive patients must also have failed hormonal therapy, unless patients are unsuitable for these treatments.

- in combination with paclitaxel for the treatment of those patients who have not received chemotherapy for their metastatic disease and for whom an anthracycline is not suitable.

- in combination with docetaxel for the treatment of those patients who have not received chemotherapy for their metastatic disease.

- in combination with an aromatase inhibitor for the treatment of postmenopausal patients with hormone-receptor positive MBC, not previously treated with trastuzumab.

Early breast cancer

Herceptin is indicated for the treatment of adult patients with HER2 positive early breast cancer. (EBC).

- following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable) (see section 5.1).
- following adjuvant chemotherapy with doxorubicin and cyclophosphamide, in combination with paclitaxel or docetaxel.

- in combination with adjuvant chemotherapy consisting of docetaxel and carboplatin.

- in combination with neoadjuvant chemotherapy followed by adjuvant Herceptin therapy, for locally advanced (including inflammatory) disease or tumours > 2 cm in diameter (see sections 4.4 and 5.1).

Herceptin should only be used in patients with metastatic or early breast cancer whose tumours have either HER2 overexpression or HER2 gene amplification as determined by an accurate and validated assay (see sections 4.4 and 5.1).

Metastatic gastric cancer

Herceptin in combination with capecitabine or 5-fluorouracil and cisplatin is indicated for the treatment of adult patients with HER2 positive metastatic adenocarcinoma of the stomach or gastro-esophageal junction who have not received prior anti-cancer treatment for their metastatic disease.

Herceptin should only be used in patients with metastatic gastric cancer (MGC) whose tumours have HER2 overexpression as defined by IHC2+ and a confirmatory SISH or FISH result, or by an IHC 3+ result. Accurate and validated assay methods should be used (see sections 4.4 and 5.1).

4.2 Posology and method of administration

HER2 testing is mandatory prior to initiation of therapy (see sections 4.4 and 5.1). Herceptin treatment should only be initiated by a physician experienced in the administration of cytotoxic chemotherapy (see section 4.4), and should be administered by a healthcare professional only.

It is important to check the product labels to ensure that the correct formulation (intravenous or subcutaneous fixed dose) is being administered to the patient, as prescribed. Herceptin intravenous formulation is not intended for subcutaneous administration and should be administered via an intravenous infusion only.

Switching treatment between Herceptin intravenous and Herceptin subcutaneous formulations and vice versa, using the three-weekly (q3w) dosing regimen, was investigated in study MO22982 (see section 4.8).

In order to prevent medication errors it is important to check the vial labels to ensure that the drug being prepared and administered is Herceptin (trastuzumab) and not Kadcyla (trastuzumab emtansine).

Posology

Metastatic breast cancer

Three-weekly schedule
The recommended initial loading dose is 8 mg/kg body weight. The recommended maintenance dose at three-weekly intervals is 6 mg/kg body weight, beginning three weeks after the loading dose.

Weekly schedule
The recommended initial loading dose of Herceptin is 4 mg/kg body weight. The recommended weekly maintenance dose of Herceptin is 2 mg/kg body weight, beginning one week after the loading dose.

Administration in combination with paclitaxel or docetaxel

In the pivotal trials (H0648g, M77001), paclitaxel or docetaxel was administered the day following the first dose of Herceptin (for dose, see the Summary of Product Characteristics (SmPC) for paclitaxel or...
docetaxel) and immediately after the subsequent doses of Herceptin if the preceding dose of Herceptin was well tolerated.

Administration in combination with an aromatase inhibitor
In the pivotal trial (BO16216) Herceptin and anastrozole were administered from day 1. There were no restrictions on the relative timing of Herceptin and anastrozole at administration (for dose, see the SmPC for anastrozole or other aromatase inhibitors).

Early breast cancer

Three-weekly and weekly schedule
As a three-weekly regimen the recommended initial loading dose of Herceptin is 8 mg/kg body weight. The recommended maintenance dose of Herceptin at three-weekly intervals is 6 mg/kg body weight, beginning three weeks after the loading dose.
As a weekly regimen (initial loading dose of 4 mg/kg followed by 2 mg/kg every week) concomitantly with paclitaxel following chemotherapy with doxorubicin and cyclophosphamide.

See section 5.1 for chemotherapy combination dosing.

Metastatic gastric cancer

Three-weekly schedule
The recommended initial loading dose is 8 mg/kg body weight. The recommended maintenance dose at three-weekly intervals is 6 mg/kg body weight, beginning three weeks after the loading dose.

Breast cancer and gastric cancer

Duration of treatment
Patients with MBC or MGC should be treated with Herceptin until progression of disease.
Patients with EBC should be treated with Herceptin for 1 year or until disease recurrence, whichever occurs first; extending treatment in EBC beyond one year is not recommended (see section 5.1).

Dose reduction
No reductions in the dose of Herceptin were made during clinical trials. Patients may continue therapy during periods of reversible, chemotherapy-induced myelosuppression but they should be monitored carefully for complications of neutropenia during this time. Refer to the SmPC for paclitaxel, docetaxel or aromatase inhibitor for information on dose reduction or delays.

If left ventricular ejection fraction (LVEF) percentage drops ≥ 10 points from baseline AND to below 50 %, treatment should be suspended and a repeat LVEF assessment performed within approximately 3 weeks. If LVEF has not improved, or has declined further, or if symptomatic congestive heart failure (CHF) has developed, discontinuation of Herceptin should be strongly considered, unless the benefits for the individual patient are deemed to outweigh the risks. All such patients should be referred for assessment by a cardiologist and followed up.

Missed doses
If the patient has missed a dose of Herceptin by one week or less, then the usual maintenance dose (weekly regimen: 2 mg/kg; three-weekly regimen: 6 mg/kg) should be administered as soon as possible. Do not wait until the next planned cycle. Subsequent maintenance doses should be administered 7 days or 21 days later according to the weekly or three-weekly schedules, respectively.

If the patient has missed a dose of Herceptin by more than one week, a re-loading dose of Herceptin should be administered over approximately 90 minutes (weekly regimen: 4 mg/kg; three-weekly regimen: 8 mg/kg) as soon as possible. Subsequent Herceptin maintenance doses (weekly regimen: 2 mg/kg; three-weekly regimen 6 mg/kg respectively) should be administered 7 days or 21 days later according to the weekly or three-weekly schedules respectively.
Special populations
Dedicated pharmacokinetic studies in the elderly and those with renal or hepatic impairment have not been carried out. In a population pharmacokinetic analysis, age and renal impairment were not shown to affect trastuzumab disposition.

Paediatric population
There is no relevant use of Herceptin in the paediatric population.

Method of administration
Herceptin loading dose should be administered as a 90-minute intravenous infusion. Do not administer as an intravenous push or bolus. Herceptin intravenous infusion should be administered by a healthcare provider prepared to manage anaphylaxis and an emergency kit should be available. Patients should be observed for at least six hours after the start of the first infusion and for two hours after the start of the subsequent infusions for symptoms like fever and chills or other infusion-related symptoms (see sections 4.4 and 4.8). Interruption or slowing the rate of the infusion may help control such symptoms. The infusion may be resumed when symptoms abate.

If the initial loading dose was well tolerated, the subsequent doses can be administered as a 30-minute infusion.

For instructions on reconstitution of Herceptin intravenous formulation before administration, see section 6.6.

4.3 Contraindications
- Hypersensitivity to trastuzumab, murine proteins, or to any of the excipients listed in section 6.1
- Severe dyspnoea at rest due to complications of advanced malignancy or requiring supplementary oxygen therapy.

4.4 Special warnings and precautions for use

In order to improve traceability of biological medicinal products, the trade name and the batch number of the administered product should be clearly recorded (or stated) in the patient file.

HER2 testing must be performed in a specialised laboratory which can ensure adequate validation of the testing procedures (see section 5.1).

Currently no data from clinical trials are available on re-treatment of patients with previous exposure to Herceptin in the adjuvant setting.

Cardiac dysfunction

General considerations

Patients treated with Herceptin are at increased risk for developing CHF (New York Heart Association [NYHA] Class II-IV) or asymptomatic cardiac dysfunction. These events have been observed in patients receiving Herceptin therapy alone or in combination with paclitaxel or docetaxel, particularly following anthracycline (doxorubicin or epirubicin) containing chemotherapy. These may be moderate to severe and have been associated with death (see section 4.8). In addition, caution should be exercised in treating patients with increased cardiac risk, e.g. hypertension, documented coronary artery disease, CHF, LVEF of <55%, older age.

All candidates for treatment with Herceptin, but especially those with prior anthracycline and cyclophosphamide (AC) exposure, should undergo baseline cardiac assessment including history and physical examination, electrocardiogram (ECG), echocardiogram, and/or multigated acquisition (MUGA) scan or magnetic resonance imaging. Monitoring may help to identify patients who develop
cardiac dysfunction. Cardiac assessments, as performed at baseline, should be repeated every 3 months during treatment and every 6 months following discontinuation of treatment until 24 months from the last administration of Herceptin. A careful risk-benefit assessment should be made before deciding to treat with Herceptin.

Trastuzumab may persist in the circulation for up to 7 months after stopping Herceptin treatment based on population pharmacokinetic analysis of all available data (see section 5.2). Patients who receive anthracyclines after stopping Herceptin may possibly be at increased risk of cardiac dysfunction. If possible, physicians should avoid anthracycline-based therapy for up to 7 months after stopping Herceptin. If anthracyclines are used, the patient’s cardiac function should be monitored carefully.

Formal cardiological assessment should be considered in patients in whom there are cardiovascular concerns following baseline screening. In all patients cardiac function should be monitored during treatment (e.g. every 12 weeks). Monitoring may help to identify patients who develop cardiac dysfunction. Patients who develop asymptomatic cardiac dysfunction may benefit from more frequent monitoring (e.g. every 6 - 8 weeks). If patients have a continued decrease in left ventricular function, but remain asymptomatic, the physician should consider discontinuing therapy if no clinical benefit of Herceptin therapy has been seen.

The safety of continuation or resumption of Herceptin in patients who experience cardiac dysfunction has not been prospectively studied. If LVEF percentage drops ≥10 points from baseline AND to below 50%, treatment should be suspended and a repeat LVEF assessment performed within approximately 3 weeks. If LVEF has not improved, or declined further, or symptomatic CHF has developed, discontinuation of Herceptin should be strongly considered, unless the benefits for the individual patient are deemed to outweigh the risks. All such patients should be referred for assessment by a cardiologist and followed up.

If symptomatic cardiac failure develops during Herceptin therapy, it should be treated with standard medicinal products for CHF. Most patients who developed CHF or asymptomatic cardiac dysfunction in pivotal trials improved with standard CHF treatment consisting of an angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) and a beta-blocker. The majority of patients with cardiac symptoms and evidence of a clinical benefit of Herceptin treatment continued on therapy without additional clinical cardiac events.

Metastatic breast cancer

Herceptin and anthracyclines should not be given concurrently in combination in the MBC setting.

Patients with MBC who have previously received anthracyclines are also at risk of cardiac dysfunction with Herceptin treatment, although the risk is lower than with concurrent use of Herceptin and anthracyclines.

Early breast cancer

For patients with EBC, cardiac assessments, as performed at baseline, should be repeated every 3 months during treatment and every 6 months following discontinuation of treatment until 24 months from the last administration of Herceptin. In patients who receive anthracycline-containing chemotherapy further monitoring is recommended, and should occur yearly up to 5 years from the last administration of Herceptin, or longer if a continuous decrease of LVEF is observed.

Patients with history of myocardial infarction (MI), angina pectoris requiring medical treatment, history of or existing CHF (NYHA Class II –IV), LVEF of < 55%, other cardiomyopathy, cardiac arrhythmia requiring medical treatment, clinically significant cardiac valvular disease, poorly controlled hypertension (hypertension controlled by standard medical treatment eligible), and hemodynamic effective pericardial effusion were excluded from adjuvant and neoadjuvant EBC pivotal trials with Herceptin and therefore treatment cannot be recommended in such patients.
Adjuvant treatment

Herceptin and anthracyclines should not be given concurrently in combination in the adjuvant treatment setting.

In patients with EBC an increase in the incidence of symptomatic and asymptomatic cardiac events was observed when Herceptin was administered after anthracycline-containing chemotherapy compared to administration with a non-anthracycline regimen of docetaxel and carboplatin and was more marked when Herceptin was administered concurrently with taxanes than when administered sequentially to taxanes. Regardless of the regimen used, most symptomatic cardiac events occurred within the first 18 months. In one of the 3 pivotal studies conducted in which a median follow-up of 5.5 years was available (BCIRG006) a continuous increase in the cumulative rate of symptomatic cardiac or LVEF events was observed in patients who were administered Herceptin concurrently with a taxane following anthracycline therapy up to 2.37% compared to approximately 1% in the two comparator arms (anthracycline plus cyclophosphamide followed by taxane and taxane, carboplatin and Herceptin).

Risk factors for a cardiac event identified in four large adjuvant studies included advanced age (> 50 years), low LVEF (<55%) at baseline, prior to or following the initiation of paclitaxel treatment, decline in LVEF by 10-15 points, and prior or concurrent use of anti-hypertensive medicinal products. In patients receiving Herceptin after completion of adjuvant chemotherapy, the risk of cardiac dysfunction was associated with a higher cumulative dose of anthracycline given prior to initiation of Herceptin and a body mass index (BMI) >25 kg/m².

Neoadjuvant-adjuvant treatment

In patients with EBC eligible for neoadjuvant-adjuvant treatment, Herceptin should be used concurrently with anthracyclines only in chemotherapy-naive patients and only with low-dose anthracycline regimens i.e. maximum cumulative doses of doxorubicin 180 mg/m² or epirubicin 360 mg/m².

If patients have been treated concurrently with a full course of low-dose anthracyclines and Herceptin in the neoadjuvant setting, no additional cytotoxic chemotherapy should be given after surgery. In other situations, the decision on the need for additional cytotoxic chemotherapy is determined based on individual factors.

Experience of concurrent administration of trastuzumab with low dose anthracycline regimens is currently limited to two trials (MO16432 and BO22227).

In the pivotal trial MO16432, Herceptin was administered concurrently with neoadjuvant chemotherapy containing three cycles of doxorubicin (cumulative dose 180 mg/m²). The incidence of symptomatic cardiac dysfunction was 1.7% in the Herceptin arm.

The pivotal trial BO22227 was designed to demonstrate non-inferiority of treatment with Herceptin subcutaneous formulation versus only with Herceptin intravenous formulation based on co-primary PK and efficacy endpoints (trastuzumab C\text{trough} at pre-dose Cycle 8, and pCR rate at definitive surgery, respectively) (See Section 5.1. of Herceptin subcutaneous formulation SmPC). In the pivotal trial BO22227, Herceptin was administered concurrently with neoadjuvant chemotherapy that contained four cycles of epirubicin (cumulative dose 300 mg/m²); at a median follow-up of 40 months, the incidence of congestive cardiac failure was 0.0% in the Herceptin intravenous arm.

Clinical experience is limited in patients above 65 years of age.
Infusion-related reactions (IRRs) and hypersensitivity

Serious IRRs to Herceptin infusion including dyspnoea, hypotension, wheezing, hypertension, bronchospasm, supraventricular tachyarrhythmia, reduced oxygen saturation, anaphylaxis, respiratory distress, urticaria and angioedema have been reported (see section 4.8). Pre-medication may be used to reduce risk of occurrence of these events. The majority of these events occur during or within 2.5 hours of the start of the first infusion. Should an infusion reaction occur the infusion should be discontinued or the rate of infusion slowed and the patient should be monitored until resolution of all observed symptoms (see section 4.2). These symptoms can be treated with an analgesic/antipyretic such as meperidine or paracetamol, or an antihistamine such as diphenhydramine. The majority of patients experienced resolution of symptoms and subsequently received further infusions of Herceptin. Serious reactions have been treated successfully with supportive therapy such as oxygen, beta-agonists, and corticosteroids. In rare cases, these reactions are associated with a clinical course culminating in a fatal outcome. Patients experiencing dyspnoea at rest due to complications of advanced malignancy and comorbidities may be at increased risk of a fatal infusion reaction. Therefore, these patients should not be treated with Herceptin (see section 4.3).

Initial improvement followed by clinical deterioration and delayed reactions with rapid clinical deterioration have also been reported. Fatalities have occurred within hours and up to one week following infusion. On very rare occasions, patients have experienced the onset of infusion symptoms and pulmonary symptoms more than six hours after the start of the Herceptin infusion. Patients should be warned of the possibility of such a late onset and should be instructed to contact their physician if these symptoms occur.

Pulmonary events

Severe pulmonary events have been reported with the use of Herceptin in the post-marketing setting (see section 4.8). These events have occasionally been fatal. In addition, cases of interstitial lung disease including lung infiltrates, acute respiratory distress syndrome, pneumonia, pneumonitis, pleural effusion, respiratory distress, acute pulmonary oedema and respiratory insufficiency have been reported. Risk factors associated with interstitial lung disease include prior or concomitant therapy with other anti-neoplastic therapies known to be associated with it such as taxanes, gemcitabine, vinorelbine and radiation therapy. These events may occur as part of an infusion-related reaction or with a delayed onset. Patients experiencing dyspnoea at rest due to complications of advanced malignancy and comorbidities may be at increased risk of pulmonary events. Therefore, these patients should not be treated with Herceptin (see section 4.3). Caution should be exercised for pneumonitis, especially in patients being treated concomitantly with taxanes.

4.5 Interaction with other medicinal products and other forms of interaction

No formal drug interaction studies have been performed. Clinically significant interactions between Herceptin and the concomitant medicinal products used in clinical trials have not been observed.

Effect of trastuzumab on the pharmacokinetics of other antineoplastic agents

Pharmacokinetic data from studies BO15935 and M77004 in women with HER2-positive MBC suggested that exposure to paclitaxel and doxorubicin (and their major metabolites 6-α hydroxyl-paclitaxel, POH, and doxorubicinol, DOL) was not altered in the presence of trastuzumab (8 mg/kg or 4 mg/kg IV loading dose followed by 6 mg/kg q3w or 2 mg/kg q1w IV, respectively). However, trastuzumab may elevate the overall exposure of one doxorubicin metabolite, (7-deoxy-13 dihydro-doxorubicinone, D7D). The bioactivity of D7D and the clinical impact of the elevation of this metabolite was unclear.

Data from study JP16003, a single-arm study of Herceptin (4 mg/kg IV loading dose and 2 mg/kg IV weekly) and docetaxel (60 mg/m2 IV) in Japanese women with HER2- positive MBC, suggested that concomitant administration of Herceptin had no effect on the single dose pharmacokinetics of docetaxel. Study JP19959 was a substudy of BO18255 (ToGA) performed in male and female
Japanese patients with advanced gastric cancer to study the pharmacokinetics of capecitabine and cisplatin when used with or without Herceptin. The results of this substudy suggested that the exposure to the bioactive metabolites (e.g. 5-FU) of capecitabine was not affected by concurrent use of cisplatin or by concurrent use of cisplatin plus Herceptin. However, capecitabine itself showed higher concentrations and a longer half-life when combined with Herceptin. The data also suggested that the pharmacokinetics of cisplatin were not affected by concurrent use of capecitabine or by concurrent use of capecitabine plus Herceptin.

Pharmacokinetic data from Study H4613g/GO01305 in patients with metastatic or locally advanced inoperable HER2-positive cancer suggested that trastuzumab had no impact on the PK of carboplatin.

Effect of antineoplastic agents on trastuzumab pharmacokinetics

By comparison of simulated serum trastuzumab concentrations after Herceptin monotherapy (4 mg/kg loading/2 mg/kg q1w IV) and observed serum concentrations in Japanese women with HER2-positive MBC (study JP16003) no evidence of a PK effect of concurrent administration of docetaxel on the pharmacokinetics of trastuzumab was found.

Comparison of PK results from two Phase II studies (BO15935 and M77004) and one Phase III study (H0648g) in which patients were treated concomitantly with Herceptin and paclitaxel and two Phase II studies in which Herceptin was administered as monotherapy (W016229 and MO16982), in women with HER2-positive MBC indicates that individual and mean trastuzumab trough serum concentrations varied within and across studies but there was no clear effect of the concomitant administration of paclitaxel on the pharmacokinetics of trastuzumab. Comparison of trastuzumab PK data from Study M77004 in which women with HER2-positive MBC were treated concomitantly with Herceptin, paclitaxel and doxorubicin to trastuzumab PK data in studies where Herceptin was administered as monotherapy (H0649g) or in combination with anthracycline plus cyclophosphamide or paclitaxel (Study H0648g), suggested no effect of doxorubicin and paclitaxel on the pharmacokinetics of trastuzumab.

Pharmacokinetic data from Study H4613g/GO01305 suggested that carboplatin had no impact on the PK of trastuzumab.

The administration of concomitant anastrozole did not appear to influence the pharmacokinetics of trastuzumab.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential

Women of childbearing potential should be advised to use effective contraception during treatment with Herceptin and for 7 months after treatment has concluded (see section 5.2).

Pregnancy

Reproductive studies have been conducted in Cynomolgus monkeys at doses up to 25 times that of the weekly human maintenance dose of 2 mg/kg Herceptin intravenous formulation and have revealed no evidence of impaired fertility or harm to the foetus. Placental transfer of trastuzumab during the early (days 20–50 of gestation) and late (days 120–150 of gestation) foetal development period was observed. It is not known whether Herceptin can affect reproductive capacity. As animal reproduction studies are not always predictive of human response, Herceptin should be avoided during pregnancy unless the potential benefit for the mother outweighs the potential risk to the foetus.

In the post-marketing setting, cases of foetal renal growth and/or function impairment in association with oligohydramnios, some associated with fatal pulmonary hypoplasia of the foetus, have been reported in pregnant women receiving Herceptin. Women who become pregnant should be advised of the possibility of harm to the foetus. If a pregnant woman is treated with Herceptin, or if a patient becomes pregnant while receiving Herceptin or within 7 months following the last dose of Herceptin, close monitoring by a multidisciplinary team is desirable.
Breast-feeding
A study conducted in lactating Cynomolgus monkeys at doses 25 times that of the weekly human maintenance dose of 2 mg/kg Herceptin intravenous formulation demonstrated that trastuzumab is secreted in the milk. The presence of trastuzumab in the serum of infant monkeys was not associated with any adverse effects on their growth or development from birth to 1 month of age. It is not known whether trastuzumab is secreted in human milk. As human IgG1 is secreted into human milk, and the potential for harm to the infant is unknown, women should not breast-feed during Herceptin therapy and for 7 months after the last dose.

Fertility
There is no fertility data available.

4.7 Effects on ability to drive and use machines

Herceptin has no or negligible influence on the ability to drive or use machines. However, patients experiencing infusion-related symptoms (see section 4.4) should be advised not to drive and use machines until symptoms abate.

4.8 Undesirable effects

Summary of the safety profile

Amongst the most serious and/or common adverse reactions reported in Herceptin usage (intravenous and subcutaneous formulations) to date are cardiac dysfunction, infusion-related reactions, haematotoxicity (in particular neutropenia), infections and pulmonary adverse reactions.

Tabulated list of adverse reactions

In this section, the following categories of frequency have been used: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000), not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Presented in Table 1 are adverse reactions that have been reported in association with the use of intravenous Herceptin alone or in combination with chemotherapy in pivotal clinical trials and in the post-marketing setting.

All the terms included are based on the highest percentage seen in pivotal clinical trials.
<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse reaction</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Nasopharyngitis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Neutropenic sepsis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Cystitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Herpes zoster</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Influenza</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Sinusitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Skin infection</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Rhinitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Upper respiratory tract infection</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Urinary tract infection</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Erysipelas</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Cellulitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pharyngitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Sepsis</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl. Cysts and polyps)</td>
<td>Malignant neoplasm progression</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Neoplasm progression</td>
<td>Not known</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Febrile neutropenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Anaemia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Neutropenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>White blood cell count decreased/leukopenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Hypoprothrombinemia</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Immune thrombocytopenia</td>
<td>Not known</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Anaphylactic reaction</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Anaphylactic shock</td>
<td>Not known</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Weight decreased/Weight loss</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Anorexia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Hyperkalaemia</td>
<td>Not known</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Thinking abnormal</td>
<td>Common</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Tremor</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Paraesthesia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dysgeusia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Peripheral neuropathy</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hypertonia</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Somnolence</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Ataxia</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Paresis</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Brain oedema</td>
<td>Not known</td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Lacrimation increased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dry eye</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Papilloedema</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Retinal haemorrhage</td>
<td>Not known</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Deafness</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Blood pressure decreased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Blood pressure increased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Heart beat irregular</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Palpitation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cardiac flutter</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Ejection fraction decreased*</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cardiac failure (congestive)</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Supraventricular tachyarrhythmia</td>
<td>Common</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Cardiogenic shock</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Pericarditis</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Gallop rhythm present</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Hypotension</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Vasodilatation</td>
<td>Common</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Wheezing</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dyspnoea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Epistaxis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Rhinorrhoea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
<td>Common</td>
</tr>
<tr>
<td>Asthma</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Lung disorder</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Respiratory distress</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Lung infiltration</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Acute pulmonary oedema</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Acute respiratory distress syndrome</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Bronchospasam</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Oxygen saturation decreased</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Laryngeal oedema</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Orthopnoea</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Pulmonary oedema</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Interstitial lung disease</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Lip swelling</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Abdominal pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dyspepsia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Stomatitis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Haemorrhoids</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dry mouth</td>
<td>Common</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Hepatocellular injury</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hepatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Liver tenderness</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Jaundice</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hepatic failure</td>
<td>Not known</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Erythema</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Rash</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Swelling face</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Alopecia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Nail disorder</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Palmar-plantar erythrodysaesthesia syndrome</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Acne</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dry skin</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Ecchymosis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hyperhidrosis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Maculopapular rash</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pruritus</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Onychoclasis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dermatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Urticaria</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Angioedema</td>
<td>Not known</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Arthralgia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Muscle tightness</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Myalgia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Arthritis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Back pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Bone pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Muscle spasms</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Neck Pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pain in extremity</td>
<td>Common</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Renal disorder</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephritis membranous</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephropathy</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Renal failure</td>
<td>Not known</td>
</tr>
<tr>
<td>Pregnancy, puerperium and perinatal conditions</td>
<td>Oligohydramnios</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Renal hypoplasia</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Pulmonary hypoplasia</td>
<td>Not known</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Breast inflammation/mastitis</td>
<td>Common</td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Chest pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Chills</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Influenza-like symptoms</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Infusion related reaction</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Mucosal inflammation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Peripheral oedema</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Malaise</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Oedema</td>
<td>Common</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td>Contusion</td>
<td>Common</td>
</tr>
</tbody>
</table>

+ Denotes adverse reactions that have been reported in association with a fatal outcome.
1 Denotes adverse reactions that are reported largely in association with Infusion-related reactions. Specific percentages for these are not available.
* Observed with combination therapy following anthracyclines and combined with taxanes

Description of selected adverse reactions

Cardiac dysfunction

Congestive heart failure (NYHA Class II – IV) is a common adverse reaction associated with the use of Herceptin and has been associated with a fatal outcome (see section 4.4). Signs and symptoms of cardiac dysfunction such as dyspnoea, orthopnoea, increased cough, pulmonary oedema, S3 gallop, or reduced ventricular ejection fraction, have been observed in patients treated with Herceptin (see section 4.4).

In 3 pivotal clinical trials of adjuvant Herceptin given in combination with chemotherapy, the incidence of grade 3/4 cardiac dysfunction (specifically symptomatic Congestive Heart Failure) was similar in patients who were administered chemotherapy alone (ie did not receive Herceptin) and in patients who were administered Herceptin sequentially after a taxane (0.3-0.4 %). The rate was highest in patients who were administered Herceptin concurrently with a taxane (2.0 %). In the neoadjuvant setting, the experience of concurrent administration of Herceptin and low dose anthracycline regimen is limited (see section 4.4).

When Herceptin was administered after completion of adjuvant chemotherapy NYHA Class III-IV heart failure was observed in 0.6 % of patients in the one-year arm after a median follow-up of 12 months. In study BO16348, after a median follow-up of 8 years the incidence of severe CHF (NYHA Class III & IV) in the Herceptin 1 year treatment arm was 0.8 %, and the rate of mild symptomatic and asymptomatic left ventricular dysfunction was 4.6 %.

Reversibility of severe CHF (defined as a sequence of at least two consecutive LVEF values ≥50 % after the event) was evident for 71.4 % of Herceptin-treated patients. Reversibility of mild symptomatic and asymptomatic left ventricular dysfunction was demonstrated for 79.5 % of patients. Approximately 17 % of cardiac dysfunction related events occurred after completion of Herceptin.

In the pivotal metastatic trials of intravenous Herceptin, the incidence of cardiac dysfunction varied between 9 % and 12 % when it was combined with paclitaxel compared with 1 % – 4 % for paclitaxel alone. For monotherapy, the rate was 6 % – 9 %. The highest rate of cardiac dysfunction was seen in patients receiving Herceptin concurrently with anthracycline/cyclophosphamide (27 %), and was significantly higher than for anthracycline/cyclophosphamide alone (7 % – 10 %). In a subsequent trial with prospective monitoring of cardiac function, the incidence of symptomatic CHF was 2.2 % in patients receiving Herceptin and docetaxel, compared with 0 % in patients receiving docetaxel alone.
Most of the patients (79%) who developed cardiac dysfunction in these trials experienced an improvement after receiving standard treatment for CHF.

Infusion reactions, allergic-like reactions and hypersensitivity

It is estimated that approximately 40% of patients who are treated with Herceptin will experience some form of infusion-related reaction. However, the majority of infusion-related reactions are mild to moderate in intensity (NCI-CTC grading system) and tend to occur earlier in treatment, i.e., during infusions one, two and three and lessen in frequency in subsequent infusions. Reactions include chills, fever, dyspnœa, hypotension, wheezing, bronchospasm, tachycardia, reduced oxygen saturation, respiratory distress, rash, nausea, vomiting and headache (see section 4.4). The rate of infusion-related reactions of all grades varied between studies depending on the indication, the data collection methodology, and whether trastuzumab was given concurrently with chemotherapy or as monotherapy.

Severe anaphylactic reactions requiring immediate additional intervention can occur usually during either the first or second infusion of Herceptin (see section 4.4) and have been associated with a fatal outcome.

Anaphylactoid reactions have been observed in isolated cases.

Haematotoxicity

Febrile neutropenia, leukopenia, anaemia, thrombocytopenia and neutropenia occurred very commonly. The frequency of occurrence of hypoprothrombinemia is not known. The risk of neutropenia may be slightly increased when trastuzumab is administered with docetaxel following anthracycline therapy.

Pulmonary events

Severe pulmonary adverse reactions occur in association with the use of Herceptin and have been associated with a fatal outcome. These include, but are not limited to, pulmonary infiltrates, acute respiratory distress syndrome, pneumonia, pneumonitis, pleural effusion, respiratory distress, acute pulmonary oedema and respiratory insufficiency (see section 4.4).

Details of risk minimisation measures that are consistent with the EU Risk Management Plan are presented in (section 4.4) Warnings and Precautions.

Immunogenicity

In the neoadjuvant-adjuvant EBC treatment setting, 8.1% (24/296) of patients treated with Herceptin intravenous developed antibodies against trastuzumab (regardless of antibody presence at baseline). Neutralizing anti-trastuzumab antibodies were detected in post-baseline samples in 2 of 24 Herceptin intravenous patients.

The clinical relevance of these antibodies is not known; nevertheless the pharmacokinetics, efficacy (determined by pathological Complete Response [pCR]) and safety determined by occurrence of administration related reactions (ARRs) of Herceptin intravenous did not appear to be adversely affected by these antibodies.

There are no immunogenicity data available for Herceptin in gastric cancer.

Switching treatment between Herceptin intravenous and Herceptin subcutaneous formulation and vice versa

Study MO22982 investigated switching between the Herceptin intravenous and Herceptin subcutaneous formulation with a primary objective to evaluate patient preference for either intravenous or the subcutaneous route of trastuzumab administration. In this trial, 2 cohorts (one using subcutaneous formulation in vial and one using subcutaneous formulation in administration system) were investigated using a 2-arm, cross-over design with 488 patients being randomized to one of two
different three-weekly Herceptin treatment sequences (IV [Cycles 1-4] → SC [Cycles 5-8], or SC [Cycles 1-4] → IV [Cycles 5-8]). Patients were either naïve to Herceptin IV treatment (20.3%) or pre- exposed to Herceptin IV (79.7%). For the sequence IV→SC (SC vial and SC formulation in administration system cohorts combined), adverse event rates (all grades) were described pre-switching (Cycles 1-4) and post-switching (Cycles 5-8) as 53.8% vs. 56.4%, respectively; for the sequence SC→IV (SC vial and SC formulation in administration system cohorts combined), adverse event rates (all grades) were described pre- and post-switching as 65.4% vs. 48.7%, respectively. Pre-switching rates (Cycles 1-4) for serious adverse events, grade 3 adverse events and treatment discontinuations due to adverse events were low (<5%) and similar to post-switching rates (Cycles 5-8). No grade 4 or grade 5 adverse events were reported.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

There is no experience with overdose in human clinical trials. Single doses of Herceptin alone greater than 10 mg/kg have not been administered in the clinical trials; a maintenance dose of 10 mg/kg q3w following a loading dose of 8 mg/kg has been studied in a clinical trial with metastatic gastric cancer patients. Doses up to this level were well tolerated.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, monoclonal antibodies, ATC code: L01XC03

Trastuzumab is a recombinant humanised IgG1 monoclonal antibody against the human epidermal growth factor receptor 2 (HER2). Overexpression of HER2 is observed in 20 %-30 % of primary breast cancers. Studies of HER2-positivity rates in gastric cancer (GC) using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) or chromogenic in situ hybridization (CISH) have shown that there is a broad variation of HER2-positivity ranging from 6.8 % to 34.0 % for IHC and 7.1 % to 42.6 % for FISH. Studies indicate that breast cancer patients whose tumours overexpress HER2 have a shortened disease-free survival compared to patients whose tumours do not overexpress HER2. The extracellular domain of the receptor (ECD, p105) can be shed into the blood stream and measured in serum samples.

Mechanism of action

Trastuzumab binds with high affinity and specificity to sub-domain IV, a juxta-membrane region of HER2’s extracellular domain. Binding of trastuzumab to HER2 inhibits ligand-independent HER2 signalling and prevents the proteolytic cleavage of its extracellular domain, an activation mechanism of HER2. As a result, trastuzumab has been shown, in both in vitro assays and in animals, to inhibit the proliferation of human tumour cells that overexpress HER2. Additionally, trastuzumab is a potent mediator of antibody-dependent cell-mediated cytotoxicity (ADCC). In vitro, trastuzumab-mediated ADCC has been shown to be preferentially exerted on HER2 overexpressing cancer cells compared with cancer cells that do not overexpress HER2.

Detection of HER2 overexpression or HER2 gene amplification

Detection of HER2 overexpression or HER2 gene amplification in breast cancer

Herceptin should only be used in patients whose tumours have HER2 overexpression or HER2 gene
amplification as determined by an accurate and validated assay. HER2 overexpression should be detected using an immunohistochemistry (IHC)-based assessment of fixed tumour blocks (see section 4.4). HER2 gene amplification should be detected using fluorescence in situ hybridisation (FISH) or chromogenic in situ hybridisation (CISH) of fixed tumour blocks. Patients are eligible for Herceptin treatment if they show strong HER2 overexpression as described by a 3+ score by IHC or a positive FISH or CISH result.

To ensure accurate and reproducible results, the testing must be performed in a specialised laboratory, which can ensure validation of the testing procedures.

The recommended scoring system to evaluate the IHC staining patterns is as stated in Table 2:

Table 2 Recommended Scoring System to Evaluate the IHC Staining Patterns in Breast Cancer

<table>
<thead>
<tr>
<th>Score</th>
<th>Staining pattern</th>
<th>HER2 overexpression assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No staining is observed or membrane staining is observed in < 10 % of the tumour cells</td>
<td>Negative</td>
</tr>
<tr>
<td>1+</td>
<td>A faint/barely perceptible membrane staining is detected in > 10 % of the tumour cells. The cells are only stained in part of their membrane.</td>
<td>Negative</td>
</tr>
<tr>
<td>2+</td>
<td>A weak to moderate complete membrane staining is detected in > 10 % of the tumour cells.</td>
<td>Equivocal</td>
</tr>
<tr>
<td>3+</td>
<td>Strong complete membrane staining is detected in > 10 % of the tumour cells.</td>
<td>Positive</td>
</tr>
</tbody>
</table>

In general, FISH is considered positive if the ratio of the HER2 gene copy number per tumour cell to the chromosome 17 copy number is greater than or equal to 2, or if there are more than 4 copies of the HER2 gene per tumour cell if no chromosome 17 control is used.

In general, CISH is considered positive if there are more than 5 copies of the HER2 gene per nucleus in greater than 50 % of tumour cells.

For full instructions on assay performance and interpretation please refer to the package inserts of validated FISH and CISH assays. Official recommendations on HER2 testing may also apply.

For any other method that may be used for the assessment of HER2 protein or gene expression, the analyses should only be performed by laboratories that provide adequate state-of-the-art performance of validated methods. Such methods must clearly be precise and accurate enough to demonstrate overexpression of HER2 and must be able to distinguish between moderate (congruent with 2+) and strong (congruent with 3+) overexpression of HER2.

Detection of HER2 over expression or HER2 gene amplification in gastric cancer

Only an accurate and validated assay should be used to detect HER2 over expression or HER2 gene amplification. IHC is recommended as the first testing modality and in cases where HER2 gene amplification status is also required, either a silver-enhanced in situ hybridization (SISH) or a FISH technique must be applied. SISH technology is however, recommended to allow for the parallel evaluation of tumor histology and morphology. To ensure validation of testing procedures and the generation of accurate and reproducible results, HER2 testing must be performed in a laboratory staffed by trained personnel. Full instructions on assay performance and results interpretation should be taken from the product information leaflet provided with the HER2 testing assays used.

In the ToGA (BO18255) trial, patients whose tumours were either IHC3+ or FISH positive were defined as HER2 positive and thus included in the trial. Based on the clinical trial results, the beneficial effects were limited to patients with the highest level of HER2 protein overexpression, defined by a 3+ score by IHC, or a 2+ score by IHC and a positive FISH result.
In a method comparison study (study D008548) a high degree of concordance (>95 %) was observed for SISH and FISH techniques for the detection of HER2 gene amplification in gastric cancer patients.

HER2 over expression should be detected using an immunohistochemistry (IHC)-based assessment of fixed tumour blocks; HER2 gene amplification should be detected using *in situ* hybridisation using either SISH or FISH on fixed tumour blocks.

The recommended scoring system to evaluate the IHC staining patterns is as stated in Table 3:

Table 3 Recommended Scoring System to Evaluate the IHC Staining Patterns in Gastric Cancer

<table>
<thead>
<tr>
<th>Score</th>
<th>Surgical specimen - staining pattern</th>
<th>Biopsy specimen – staining pattern</th>
<th>HER2 overexpression assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reactivity or membranous reactivity in < 10 % of tumour cells</td>
<td>No reactivity or membranous reactivity in any tumour cell</td>
<td>Negative</td>
</tr>
<tr>
<td>1+</td>
<td>Faint/barely perceptible membranous reactivity in ≥ 10 % of tumour cells; cells are reactive only in part of their membrane</td>
<td>Tumour cell cluster with a faint/barely perceptible membranous reactivity irrespective of percentage of tumour cells stained</td>
<td>Negative</td>
</tr>
<tr>
<td>2+</td>
<td>Weak to moderate complete, basolateral or lateral membranous reactivity in ≥ 10 % of tumour cells</td>
<td>Tumour cell cluster with a weak to moderate complete, basolateral or lateral membranous reactivity irrespective of percentage of tumour cells stained</td>
<td>Equivocal</td>
</tr>
<tr>
<td>3+</td>
<td>Strong complete, basolateral or lateral membranous reactivity in ≥ 10 % of tumour cells</td>
<td>Tumour cell cluster with a strong complete, basolateral or lateral membranous reactivity irrespective of percentage of tumour cells stained</td>
<td>Positive</td>
</tr>
</tbody>
</table>

In general, SISH or FISH is considered positive if the ratio of the HER2 gene copy number per tumour cell to the chromosome 17 copy number is greater than or equal to 2.

Clinical efficacy and safety

Metastatic breast cancer

Herceptin has been used in clinical trials as monotherapy for patients with MBC who have tumours that overexpress HER2 and who have failed one or more chemotherapy regimens for their metastatic disease (Herceptin alone).

Herceptin has also been used in combination with paclitaxel or docetaxel for the treatment of patients who have not received chemotherapy for their metastatic disease. Patients who had previously received anthracycline-based adjuvant chemotherapy were treated with paclitaxel (175 mg/m2 infused over 3 hours) with or without Herceptin. In the pivotal trial of docetaxel (100 mg/m2 infused over 1 hour) with or without Herceptin, 60 % of the patients had received prior anthracycline-based adjuvant chemotherapy. Patients were treated with Herceptin until progression of disease.

The efficacy of Herceptin in combination with paclitaxel in patients who did not receive prior adjuvant anthracyclines has not been studied. However, Herceptin plus docetaxel was efficacious in patients whether or not they had received prior adjuvant anthracyclines.
The test method for HER2 overexpression used to determine eligibility of patients in the pivotal Herceptin monotherapy and Herceptin plus paclitaxel clinical trials employed immunohistochemical staining for HER2 of fixed material from breast tumours using the murine monoclonal antibodies CB11 and 4D5. These tissues were fixed in formalin or Bouin’s fixative. This investigative clinical trial assay performed in a central laboratory utilised a 0 to 3+ scale. Patients classified as staining 2+ or 3+ were included, while those staining 0 or 1+ were excluded. Greater than 70% of patients enrolled exhibited 3+ overexpression. The data suggest that beneficial effects were greater among those patients with higher levels of overexpression of HER2 (3+).

The main test method used to determine HER2 positivity in the pivotal trial of docetaxel, with or without Herceptin, was immunohistochemistry. A minority of patients was tested using fluorescence in-situ hybridisation (FISH). In this trial, 87% of patients entered had disease that was IHC3+, and 95% of patients entered had disease that was IHC3+ and/or FISH-positive.

Weekly dosing in metastatic breast cancer

The efficacy results from the monotherapy and combination therapy studies are summarised in Table 4:

Table 4 Efficacy Results from the Monotherapy and Combination Therapy Studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monotherapy</th>
<th>Combination Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herceptin†</td>
<td>Herceptin plus paclitaxel‡</td>
</tr>
<tr>
<td></td>
<td>N=172</td>
<td>N=68</td>
</tr>
<tr>
<td>Response rate (95%CI)</td>
<td>18 %</td>
<td>49 %</td>
</tr>
<tr>
<td></td>
<td>(13 - 25)</td>
<td>(36 - 61)</td>
</tr>
<tr>
<td>Median duration of response (months) (95%CI)</td>
<td>9.1 (5.6-10.3)</td>
<td>8.3 (7.3-8.8)</td>
</tr>
<tr>
<td>Median TTP (months) (95%CI)</td>
<td>3.2 (2.6-3.5)</td>
<td>7.1 (6.2-12.0)</td>
</tr>
<tr>
<td>Median Survival (months) (95%CI)</td>
<td>16.4 (12.3-ne)</td>
<td>24.8 (18.6-33.7)</td>
</tr>
</tbody>
</table>

TTP = time to progression; "ne" indicates that it could not be estimated or it was not yet reached.
1. Study H0649g: IHC3+ patient subset
2. Study H0648g: IHC3+ patient subset
3. Study M77001: Full analysis set (intent-to-treat), 24 months results

Combination treatment with Herceptin and anastrozole

Herceptin has been studied in combination with anastrozole for first line treatment of MBC in HER2 overexpressing, hormone-receptor (i.e. estrogen-receptor (ER) and/or progesterone-receptor (PR)) positive postmenopausal patients. Progression free survival was doubled in the Herceptin plus anastrozole arm compared to anastrozole (4.8 months versus 2.4 months). For the other parameters the improvements seen for the combination were for overall response (16.5% versus 6.7%); clinical benefit rate (42.7% versus 27.9%); time to progression (4.8 months versus 2.4 months). For time to response and duration of response no difference could be recorded between the arms. The median overall survival was extended by 4.6 months for patients in the combination arm. The difference was not statistically significant, however more than half of the patients in the anastrozole alone arm crossed over to a Herceptin containing regimen after progression of disease.
Three-weekly dosing in metastatic breast cancer

The efficacy results from the non-comparative monotherapy and combination therapy studies are summarised in Table 5:

Table 5 Efficacy Results from the Non-Comparative Monotherapy and Combination Therapy Studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monotherapy</th>
<th>Combination Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herceptin¹</td>
<td>Herceptin²</td>
</tr>
<tr>
<td></td>
<td>N=105</td>
<td>N=72</td>
</tr>
<tr>
<td>Response rate (95 %CI)</td>
<td>24 %</td>
<td>27 %</td>
</tr>
<tr>
<td>(range)</td>
<td>(15 - 35)</td>
<td>(14 - 43)</td>
</tr>
<tr>
<td>Median duration of response (months) (range)</td>
<td>10.1 (2.8-35.6)</td>
<td>7.9 (2.1-18.8)</td>
</tr>
<tr>
<td>Median TTP (months) (95 %CI)</td>
<td>3.4 (2.8-4.1)</td>
<td>7.7 (4.2-8.3)</td>
</tr>
<tr>
<td>Median Survival (months) (95 %CI)</td>
<td>ne</td>
<td>ne</td>
</tr>
</tbody>
</table>

TTP = time to progression; "ne" indicates that it could not be estimated or it was not yet reached.

1. Study WO16229: loading dose 8 mg/kg, followed by 6 mg/kg 3 weekly schedule
2. Study MO16982: loading dose 6 mg/kg weekly x 3; followed by 6 mg/kg 3-weekly schedule
3. Study BO15935
4. Study MO16419

Sites of progression

The frequency of progression in the liver was significantly reduced in patients treated with the combination of Herceptin and paclitaxel, compared to paclitaxel alone (21.8 % versus 45.7 %; p=0.004). More patients treated with Herceptin and paclitaxel progressed in the central nervous system than those treated with paclitaxel alone (12.6 % versus 6.5 %; p=0.377).

Early breast cancer (adjuvant setting)

Early breast cancer is defined as non-metastatic primary invasive carcinoma of the breast.

In the adjuvant treatment setting, Herceptin was investigated in 4 large multicentre, randomised, trials.

- Study BO16348 was designed to compare one and two years of three-weekly Herceptin treatment versus observation in patients with HER2 positive EBC following surgery, established chemotherapy and radiotherapy (if applicable). In addition, comparison of two years of Herceptin treatment versus one year of Herceptin treatment was performed. Patients assigned to receive Herceptin were given an initial loading dose of 8 mg/kg, followed by 6 mg/kg every three weeks for either one or two years.

- The NSABP B-31 and NCCTG N9831 studies that comprise the joint analysis were designed to investigate the clinical utility of combining Herceptin treatment with paclitaxel following AC chemotherapy, additionally the NCCTG N9831 study also investigated adding Herceptin sequentially to AC→P chemotherapy in patients with HER2 positive EBC following surgery.

- The BCIRG 006 study was designed to investigate combining Herceptin treatment with docetaxel either following AC chemotherapy or in combination with docetaxel and carboplatin in patients with HER2 positive EBC following surgery.

Early breast cancer in the HERA trial was limited to operable, primary, invasive adenocarcinoma of the breast, with axillary nodes positive or axillary nodes negative if tumors at least 1 cm in diameter.
In the joint analysis of the NSABP B-31 and NCCTG N9831 studies, EBC was limited to women with operable breast cancer at high risk, defined as HER2-positive and axillary lymph node positive or HER2 positive and lymph node negative with high risk features (tumor size > 1 cm and ER negative or tumor size > 2 cm, regardless of hormonal status).

In the BCIRG 006 study HER2 positive, EBC was defined as either lymph node positive or high risk node negative patients with no (pN0) lymph node involvement, and at least 1 of the following factors: tumour size greater than 2 cm, estrogen receptor and progesterone receptor negative, histological and/or nuclear grade 2-3, or age < 35 years).

The efficacy results from the BO16348 trial following 12 months* and 8 years** median follow-up are summarized in Table 6:

Table 6 Efficacy Results from Study BO16348

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Median follow-up</th>
<th>Median follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observation</td>
<td>Herceptin</td>
</tr>
<tr>
<td></td>
<td>N=1693</td>
<td>1 Year</td>
</tr>
<tr>
<td></td>
<td>N=1697***</td>
<td>1 Year</td>
</tr>
<tr>
<td></td>
<td>Observation</td>
<td>Herceptin</td>
</tr>
<tr>
<td></td>
<td>N= 1697***</td>
<td>1 Year</td>
</tr>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>219 (12.9 %)</td>
<td>127 (7.5 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1474 (87.1 %)</td>
<td>1566 (92.5 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td>0.54</td>
<td>0.76</td>
</tr>
<tr>
<td>Recurrence-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>208 (12.3 %)</td>
<td>113 (6.7 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1485 (87.7 %)</td>
<td>1580 (93.3 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td>0.51</td>
<td>0.73</td>
</tr>
<tr>
<td>Distant disease-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>184 (10.9 %)</td>
<td>99 (5.8 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1508 (89.1 %)</td>
<td>1594 (94.6 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td>0.50</td>
<td>0.76</td>
</tr>
<tr>
<td>Overall survival (death)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>40 (2.4 %)</td>
<td>31 (1.8 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1653 (97.6 %)</td>
<td>1662 (98.2 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>0.24</td>
<td>0.0005</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td>0.75</td>
<td>0.76</td>
</tr>
</tbody>
</table>

*Co-primary endpoint of DFS of 1 year versus observation met the pre-defined statistical boundary
**Final analysis (including crossover of 52 % of patients from the observation arm to Herceptin)
*** There is a discrepancy in the overall sample size due to a small number of patients who were randomized after the cut-off date for the 12-month median follow-up analysis

The efficacy results from the interim efficacy analysis crossed the protocol pre-specified statistical boundary for the comparison of 1-year of Herceptin versus observation. After a median follow-up of 12 months, the hazard ratio (HR) for disease free survival (DFS) was 0.54 (95 % CI 0.44, 0.67) which translates into an absolute benefit, in terms of a 2-year disease-free survival rate, of 7.6 percentage points (85.8 % versus 78.2 %) in favour of the Herceptin arm.

A final analysis was performed after a median follow-up of 8 years, which showed that 1 year Herceptin treatment is associated with a 24 % risk reduction compared to observation only (HR=0.76, 95 % CI 0.67, 0.86). This translates into an absolute benefit in terms of an 8 year disease free survival rate of 6.4 percentage points in favour of 1 year Herceptin treatment.
In this final analysis, extending Herceptin treatment for a duration of two years did not show additional benefit over treatment for 1 year [DFS HR in the intent to treat (ITT) population of 2 years versus 1 year=0.99 (95% CI: 0.87, 1.13), p-value=0.90 and OS HR=0.98 (0.83, 1.15); p-value=0.78]. The rate of asymptomatic cardiac dysfunction was increased in the 2-year treatment arm (8.1% versus 4.6% in the 1-year treatment arm). More patients experienced at least one grade 3 or 4 adverse event in the 2-year treatment arm (20.4%) compared with the 1-year treatment arm (16.3%).

In the NSABP B-31 and NCCTG N9831 studies Herceptin was administered in combination with paclitaxel, following AC chemotherapy.

Doxorubicin and cyclophosphamide were administered concurrently as follows:
- intravenous push doxorubicin, at 60 mg/m², given every 3 weeks for 4 cycles.
- intravenous cyclophosphamide, at 600 mg/m² over 30 minutes, given every 3 weeks for 4 cycles.

Paclitaxel, in combination with Herceptin, was administered as follows:
- intravenous paclitaxel - 80 mg/m² as a continuous intravenous infusion, given every week for 12 weeks.
- intravenous paclitaxel - 175 mg/m² as a continuous intravenous infusion, given every 3 weeks for 4 cycles (day 1 of each cycle).

The efficacy results from the joint analysis of the NSABP B-31 and NCCTG 9831 trials at the time of the definitive analysis of DFS* are summarized in Table 7. The median duration of follow up was 1.8 years for the patients in the AC→P arm and 2.0 years for patients in the AC→PH arm.

Table 7 Summary of Efficacy results from the joint analysis of the NSABP B-31 and NCCTG N9831 trials at the time of the definitive DFS analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→P (n=1679)</th>
<th>AC→PH (n=1672)</th>
<th>Hazard Ratio vs AC→P (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event (%)</td>
<td>261 (15.5)</td>
<td>133 (8.0)</td>
<td>0.48 (0.39, 0.59)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Distant Recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>193 (11.5)</td>
<td>96 (5.7)</td>
<td>0.47 (0.37, 0.60)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Death (OS event)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>92 (5.5)</td>
<td>62 (3.7)</td>
<td>0.67 (0.48, 0.92)</td>
<td><0.014**</td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; H: trastuzumab
* At median duration of follow up of 1.8 years for the patients in the AC→P arm and 2.0 years for patients in the AC→PH arm
** p value for OS did not cross the pre-specified statistical boundary for comparison of AC→PH vs. AC→P

For the primary endpoint, DFS, the addition of Herceptin to paclitaxel chemotherapy resulted in a 52% decrease in the risk of disease recurrence. The hazard ratio translates into an absolute benefit, in terms of 3-year disease-free survival rate estimates of 11.8 percentage points (87.2% versus 75.4%) in favour of the AC→PH (Herceptin) arm.
At the time of a safety update after a median of 3.5-3.8 years follow up, an analysis of DFS reconfirms the magnitude of the benefit shown in the definitive analysis of DFS. Despite the cross-over to Herceptin in the control arm, the addition of Herceptin to paclitaxel chemotherapy resulted in a 52% decrease in the risk of disease recurrence. The addition of Herceptin to paclitaxel chemotherapy also resulted in a 37% decrease in the risk of death.

The pre-planned final analysis of OS from the joint analysis of studies NSABP B-31 and NCCTG N9831 was performed when 707 deaths had occurred (median follow-up 8.3 years in the AC→P H group). Treatment with AC→PH resulted in a statistically significant improvement in OS compared with AC→P (stratified HR=0.64; 95% CI [0.55, 0.74]; log-rank p-value < 0.0001). At 8 years, the survival rate was estimated to be 86.9% in the AC→PH arm and 79.4% in the AC→P arm, an absolute benefit of 7.4% (95% CI 4.9%, 10.0%).

The final OS results from the joint analysis of studies NSABP B-31 and NCCTG N9831 are summarized in Table 8 below:

Table 8 Final Overall Survival Analysis from the joint analysis of trials NSABP B-31 and NCCTG N9831

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→P (N=2032)</th>
<th>AC→PH (N=2031)</th>
<th>p-value versus AC→P</th>
<th>Hazard Ratio versus AC→P (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (OS event):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event (%)</td>
<td>418 (20.6%)</td>
<td>289 (14.2%)</td>
<td>< 0.0001</td>
<td>0.64 (0.55, 0.74)</td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; H: trastuzumab

DFS analysis was also performed at the final analysis of OS from the joint analysis of studies NSABP B-31 and NCCTG N9831. The updated DFS analysis results (stratified HR = 0.61; 95% CI [0.54, 0.69]) showed a similar DFS benefit compared to the definitive primary DFS analysis, despite 24.8% patients in the AC→P arm who crossed over to receive Herceptin. At 8 years, the disease-free survival rate was estimated to be 77.2% (95% CI: 75.4, 79.1) in the AC→PH arm, an absolute benefit of 11.8% compared with the AC→P arm.

In the BCIRG 006 study Herceptin was administered either in combination with docetaxel, following AC chemotherapy (AC→DH) or in combination with docetaxel and carboplatin (DCarbH).

Docetaxel was administered as follows:
- intravenous docetaxel - 100 mg/m² as an intravenous infusion over 1 hour, given every 3 weeks for 4 cycles (day 2 of first docetaxel cycle, then day 1 of each subsequent cycle)

or

- intravenous docetaxel - 75 mg/m² as an intravenous infusion over 1 hour, given every 3 weeks for 6 cycles (day 2 of cycle 1, then day 1 of each subsequent cycle)

which was followed by:
- carboplatin – at target AUC = 6 mg/mL/min administered by intravenous infusion over 30-60 minutes repeated every 3 weeks for a total of six cycles

Herceptin was administered weekly with chemotherapy and 3 weekly thereafter for a total of 52 weeks.

The efficacy results from the BCIRG 006 are summarized in Tables 9 and 10. The median duration of follow up was 2.9 years in the AC→D arm and 3.0 years in each of the AC→DH and DCarbH arms.
Table 9 Overview of Efficacy Analyses BCIRG 006 AC→D versus AC→DH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→D (n=1073)</th>
<th>AC→DH (n=1074)</th>
<th>Hazard Ratio vs AC→D (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>195</td>
<td>134</td>
<td>0.61 (0.49, 0.77) p<0.0001</td>
</tr>
<tr>
<td>Distant recurrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>144</td>
<td>95</td>
<td>0.59 (0.46, 0.77) p<0.0001</td>
</tr>
<tr>
<td>Death (OS event)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>80</td>
<td>49</td>
<td>0.58 (0.40, 0.83) p=0.0024</td>
</tr>
</tbody>
</table>

AC→D = doxorubicin plus cyclophosphamide, followed by docetaxel; AC→DH = doxorubicin plus cyclophosphamide, followed by docetaxel plus trastuzumab; CI = confidence interval

Table 10 Overview of Efficacy Analyses BCIRG 006 AC→D versus DCarbH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→D (n=1073)</th>
<th>DCarbH (n=1074)</th>
<th>Hazard Ratio vs AC→D (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>195</td>
<td>145</td>
<td>0.67 (0.54, 0.83) p=0.0003</td>
</tr>
<tr>
<td>Distant recurrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>144</td>
<td>103</td>
<td>0.65 (0.50, 0.84) p=0.0008</td>
</tr>
<tr>
<td>Death (OS event)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>80</td>
<td>56</td>
<td>0.66 (0.47, 0.93) p=0.0182</td>
</tr>
</tbody>
</table>

AC→D = doxorubicin plus cyclophosphamide, followed by docetaxel; DCarbH = docetaxel, carboplatin and trastuzumab; CI = confidence interval

In the BCIRG 006 study for the primary endpoint, DFS, the hazard ratio translates into an absolute benefit, in terms of 3-year disease-free survival rate estimates of 5.8 percentage points (86.7 % versus 80.9 %) in favour of the AC→DH (Herceptin) arm and 4.6 percentage points (85.5 % versus 80.9 %) in favour of the DCarbH (Herceptin) arm compared to AC→D.

In study BCIRG 006, 213/1075 patients in the DCarbH (TCH) arm, 221/1074 patients in the AC→DH (AC→TH) arm, and 217/1073 in the AC→D (AC→T) arm had a Karnofsky performance status ≤90 (either 80 or 90). No disease-free survival (DFS) benefit was noticed in this subgroup of patients (hazard ratio = 1.16, 95 % CI [0.73, 1.83] for DCarbH (TCH) versus AC→D (AC→T); hazard ratio 0.97, 95 % CI [0.60, 1.55] for AC→DH (AC→TH) versus AC→D).
In addition a post-hoc exploratory analysis was performed on the data sets from the joint analysis (JA) NSABP B-31/NCCTG N9831* and BCIRG006 clinical studies combining DFS events and symptomatic cardiac events and summarised in Table 11:

Table 11 Post-Hoc Exploratory Analysis Results from the Joint Analysis NSABP B-31/NCCTG N9831* and BCIRG006 Clinical Studies Combining DFS Events and Symptomatic Cardiac Events

<table>
<thead>
<tr>
<th></th>
<th>AC→PH (vs. AC→P) (NSABP B-31 and NCCTG N9831)*</th>
<th>AC→DH (vs. AC→D) (BCIRG 006)</th>
<th>DCarbH (vs. AC→D) (BCIRG 006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary efficacy analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS Hazard ratios</td>
<td>0.48 (0.39, 0.59) p<0.0001</td>
<td>0.61 (0.49, 0.77) p< 0.0001</td>
<td>0.67 (0.54, 0.83) p=0.0003</td>
</tr>
<tr>
<td>Long term follow-up efficacy analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS Hazard ratios</td>
<td>0.61 (0.54, 0.69) p<0.0001</td>
<td>0.72 (0.61, 0.85) p<0.0001</td>
<td>0.77 (0.65, 0.90) p=0.0011</td>
</tr>
<tr>
<td>Post-hoc exploratory analysis with DFS and symptomatic cardiac events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term follow-up</td>
<td>0.67 (0.60, 0.75)</td>
<td>0.77 (0.66, 0.90)</td>
<td>0.77 (0.66, 0.90)</td>
</tr>
<tr>
<td>CI = confidence interval</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; D: docetaxel; Carb: carboplatin; H: trastuzumab

* At the time of the definitive analysis of DFS. Median duration of follow up was 1.8 years in the AC→P arm and 2.0 years in the AC→PH arm

** Median duration of long term follow-up for the Joint Analysis clinical studies was 8.3 years (range: 0.1 to 12.1) for the AC→PH arm and 7.9 years (range: 0.0 to 12.2) for the AC→P arm; Median duration of long term follow-up for the BCIRG 006 study was 10.3 years in both the AC→D arm (range: 0.0 to 12.6) arm and the DCarbH arm (range: 0.0 to 13.1), and was 10.4 years (range: 0.0 to 12.7) in the AC→DH arm

** Early breast cancer (neo-adjuvant-adjuvant setting)**

So far, no results are available which compare the efficacy of Herceptin administered with chemotherapy in the adjuvant setting with that obtained in the neo-adjuvant/adjuvant setting.

In the neoadjuvant-adjuvant treatment setting, study MO16432, a multicentre randomised trial, was designed to investigate the clinical efficacy of concurrent administration of Herceptin with neoadjuvant chemotherapy including both an anthracycline and a taxane, followed by adjuvant Herceptin, up to a total treatment duration of 1 year. The study recruited patients with newly diagnosed locally advanced (Stage III) or inflammatory EBC. Patients with HER2+ tumours were randomised to receive either neoadjuvant chemotherapy concurrently with neoadjuvant-adjuvant Herceptin, or neoadjuvant chemotherapy alone.
In study MO16432, Herceptin (8 mg/kg loading dose, followed by 6 mg/kg maintenance every 3
weeks) was administered concurrently with 10 cycles of neoadjuvant chemotherapy
as follows:

- Doxorubicin 60mg/m\(^2\) and paclitaxel 150 mg/m\(^2\), administered 3-weekly for 3 cycles,
which was followed by
 - Paclitaxel 175 mg/m\(^2\) administered 3-weekly for 4 cycles,
which was followed by
 - CMF on day 1 and 8 every 4 weeks for 3 cycles
which was followed after surgery by
 - additional cycles of adjuvant Herceptin (to complete 1 year of treatment)

The efficacy results from Study MO16432 are summarized in Table 12. The median duration of
follow-up in the Herceptin arm was 3.8 years.

Table 12 Efficacy Results from MO16432

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chemo + Herceptin (n=115)</th>
<th>Chemo only (n=116)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-free survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>46</td>
<td>59</td>
<td>0.65 (0.44, 0.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=0.0275</td>
</tr>
<tr>
<td>Total pathological complete response*</td>
<td>40% (31.0, 49.6)</td>
<td>20.7% (13.7, 29.2)</td>
<td>P=0.0014</td>
</tr>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>22</td>
<td>33</td>
<td>0.59 (0.35, 1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=0.0555</td>
</tr>
</tbody>
</table>

* defined as absence of any invasive cancer both in the breast and axillary nodes

An absolute benefit of 13 percentage points in favour of the Herceptin arm was estimated in terms of
3-year event-free survival rate (65 % versus 52 %).

Metastatic gastric cancer

Herceptin has been investigated in one randomised, open-label phase III trial ToGA (BO18255) in
combination with chemotherapy versus chemotherapy alone.

Chemotherapy was administered as follows:

- capcitabine - 1000 mg/m\(^2\) orally twice daily for 14 days every 3 weeks for 6 cycles
 (evening of day 1 to morning of day 15 of each cycle)
or
- intravenous 5-fluorouracil - 800 mg/m\(^2\)/day as a continuous intravenous infusion over 5
days, given every 3 weeks for 6 cycles (days 1 to 5 of each cycle)

Either of which was administered with:

- cisplatin - 80 mg/m\(^2\) every 3 weeks for 6 cycles on day 1 of each cycle.
The efficacy results from study BO18225 are summarized in Table 13:

Table 13 Efficacy Results from BO18225

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FP N = 290</th>
<th>FP + H N = 294</th>
<th>HR (95 % CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Survival, Median months</td>
<td>11.1</td>
<td>13.8</td>
<td>0.74 (0.60-0.91)</td>
<td>0.0046</td>
</tr>
<tr>
<td>Progression-Free Survival, Median months</td>
<td>5.5</td>
<td>6.7</td>
<td>0.71 (0.59-0.85)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Time to Disease Progression, Median months</td>
<td>5.6</td>
<td>7.1</td>
<td>0.70 (0.58-0.85)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Overall Response Rate, %</td>
<td>34.5 %</td>
<td>47.3 %</td>
<td>1.70^ (1.22, 2.38)</td>
<td>0.0017</td>
</tr>
<tr>
<td>Duration of Response, Median months</td>
<td>4.8</td>
<td>6.9</td>
<td>0.54 (0.40-0.73)</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

FP + H: Fluoropyrimidine/cisplatin + Herceptin
FP: Fluoropyrimidine/cisplatin
a Odds ratio

Patients were recruited to the trial who were previously untreated for HER2-positive inoperable locally advanced or recurrent and/or metastatic adenocarcinoma of the stomach or gastro-oesophageal junction not amenable to curative therapy. The primary endpoint was overall survival which was defined as the time from the date of randomization to the date of death from any cause. At the time of the analysis a total of 349 randomized patients had died: 182 patients (62.8 %) in the control arm and 167 patients (56.8 %) in the treatment arm. The majority of the deaths were due to events related to the underlying cancer.

Post-hoc subgroup analyses indicate that positive treatment effects are limited to targeting tumours with higher levels of HER2 protein (IHC 2+/FISH+ or IHC 3+). The median overall survival for the high HER2 expressing group was 11.8 months versus 16 months, HR 0.65 (95 % CI 0.51-0.83) and the median progression free survival was 5.5 months versus 7.6 months, HR 0.64 (95 % CI 0.51-0.79) for FP versus FP + H, respectively. For overall survival, the HR was 0.75 (95 % CI 0.51-1.11) in the IHC 2+/FISH+ group and the HR was 0.58 (95 % CI 0.41-0.81) in the IHC 3+/FISH+ group.

In an exploratory subgroup analysis performed in the TOGA (BO18255) trial there was no apparent benefit on overall survival with the addition of Herceptin in patients with ECOG PS 2 at baseline [HR 0.96 (95 % CI 0.51-1.79)], non measurable [HR 1.78 (95 % CI 0.87-3.66)] and locally advanced disease [HR 1.20 (95 % CI 0.29-4.97)].

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with Herceptin in all subsets of the paediatric population for breast and gastric cancer (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of trastuzumab were evaluated in a population pharmacokinetic model analysis using pooled data from 1,582 subjects, including patients with HER2 positive MBC, EBC, AGC or other tumor types, and healthy volunteers, in 18 Phase I, II and III trials receiving Herceptin IV. A two-compartment model with parallel linear and non-linear elimination from the central compartment described the trastuzumab concentration-time profile. Due to non-linear elimination, total clearance increased with decreasing concentration. Therefore, no constant value for half-life of trastuzumab can be deducted. The t½ decreases with decreasing concentrations within a dosing interval (see Table 16). MBC and EBC patients had similar PK parameters (e.g. clearance (CL), the central compartment volume (Vc)) and population-predicted steady-state exposures (Cmin, Cmax and AUC). Linear clearance was 0.136 L/day for MBC, 0.112 L/day for EBC and 0.176 L/day for AGC. The non-linear elimination parameter values were 8.81 mg/day for the maximum elimination rate (Vmax) and 8.92
µg/mL for the Michaelis-Menten constant (K_m) for the MBC, EBC, and AGC patients. The central compartment volume was 2.62 L for patients with MBC and EBC and 3.63 L for patients with AGC. In the final population PK model, in addition to primary tumor type, body-weight, serum aspartate aminotransferase and albumin were identified as a statistically significant covariates affecting the exposure of trastuzumab. However, the magnitude of effect of these covariates on trastuzumab exposure suggests that these covariates are unlikely to have a clinically meaningful effect on trastuzumab concentrations.

The population predicted PK exposure values (median with 5th - 95th Percentiles) and PK parameter values at clinically relevant concentrations (C_max and C_min) for MBC, EBC and AGC patients treated with the approved q1w and q3w dosing regimens are shown in Table 14 (Cycle 1), Table 15 (steady-state), and Table 16 (PK parameters).

Table 14 Population Predicted Cycle 1 PK Exposure Values (median with 5th - 95th Percentiles) for Herceptin IV Dosing Regimens in MBC, EBC and AGC Patients

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Primary tumor type</th>
<th>N</th>
<th>C_min (µg/mL)</th>
<th>C_max (µg/mL)</th>
<th>AUC_{0-21days} (µg.day/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mg/kg + 6mg/kg q3w</td>
<td>MBC</td>
<td>805</td>
<td>28.7 (2.9 - 46.3)</td>
<td>182 (134 - 280)</td>
<td>1376 (728 - 1998)</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>30.9 (18.7 - 45.5)</td>
<td>176 (127 - 227)</td>
<td>1390 (1039 - 1895)</td>
</tr>
<tr>
<td></td>
<td>AGC</td>
<td>274</td>
<td>23.1 (6.1 - 50.3)</td>
<td>132 (84.2 - 225)</td>
<td>1109 (588 – 1938)</td>
</tr>
<tr>
<td>4mg/kg + 2mg/kg qw</td>
<td>MBC</td>
<td>805</td>
<td>37.4 (8.7 - 58.9)</td>
<td>76.5 (49.4 - 114)</td>
<td>1073 (597 – 1584)</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>38.9 (25.3 - 58.8)</td>
<td>76.0 (54.7 - 104)</td>
<td>1074 (783 - 1502)</td>
</tr>
</tbody>
</table>

Table 15 Population Predicted Steady State PK Exposure Values (median with 5th - 95th Percentiles) for Herceptin IV Dosing Regimens in MBC, EBC and AGC Patients

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Primary tumor type</th>
<th>N</th>
<th>C_{min,ss}* (µg/mL)</th>
<th>C_{max,ss}** (µg/mL)</th>
<th>AUC_{ss, 0-21days} (µg.day/mL)</th>
<th>Time to steady-state*** (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mg/kg + 6mg/kg q3w</td>
<td>MBC</td>
<td>805</td>
<td>44.2 (1.8 - 85.4)</td>
<td>179 (123 - 266)</td>
<td>1736 (618 - 2756)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>53.8 (28.7 - 85.8)</td>
<td>184 (134 - 247)</td>
<td>1927 (1332 - 2771)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>AGC</td>
<td>274</td>
<td>32.9 (6.1 – 88.9)</td>
<td>131 (72.5 -251)</td>
<td>1338 (557 - 2875)</td>
<td>9</td>
</tr>
<tr>
<td>4mg/kg + 2mg/kg qw</td>
<td>MBC</td>
<td>805</td>
<td>63.1 (11.7 - 107)</td>
<td>107 (54.2 - 164)</td>
<td>1710 (581 - 2715)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>72.6 (46 - 109)</td>
<td>115 (82.6 - 160)</td>
<td>1893 (1309 -2734)</td>
<td>14</td>
</tr>
</tbody>
</table>

* C_{min,ss} = C_{min} at steady state
** C_{max,ss} = C_{max} at steady state
*** time to 90% of steady-state
Table 16 Population Predicted PK Parameter Values at Steady State for Herceptin IV Dosing Regimens in MBC, EBC and AGC Patients

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Primary tumor type</th>
<th>N</th>
<th>Total CL range from $C_{\text{max,ss}}$ to $C_{\text{min,ss}}$ (L/day)</th>
<th>$t_{1/2}$ range from $C_{\text{max,ss}}$ to $C_{\text{min,ss}}$ (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mg/kg + 6mg/kg q3w</td>
<td>MBC</td>
<td>805</td>
<td>0.183 - 0.302</td>
<td>15.1 - 23.3</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>0.158 - 0.253</td>
<td>17.5 – 26.6</td>
</tr>
<tr>
<td></td>
<td>AGC</td>
<td>274</td>
<td>0.189 - 0.337</td>
<td>12.6 - 20.6</td>
</tr>
<tr>
<td>4mg/kg + 2mg/kg qw</td>
<td>MBC</td>
<td>805</td>
<td>0.213 - 0.259</td>
<td>17.2 - 20.4</td>
</tr>
<tr>
<td></td>
<td>EBC</td>
<td>390</td>
<td>0.184 - 0.221</td>
<td>19.7 - 23.2</td>
</tr>
</tbody>
</table>

Trastuzumab washout
Trastuzumab washout period was assessed following q1w or q3w intravenous administration using the population PK model. The results of these simulations indicate that at least 95% of patients will reach concentrations that are <1 μg/mL (approximately 3% of the population predicted $C_{\text{min,ss}}$, or about 97% washout) by 7 months.

Circulating shed HER2 ECD
The exploratory analyses of covariates with information in only a subset of patients suggested that patients with greater shed HER2-ECD level had faster nonlinear clearance (lower K_m) ($P < 0.001$). There was a correlation between shed antigen and SGOT/AST levels; part of the impact of shed antigen on clearance may have been explained by SGOT/AST levels.

Baseline levels of the shed HER2-ECD observed in MGC patients were comparable to those in MBC and EBC patients and no apparent impact on trastuzumab clearance was observed.

5.3 Preclinical safety data
There was no evidence of acute or multiple dose-related toxicity in studies of up to 6 months, or reproductive toxicity in teratology, female fertility or late gestational toxicity/placental transfer studies. Herceptin is not genotoxic. A study of trehalose, a major formulation excipient did not reveal any toxicities.

No long-term animal studies have been performed to establish the carcinogenic potential of Herceptin, or to determine its effects on fertility in males.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients
L-histidine hydrochloride monohydrate
L-histidine
α,α-trehalose dihydrate
polysorbate 20

6.2 Incompatibilities
This medicinal product must not be mixed or diluted with other medicinal products except those mentioned under section 6.6.

Do not dilute with glucose solutions since these cause aggregation of the protein.
6.3 Shelf life

4 years

After reconstitution with sterile water for injection the reconstituted solution is physically and
chemically stable for 48 hours at 2°C – 8°C. Any remaining reconstituted solution should be
discarded.

Solutions of Herceptin for intravenous infusion are physically and chemically stable in
polyvinylchloride, polyethylene or polypropylene bags containing sodium chloride 9 mg/mL (0.9 %)
solution for injection for 24 hours at temperatures not exceeding 30°C.

From a microbiological point of view, the reconstituted solution and Herceptin infusion solution
should be used immediately. The product is not intended to be stored after reconstitution and dilution
unless this has taken place under controlled and validated aseptic conditions. If not used immediately,
in-use storage times and conditions are the responsibility of the user.

6.4 Special precautions for storage

Store in a refrigerator (2°C – 8°C).

For storage conditions of the opened medicinal product, see section 6.3 and 6.6.

6.5 Nature and contents of container

Herceptin vial:
One 15 mL clear glass type I vial with butyl rubber stopper laminated with a fluoro-resin film
containing 150 mg of trastuzumab.

Each carton contains one vial.

6.6 Special precautions for disposal and other handling

Appropriate aseptic technique should be used. Each vial of Herceptin is reconstituted with 7.2 mL of
sterile water for injection (not supplied). Use of other reconstitution solvents should be avoided.
This yields a 7.4 mL solution for single-dose use, containing approximately 21 mg/mL trastuzumab, at
a pH of approximately 6.0. A volume overage of 4 % ensures that the labelled dose of 150 mg can be
withdrawn from each vial.

Herceptin should be carefully handled during reconstitution. Causing excessive foaming during
reconstitution or shaking the reconstituted solution may result in problems with the amount of
Herceptin that can be withdrawn from the vial.

The reconstituted solution should not be frozen.

Instructions for reconstitution:
1) Using a sterile syringe, slowly inject 7.2 mL of sterile water for injection in the vial containing the
lyophilised Herceptin, directing the stream into the lyophilised cake.
2) Swirl the vial gently to aid reconstitution. DO NOT SHAKE!

Slight foaming of the product upon reconstitution is not unusual. Allow the vial to stand undisturbed
for approximately 5 minutes. The reconstituted Herceptin results in a colourless to pale yellow
transparent solution and should be essentially free of visible particulates.
Determine the volume of the solution required:

- based on a loading dose of 4 mg trastuzumab/kg body weight, or a subsequent weekly dose of 2 mg trastuzumab/kg body weight:

\[
\text{Volume (mL)} = \frac{\text{Body weight (kg)} \times \text{dose (4 mg/kg for loading or 2 mg/kg for maintenance)}}{21} \text{ (mg/mL, concentration of reconstituted solution)}
\]

- based on a loading dose of 8 mg trastuzumab/kg body weight, or a subsequent 3-weekly dose of 6 mg trastuzumab/kg body weight:

\[
\text{Volume (mL)} = \frac{\text{Body weight (kg)} \times \text{dose (8 mg/kg for loading or 6 mg/kg for maintenance)}}{21} \text{ (mg/mL, concentration of reconstituted solution)}
\]

The appropriate amount of solution should be withdrawn from the vial and added to an infusion bag containing 250 mL of 0.9 % sodium chloride solution. Do not use with glucose-containing solutions (see section 6.2). The bag should be gently inverted to mix the solution in order to avoid foaming. Once the infusion is prepared it should be administered immediately. If diluted aseptically, it may be stored for 24 hours (do not store above 30°C).

Parenteral medicinal products should be inspected visually for particulate matter and discoloration prior to administration.

Herceptin is for single-use only, as the product contains no preservatives. Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

No incompatibilities between Herceptin and polyvinylchloride, polyethylene or polypropylene bags have been observed.

7. MARKETING AUTHORISATION HOLDER

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/00/145/001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 28 August 2000
Date of latest renewal: 28 August 2010

10. DATE OF REVISION OF THE TEXT

1. NAME OF THE MEDICINAL PRODUCT

Herceptin 600 mg solution for injection in vial

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

One vial of 5 mL contains 600 mg of trastuzumab, a humanised IgG1 monoclonal antibody produced by mammalian (Chinese hamster ovary) cell suspension culture and purified by affinity and ion exchange chromatography including specific viral inactivation and removal procedures.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Solution for injection

Clear to opalescent solution, colourless to yellowish.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Breast cancer

Metastatic breast cancer

Herceptin is indicated for the treatment of adult patients with HER2 positive metastatic breast cancer (MBC):

- as monotherapy for the treatment of those patients who have received at least two chemotherapy regimens for their metastatic disease. Prior chemotherapy must have included at least an anthracycline and a taxane unless patients are unsuitable for these treatments. Hormone receptor positive patients must also have failed hormonal therapy, unless patients are unsuitable for these treatments.

- in combination with paclitaxel for the treatment of those patients who have not received chemotherapy for their metastatic disease and for whom an anthracycline is not suitable.

- in combination with docetaxel for the treatment of those patients who have not received chemotherapy for their metastatic disease.

- in combination with an aromatase inhibitor for the treatment of postmenopausal patients with hormone-receptor positive MBC, not previously treated with trastuzumab.

Early breast cancer

Herceptin is indicated for the treatment of adult patients with HER2 positive early breast cancer (EBC).

- following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable) (see section 5.1).

- following adjuvant chemotherapy with doxorubicin and cyclophosphamide, in combination with paclitaxel or docetaxel.
- in combination with adjuvant chemotherapy consisting of docetaxel and carboplatin.
- in combination with neoadjuvant chemotherapy followed by adjuvant Herceptin therapy, for locally advanced (including inflammatory) disease or tumours > 2 cm in diameter (see sections 4.4 and 5.1).

Herceptin should only be used in patients with metastatic or early breast cancer whose tumours have either HER2 overexpression or HER2 gene amplification as determined by an accurate and validated assay (see sections 4.4 and 5.1).

4.2 Posology and method of administration

HER2 testing is mandatory prior to initiation of therapy (see sections 4.4 and 5.1). Herceptin treatment should only be initiated by a physician experienced in the administration of cytotoxic chemotherapy (see section 4.4), and should be administered by a healthcare professional only.

It is important to check the product labels to ensure that the correct formulation (intravenous or subcutaneous fixed dose) is being administered to the patient, as prescribed. Herceptin subcutaneous formulation is not intended for intravenous administration and should be administered via a subcutaneous injection only.

Switching treatment between Herceptin intravenous and Herceptin subcutaneous formulations and vice versa, using the three-weekly (q3w) dosing regimen, was investigated in study MO22982 (see section 4.8).

In order to prevent medication errors it is important to check the vial labels to ensure that the drug being prepared and administered is Herceptin (trastuzumab) and not Kadcyla (trastuzumab emtansine).

Posology

The recommended dose for Herceptin subcutaneous formulation is 600 mg irrespective of the patient’s body weight. No loading dose is required. This dose should be administered subcutaneously over 2-5 minutes every three weeks.

In the pivotal trial (BO22227) Herceptin subcutaneous formulation was administered in the neoadjuvant/adjuvant setting in patients with early breast cancer. The preoperative chemotherapy regimen consisted of docetaxel (75 mg/m²) followed by FEC (5FU, epirubicin and cyclophosphamide) at a standard dose.

See section 5.1 for chemotherapy combination dosing.

Duration of treatment

Patients with MBC should be treated with Herceptin until progression of disease. Patients with EBC should be treated with Herceptin for 1 year or until disease recurrence, whichever occurs first; extending treatment in EBC beyond one year is not recommended (see section 5.1).

Dose reduction

No reductions in the dose of Herceptin were made during clinical trials. Patients may continue therapy during periods of reversible, chemotherapy-induced myelosuppression but they should be monitored carefully for complications of neutropenia during this time. Refer to the Summary of Product Characteristics (SmPC) for paclitaxel, docetaxel or aromatase inhibitor for information on dose reduction or delays.

If left ventricular ejection fraction (LVEF) percentage drops ≥ 10 points from baseline AND to below 50 %, treatment should be suspended and a repeat LVEF assessment performed within approximately 3 weeks. If LVEF has not improved, or has declined further, or if symptomatic congestive heart failure (CHF) has developed, discontinuation of Herceptin should be strongly considered, unless the benefits
for the individual patient are deemed to outweigh the risks. All such patients should be referred for assessment by a cardiologist and followed up.

Missed doses
If the patient misses a dose of Herceptin subcutaneous formulation, it is recommended to administer the next 600 mg dose (i.e. the missed dose) as soon as possible. The interval between consecutive Herceptin subcutaneous formulation administrations should not be less than three weeks.

Special populations
Dedicated pharmacokinetic studies in the elderly and those with renal or hepatic impairment have not been carried out. In a population pharmacokinetic analysis, age and renal impairment were not shown to affect trastuzumab disposition.

Paediatric population
There is no relevant use of Herceptin in the paediatric population.

Method of administration

The 600 mg dose should be administered as a subcutaneous injection only over 2-5 minutes every three weeks. The injection site should be alternated between the left and right thigh. New injections should be given at least 2.5 cm from the old site and never into areas where the skin is red, bruised, tender, or hard. During the treatment course with Herceptin subcutaneous formulation other medicinal products for subcutaneous administration should preferably be injected at different sites. Patients should be observed for six hours after the first injection and for two hours after subsequent injections for signs or symptoms of administration-related reactions (see sections 4.4 and 4.8).

For instructions on use and handling of Herceptin subcutaneous formulation refer to section 6.6.

4.3 Contraindications

- Hypersensitivity to trastuzumab, murine proteins, hyaluronidase or to any of the other excipients listed in section 6.1.
- Severe dyspnoea at rest due to complications of advanced malignancy or requiring supplementary oxygen therapy.

4.4 Special warnings and precautions for use

In order to improve traceability of biological medicinal products, the trade name and the batch number of the administered product should be clearly recorded (or stated) in the patient file.

HER2 testing must be performed in a specialised laboratory which can ensure adequate validation of the testing procedures (see section 5.1).

Currently no data from clinical trials are available on re-treatment of patients with previous exposure to Herceptin in the adjuvant setting.

Cardiac dysfunction

General considerations

Patients treated with Herceptin are at increased risk for developing CHF (New York Heart Association [NYHA] Class II-IV) or asymptomatic cardiac dysfunction. These events have been observed in patients receiving Herceptin therapy alone or in combination with paclitaxel or docetaxel, particularly following anthracycline (doxorubicin or epirubicin)–containing chemotherapy. These may be moderate to severe and have been associated with death (see section 4.8). In addition, caution should be exercised in treating patients with increased cardiac risk, e.g. hypertension, documented coronary artery disease, CHF, LVEF of <55%, older age.
All candidates for treatment with Herceptin, but especially those with prior anthracycline and
cyclophosphamide exposure, should undergo baseline cardiac assessment including history and
physical examination and electrocardiogram (ECG), echocardiogram, and/or multigated acquisition
(MUGA) scan or magnetic resonance imaging. Monitoring may help to identify patients who develop
cardiac dysfunction. Cardiac assessments, as performed at baseline, should be repeated every 3 months
during treatment and every 6 months following discontinuation of treatment until 24 months from the
last administration of Herceptin. A careful risk-benefit assessment should be made before deciding to
treat with Herceptin.

Trastuzumab may persist in the circulation for up to 7 months after stopping Herceptin treatment
based on population pharmacokinetic analysis of all available data (see section 5.2). Patients who
receive anthracyclines after stopping Herceptin may possibly be at increased risk of cardiac
dysfunction. If possible, physicians should avoid anthracycline-based therapy for up to 7 months after
stopping Herceptin. If anthracyclines are used, the patient’s cardiac function should be monitored
carefully.

Formal cardiological assessment should be considered in patients in whom there are cardiovascular
concerns following baseline screening. In all patients cardiac function should be monitored during
treatment (e.g. every 12 weeks). Monitoring may help to identify patients who develop cardiac
dysfunction. Patients who develop asymptomatic cardiac dysfunction may benefit from more frequent
monitoring (e.g. every 6-8 weeks). If patients have a continued decrease in left ventricular function,
but remain asymptomatic, the physician should consider discontinuing therapy if no clinical benefit of
Herceptin therapy has been seen.

The safety of continuation or resumption of Herceptin in patients who experience cardiac dysfunction
has not been prospectively studied. If LVEF percentage drops ≥ 10 points from baseline AND to
below 50%, treatment should be suspended and a repeat LVEF assessment performed within
approximately 3 weeks. If LVEF has not improved, or declined further, or symptomatic CHF has
developed, discontinuation of Herceptin should be strongly considered, unless the benefits for the
individual patient are deemed to outweigh the risks. All such patients should be referred for
assessment by a cardiologist and followed up.

If symptomatic cardiac failure develops during Herceptin therapy, it should be treated with standard
medicinal products for CHF. Most patients who developed CHF or asymptomatic cardiac dysfunction
in pivotal trials improved with standard CHF treatment consisting of an angiotensin-converting
enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) and a beta-blocker. The majority of
patients with cardiac symptoms and evidence of a clinical benefit of Herceptin treatment continued on
therapy without additional clinical cardiac events.

Metastatic breast cancer

Herceptin and anthracyclines should not be given concurrently in combination in the MBC setting.

Patients with MBC who have previously received anthracyclines are also at risk of cardiac dysfunction
with Herceptin treatment, although the risk is lower than with concurrent use of Herceptin and
anthracyclines.

Early breast cancer

For patients with EBC, cardiac assessments, as performed at baseline, should be repeated every 3
months during treatment and every 6 months following discontinuation of treatment until 24 months
from the last administration of Herceptin. In patients who receive anthracycline-containing
chemotherapy further monitoring is recommended, and should occur yearly up to 5 years from the last
administration of Herceptin, or longer if a continuous decrease of LVEF is observed.
Patients with history of myocardial infarction (MI), angina pectoris requiring medical treatment, history of or existing CHF (NYHA Class II –IV), LVEF of < 55%, other cardiomyopathy, cardiac arrhythmia requiring medical treatment, clinically significant cardiac valvular disease, poorly controlled hypertension (hypertension controlled by standard medical treatment eligible), and hemodynamic effective pericardial effusion were excluded from adjuvant and neoadjuvant EBC pivotal trials with Herceptin and therefore treatment cannot be recommended in such patients.

Adjuvant treatment

Herceptin and anthracyclines should not be given concurrently in the adjuvant treatment setting.

In patients with EBC an increase in the incidence of symptomatic and asymptomatic cardiac events was observed when Herceptin (intravenous formulation) was administered after anthracycline-containing chemotherapy compared to administration with a non-anthracycline regimen of docetaxel and carboplatin and was more marked when Herceptin (intravenous formulation) was administered concurrently with taxanes than when administered sequentially to taxanes. Regardless of the regimen used, most symptomatic cardiac events occurred within the first 18 months. In one of the 3 pivotal studies conducted in which a median follow-up of 5.5 years was available (BCIRG006) a continuous increase in the cumulative rate of symptomatic cardiac or LVEF events was observed (up to 2.37 %) in patients who were administered Herceptin concurrently with a taxane following anthracycline therapy, compared to approximately 1 % in the two comparator arms (anthracycline plus cyclophosphamide followed by taxane and taxane, carboplatin and Herceptin).

Risk factors for a cardiac event identified in four large adjuvant studies included advanced age (> 50 years), low LVEF (<55%) at baseline, prior to or following the initiation of paclitaxel treatment, decline in LVEF by 10-15 points, and prior or concurrent use of anti-hypertensive medicinal products. In patients receiving Herceptin after completion of adjuvant chemotherapy, the risk of cardiac dysfunction was associated with a higher cumulative dose of anthracycline given prior to initiation of Herceptin and a body mass index (BMI) >25 kg/m².

Neoadjuvant-adjuvant treatment

In patients with EBC eligible for neoadjuvant-adjuvant treatment, Herceptin should be used concurrently with anthracyclines only in chemotherapy-naive patients and only with low-dose anthracycline regimens, i.e., with maximum cumulative doses of doxorubicin 180 mg/m² or epirubicin 360 mg/m².

If patients have been treated concurrently with a full course of low-dose anthracyclines and Herceptin in the neoadjuvant setting, no additional cytotoxic chemotherapy should be given after surgery. In other situations, the decision on the need for additional cytotoxic chemotherapy is determined based on individual factors.

Experience of concurrent administration of trastuzumab with low dose anthracyline regimens is currently limited to two trials (MO16432 and BO22227).

In the pivotal trial MO16432, Herceptin was administered concurrently with neoadjuvant chemotherapy containing three cycles of doxorubicin (cumulative dose 180 mg/m²). The incidence of symptomatic cardiac dysfunction was 1.7% in the Herceptin arm.

In the pivotal trial BO22227, Herceptin was administered concurrently with neoadjuvant chemotherapy that contained four cycles of epirubicin (cumulative dose 300 mg/m²); at a median follow-up of 40 months, the incidence of congestive cardiac failure was 0.0% in the Herceptin intravenous arm and 0.7% in the Herceptin subcutaneous arm. In patients with lower body weights (<59 kg, the lowest body weight quartile) the fixed dose used in the Herceptin subcutaneous arm was not associated with an increased risk of cardiac events or significant drop in LVEF.

Clinical experience is limited in patients above 65 years of age.
Administration-related reactions

Administration-related reactions (ARRs) are known to occur with Herceptin subcutaneous formulation. Pre-medication may be used to reduce risk of occurrence of ARRs.

Although serious ARRs, including dyspnoea, hypotension, wheezing, bronchospasm, tachycardia, reduced oxygen saturation and respiratory distress, were not reported in the clinical trial with the Herceptin subcutaneous formulation, caution should be exercised as these have been associated with the intravenous formulation. Patients should be observed for ARRs for six hours after the first injection and for two hours after subsequent injections. They can be treated with an analgesic/antipyretic such as meperidine or paracetamol, or an antihistamine such as diphenhydramine. Serious reactions to intravenous Herceptin have been treated successfully with supportive therapy such as oxygen, beta-agonists, and corticosteroids. In rare cases, these reactions were associated with a clinical course culminating in a fatal outcome. Patients experiencing dyspnoea at rest due to complications of advanced malignancy and comorbidities may be at increased risk of a fatal ARR. Therefore, these patients should not be treated with Herceptin (see section 4.3).

Pulmonary events

Caution is recommended with Herceptin subcutaneous formulation as severe pulmonary events have been reported with the use of the intravenous formulation in the post-marketing setting (see section 4.8). These events have occasionally been fatal and may occur as part of an infusion-related reaction or with delayed onset. In addition, cases of interstitial lung disease including lung infiltrates, acute respiratory distress syndrome, pneumonia, pneumonitis, pleural effusion, respiratory distress, acute pulmonary oedema and respiratory insufficiency have been reported. Risk factors associated with interstitial lung disease include prior or concomitant therapy with other anti-neoplastic therapies known to be associated with it such as taxanes, gemcitabine, vinorelbine and radiation therapy. Patients experiencing dyspnoea at rest due to complications of advanced malignancy and comorbidities may be at increased risk of pulmonary events. Therefore, these patients should not be treated with Herceptin (see section 4.3). Caution should be exercised for pneumonitis, especially in patients being treated concomitantly with taxanes.

4.5 Interaction with other medicinal products and other forms of interaction

No formal drug interaction studies have been performed. Clinically significant interactions between Herceptin and the concomitant medicinal products used in clinical trials have not been observed.

Effect of trastuzumab on the pharmacokinetics of other antineoplastic agents

Pharmacokinetic data from studies BO15935 and M77004 in women with HER2-positive MBC suggested that exposure to paclitaxel and doxorubicin (and their major metabolites 6-α hydroxyl-paclitaxel, POH, and doxorubicinol, DOL) was not altered in the presence of trastuzumab (8 mg/kg or 4 mg/kg IV loading dose followed by 6 mg/kg q3w or 2 mg/kg q1w IV, respectively). However, trastuzumab may elevate the overall exposure of one doxorubicin metabolite, (7-deoxy-13 dihydro-doxorubicinone, D7D). The bioactivity of D7D and the clinical impact of the elevation of this metabolite was unclear.

Data from study JP16003, a single-arm study of Herceptin (4 mg/kg IV loading dose and 2 mg/kg IV weekly) and docetaxel (60 mg/m2 IV) in Japanese women with HER2-positive MBC, suggested that concomitant administration of Herceptin had no effect on the single dose pharmacokinetics of docetaxel. Study JP19959 was a substudy of BO18255 (ToGA) performed in male and female Japanese patients with advanced gastric cancer to study the pharmacokinetics of capecitabine and cisplatin when used with or without Herceptin. The results of this substudy suggested that the exposure to the bioactive metabolites (e.g. 5-FU) of capecitabine was not affected by concurrent use of cisplatin or by concurrent use of cisplatin plus Herceptin. However, capecitabine itself showed higher concentrations and a longer half-life when combined with Herceptin. The data also suggested that the
pharmacokinetics of cisplatin were not affected by concurrent use of capecitabine or by concurrent use of capecitabine plus Herceptin.

Pharmacokinetic data from Study H4613g/GO01305 in patients with metastatic or locally advanced inoperable HER2-positive cancer suggested that trastuzumab had no impact on the PK of carboplatin.

Effect of antineoplastic agents on trastuzumab pharmacokinetics

By comparison of simulated serum trastuzumab concentrations after Herceptin monotherapy (4 mg/kg loading/2 mg/kg q1w IV) and observed serum concentrations in Japanese women with HER2-positive MBC (study JP16003) no evidence of a PK effect of concurrent administration of docetaxel on the pharmacokinetics of trastuzumab was found.

Comparison of PK results from two Phase II studies (BO15935 and M77004) and one Phase III study (H0648g) in which patients were treated concomitantly with Herceptin and paclitaxel and two Phase II studies in which Herceptin was administered as monotherapy (W016229 and MO16982), in women with HER2-positive MBC indicates that individual and mean trastuzumab trough serum concentrations varied within and across studies but there was no clear effect of the concomitant administration of paclitaxel on the pharmacokinetics of trastuzumab. Comparison of trastuzumab PK data from Study M77004 in which women with HER2-positive MBC were treated concomitantly with Herceptin, paclitaxel and doxorubicin to trastuzumab PK data in studies where Herceptin was administered as monotherapy (H0649g) or in combination with anthracycline plus cyclophosphamide or paclitaxel (Study H0648g), suggested no effect of doxorubicin and paclitaxel on the pharmacokinetics of trastuzumab.

Pharmacokinetic data from Study H4613g/GO01305 suggested that carboplatin had no impact on the PK of trastuzumab.

The administration of concomitant anastrozole did not appear to influence the pharmacokinetics of trastuzumab.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential / Contraception
Women of childbearing potential should be advised to use effective contraception during treatment with Herceptin and for 7 months after treatment has concluded (see section 5.2).

Pregnancy
Reproduction studies have been conducted in Cynomolgus monkeys at doses up to 25 times that of the weekly human maintenance dose of 2 mg/kg Herceptin intravenous formulation and have revealed no evidence of impaired fertility or harm to the fetus. Placental transfer of trastuzumab during the early (days 20-50 of gestation) and late (days 120-150 of gestation) fetal development period was observed. It is not known whether Herceptin can affect reproductive capacity. As animal reproduction studies are not always predictive of human response, Herceptin should be avoided during pregnancy unless the potential benefit for the mother outweighs the potential risk to the fetus.

In the post-marketing setting, cases of fetal renal growth and/or function impairment in association with oligohydramnios, some associated with fatal pulmonary hypoplasia of the fetus, have been reported in pregnant women receiving Herceptin. Women who become pregnant should be advised of the possibility of harm to the fetus. If a pregnant woman is treated with Herceptin, or if a patient becomes pregnant while receiving Herceptin or within 7 months following last dose of Herceptin, close monitoring by a multidisciplinary team is desirable.

Breast-feeding
A study conducted in lactating Cynomolgus monkeys at doses 25 times that of the weekly human maintenance dose of 2 mg/kg Herceptin intravenous formulation demonstrated that trastuzumab is secreted in the milk. The presence of trastuzumab in the serum of infant monkeys was not associated
with any adverse effects on their growth or development from birth to 1 month of age. It is not known whether trastuzumab is secreted in human milk. As human IgG1 is secreted into human milk, and the potential for harm to the infant is unknown, women should not breast-feed during Herceptin therapy and for 7 months after the last dose.

Fertility
There is no fertility data available.

4.7 Effects on ability to drive and use machines

Herceptin has no or negligible influence on the ability to drive or use machines. However, patients experiencing administration-related symptoms (see section 4.4) should be advised not to drive and use machines until symptoms abate.

4.8 Undesirable effects

Summary of the safety profile

Amongst the most serious and/or common adverse reactions reported in Herceptin usage (intravenous and subcutaneous formulations) to date are cardiac dysfunction, administration-related reactions, haematotoxicity (in particular neutropenia), infections and pulmonary adverse reactions.

The safety profile of Herceptin subcutaneous formulation (evaluated in 298 and 297 patients treated with the intravenous and subcutaneous formulations respectively) from the pivotal trial in EBC was overall similar to the known safety profile of the intravenous formulation.

Severe adverse events (defined according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE grade ≥3) version 3.0) were equally distributed between both Herceptin formulations (52.3 % versus 53.5 % in the intravenous formulation versus subcutaneous formulation respectively).

Some adverse events / reactions were reported with a higher frequency for the subcutaneous formulation:
- Serious adverse events (most of which were identified because of in-patient hospitalisation or prolongation of existing hospitalisation): 14.1 % for the intravenous formulation versus 21.5 % for the subcutaneous formulation. The difference in serious adverse event rates between formulations was mainly due to infections with or without neutropenia (4.4 % versus 8.1 %) and cardiac disorders (0.7 % versus 1.7 %);
- Post-operative wound infections (severe and/or serious): 1.7 % versus 3.0 % for the intravenous formulation versus subcutaneous formulation, respectively;
- Administration-related reactions: 37.2 % versus 47.8 % for the intravenous formulation versus subcutaneous formulation, respectively during the treatment phase;
- Hypertension: 4.7 % versus 9.8 % for the intravenous formulation versus subcutaneous formulation respectively.

Tabulated list of adverse reactions with the intravenous formulation

In this section, the following categories of frequency have been used: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000), not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Presented in Table 1 are adverse reactions that have been reported in association with the use of intravenous Herceptin alone or in combination with chemotherapy in pivotal clinical trials and in the post-marketing setting.

All the terms included are based on the highest percentage seen in pivotal clinical trials.
Table 1: Undesirable effects reported with intravenous Herceptin monotherapy or in combination with chemotherapy in pivotal clinical trials (N = 8386) and in post-marketing

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse reaction</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection</td>
<td>Very common</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Neutropenic sepsis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Cystitis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Skin infection</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Erysipelas</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Cellulitis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl. Cysts and polyps)</td>
<td>Malignant neoplasm progression</td>
<td>Not known</td>
</tr>
<tr>
<td>Neoplasm progression</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Febrile neutropenia</td>
<td>Very common</td>
</tr>
<tr>
<td>Anaemia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>White blood cell count decreased/leukopenia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Hypoprothrombinaemia</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Immune thrombocytopenia</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity</td>
<td>Common</td>
</tr>
<tr>
<td>Anaphylactic reaction</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Anaphylactic shock</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Weight decreased/Weight loss</td>
<td>Very common</td>
</tr>
<tr>
<td>Anorexia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Hyperkalaemia</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td>Very common</td>
</tr>
<tr>
<td>Anxiety</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Thinking abnormal</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Tremor</td>
<td>Very common</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Hypertonia</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Somnolence</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Ataxia</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Paresis</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Brain oedema</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conjunctivitis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Lacrimation increased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dry eye</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Papilloedema</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Retinal haemorrhage</td>
<td>Not known</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Deafness</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood pressure decreased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Blood pressure increased</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Heart beat irregular</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Palpitation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cardiac flutter</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Ejection fraction decreased*</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cardiac failure (congestive)</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Supraventricular tachyarrhythmia</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Cardiomyopathy</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pericardial effusion</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Cardiogenic shock</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Pericarditis</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Bradycardia</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Gallop rhythm present</td>
<td>Not known</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Hypotension</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Vasodilatation</td>
<td>Common</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wheezing</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dyspnoca</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Epistaxis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Rhinorrhoea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Asthma</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Lung disorder</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pleural effusion</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pneumonitis</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Pulmonary fibrosis</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Respiratory distress</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Respiratory failure</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Lung infiltration</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Acute pulmonary oedema</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Acute respiratory distress syndrome</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Bronchospasm</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Hypoxia</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Oxygen saturation decreased</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Laryngeal oedema</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Orthopnoea</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Pulmonary oedema</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Interstitial lung disease</td>
<td>Not known</td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Lip swelling</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Abdominal pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Dyspepsia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Stomatitis</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Haemorrhoids</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dry mouth</td>
<td>Common</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Hepatocellular Injury</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hepatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Liver Tenderness</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Jaundice</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hepatic Failure</td>
<td>Not known</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Erythema</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Rash</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Swelling face</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Alopecia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Nail disorder</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Palmar-plantar erythrodysaesthesia syndrome</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Acne</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dry skin</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Ecchymosis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hyperhidrosis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Maculopapular rash</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pruritus</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Onychoclasis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dermatitis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Urticaria</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Angioedema</td>
<td>Not known</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Arthralgia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Muscle tightness</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Myalgia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Arthritis</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Back pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Bone pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Muscle spasms</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Neck pain</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pain in extremity</td>
<td>Common</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Renal disorder</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephritis membranous</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephropathy</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Renal failure</td>
<td>Not known</td>
</tr>
<tr>
<td>Pregnancy, puerperium and perinatal conditions</td>
<td>Oligohydramnios</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Renal hypoplasia</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Pulmonary hypoplasia</td>
<td>Not known</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Breast inflammation/mastitis</td>
<td>Common</td>
</tr>
<tr>
<td>System organ class</td>
<td>Adverse reaction</td>
<td>Frequency</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Chest pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Chills</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Influenza-like symptoms</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Infusion related reaction</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Mucosal inflammation</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Peripheral oedema</td>
<td>Very common</td>
</tr>
<tr>
<td></td>
<td>Malaise</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Oedema</td>
<td>Common</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td>Contusion</td>
<td>Common</td>
</tr>
</tbody>
</table>

+ Denotes adverse reactions that have been reported in association with a fatal outcome.

1 Denotes adverse reactions that are reported largely in association with administration-related reactions. Specific percentages for these are not available.

* Observed with combination therapy following anthracyclines and combined with taxanes

Description of selected adverse reactions

Cardiac dysfunction

Congestive heart failure (NYHA Class II-IV) is a common adverse reaction to Herceptin. It has been associated with a fatal outcome. Signs and symptoms of cardiac dysfunction such as dyspnoea, orthopnoea, increased cough, pulmonary oedema, S3 gallop, or reduced ventricular ejection fraction, have been observed in patients treated with Herceptin (see section 4.4).

In 3 pivotal EBC clinical trials of adjuvant intravenous Herceptin given in combination with chemotherapy, the incidence of grade 3/4 cardiac dysfunction (specifically symptomatic congestive heart failure) was similar in patients who were administered chemotherapy alone (ie did not receive Herceptin) and in patients who were administered Herceptin sequentially after a taxane (0.3-0.4 %). The rate was highest in patients who were administered Herceptin concurrently with a taxane (2.0 %). In the neoadjuvant setting, the experience of concurrent administration of Herceptin and low dose anthracycline regimen is limited (see section 4.4).

When Herceptin was administered after completion of adjuvant chemotherapy NYHA Class III-IV heart failure was observed in 0.6 % of patients in the one-year arm after a median follow-up of 12 months. In study BO16348, after a median follow-up of 8 years the incidence of severe CHF (NYHA Class III & IV) in the Herceptin 1 year treatment arm was 0.8 %, and the rate of mild symptomatic and asymptomatic left ventricular dysfunction was 4.6 %. Reversibility of severe CHF (defined as a sequence of at least two consecutive LVEF values ≥50 % after the event) was evident for 71.4 % of Herceptin-treated patients. Reversibility of mild symptomatic and asymptomatic left ventricular dysfunction was demonstrated for 79.5 % of patients. Approximately 17 % of cardiac dysfunction related events occurred after completion of Herceptin.

In the pivotal metastatic trials of intravenous Herceptin, the incidence of cardiac dysfunction varied between 9 % and 12 % when it was combined with paclitaxel compared with 1 % – 4 % for paclitaxel alone. For monotherapy, the rate was 6 % – 9 %. The highest rate of cardiac dysfunction was seen in patients receiving Herceptin concurrently with anthracycline/cyclophosphamide (27 %), and was significantly higher than for anthracycline/cyclophosphamide alone (7 % – 10 %). In a subsequent trial with prospective monitoring of cardiac function, the incidence of symptomatic CHF was 2.2 % in patients receiving Herceptin and docetaxel, compared with 0 % in patients receiving docetaxel alone. Most of the patients (79 %) who developed cardiac dysfunction in these trials experienced an improvement after receiving standard treatment for CHF.
Administration-related reactions/hypersensitivity

Administration-related reactions (ARRs)/hypersensitivity reactions such as chills and/or fever, dyspnoea, hypotension, wheezing, bronchospasm, tachycardia, reduced oxygen saturation, respiratory distress, rash, nausea, vomiting and headache were seen in Herceptin clinical trials (see section 4.4). The rate of ARRs of all grades varied between studies depending on the indication, the data collection methodology, and whether trastuzumab was given concurrently with chemotherapy or as monotherapy.

Anaphylactoid reactions have been observed in isolated cases.

Haematotoxicity

Febrile neutropenia, leukopenia, anaemia, thrombocytopenia and neutropenia occurred very commonly. The frequency of occurrence of hypoprothrombinemia is not known. The risk of neutropenia may be slightly increased when trastuzumab is administered with docetaxel following anthracycline therapy.

Pulmonary events

Severe pulmonary adverse reactions occur in association with the use of Herceptin and have been associated with a fatal outcome. These include, but are not limited to, pulmonary infiltrates, acute respiratory distress syndrome, pneumonia, pneumonitis, pleural effusion, respiratory distress, acute pulmonary oedema and respiratory insufficiency (see section 4.4).

Description of selected adverse reactions with the subcutaneous formulation

Administration-related reactions

In the pivotal trial, the rate of all grade ARRs was 37.2 % with the Herceptin intravenous formulation and 47.8 % with the Herceptin subcutaneous formulation; severe grade 3 reactions were reported in 2.0 % and 1.7 % of the patients, respectively during the treatment phase; no severe grade 4 or 5 reactions were observed. All of the severe ARRs with the Herceptin subcutaneous formulation occurred during concurrent administration with chemotherapy. The most frequent severe reaction was drug hypersensitivity.

The systemic reactions included hypersensitivity, hypotension, tachycardia, cough, and dyspnoea. The local reactions included erythema, pruritus, oedema, rash and pain at the site of the injection.

Infections

The rate of severe infections (NCI CTCAE grade ≥3) was 5.0 % versus 7.1 %, in the Herceptin intravenous formulation arm and the Herceptin subcutaneous formulation arm respectively. The rate of serious infections (most of which were identified because of in-patient hospitalisation or prolongation of existing hospitalisation) was 4.4 % in the Herceptin intravenous formulation arm and 8.1 % in the Herceptin subcutaneous formulation arm. The difference between formulations was mainly observed during the adjuvant treatment phase (monotherapy) and was mainly due to postoperative wound infections, but also to various other infections such as respiratory tract infections, acute pyelonephritis and sepsis. They resolved within a mean of 13 days in the Herceptin intravenous treatment arm and a mean of 17 days in the Herceptin subcutaneous treatment arm.

Hypertensive events

In the pivotal trial BO22227, there were more than twice as many patients reporting all grade hypertension with the Herceptin subcutaneous formulation (4.7 % versus 9.8 % in the intravenous and subcutaneous formulations respectively), with a greater proportion of patients with severe events (NCI CTCAE grade ≥3) <1 % versus 2.0 % the intravenous and subcutaneous formulations respectively. All
but one patient who reported severe hypertension had a history of hypertension before they entered the study. Some of the severe events occurred on the day of the injection.

Immunogenicity

In the neoadjuvant-adjuvant EBC treatment setting, 8.1% (24/296) of patients treated with Herceptin intravenous and 14.9% (44/295) of patients receiving Herceptin subcutaneous vial developed antibodies against trastuzumab (regardless of antibody presence at baseline). Neutralizing anti-trastuzumab antibodies were detected in post-baseline samples in 2 of 24 Herceptin intravenous and 4 of 44 Herceptin subcutaneous vials. 20.0% of patients treated with Herceptin subcutaneous formulation developed antibodies against the excipient hyaluronidase (rHuPH20).

The clinical relevance of these antibodies is not known; nevertheless, the pharmacokinetics, efficacy (determined by pathological Complete Response [pCR]) and safety determined by occurrence of administration related reactions (ARRs) of Herceptin intravenous and Herceptin subcutaneous did not appear to be adversely affected by these antibodies.

Details of risk minimisation measures that are consistent with the EU Risk Management Plan are presented in Section 4.4.

Switching treatment between Herceptin intravenous and Herceptin subcutaneous formulation and vice versa

Study MO22982 investigated switching between the Herceptin intravenous and Herceptin subcutaneous formulation with a primary objective to evaluate patient preference for either the intravenous or the subcutaneous route of trastuzumab administration. In this trial, 2 cohorts (one using subcutaneous formulation in vial and one using subcutaneous formulation in administration system) were investigated using a 2-arm, cross-over design with 488 patients being randomized to one of two different three-weekly Herceptin treatment sequences (IV [Cycles 1-4] → SC [Cycles 5-8], or SC [Cycles 1-4] → IV [Cycles 5-8]). Patients were either naïve to Herceptin IV treatment (20.3%) or pre-exposed to Herceptin IV (79.7%). For the sequence IV→SC (SC vial and SC formulation in administration system cohorts combined), adverse event rates (all grades) were described pre-switching (Cycles 1-4) and post-switching (Cycles 5-8) as 53.8% vs. 56.4%, respectively; for the sequence SC→IV (SC vial and SC formulation in administration system cohorts combined), adverse event rates (all grades) were described pre- and post-switching as 65.4% vs. 48.7%, respectively. Pre-switching rates (Cycles 1-4) for serious adverse events, grade 3 adverse events and treatment discontinuations due to adverse events were low (<5%) and similar to post-switching rates (Cycles 5-8). No grade 4 or grade 5 adverse events were reported.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Single doses of up to 960 mg of Herceptin subcutaneous formulation have been administered with no reported untoward effects.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, monoclonal antibodies, ATC code: L01XC03
Herceptin subcutaneous formulation contains recombinant human hyaluronidase (rHuPH20), an enzyme used to increase the dispersion and absorption of co-administered drugs when administered subcutaneously.

Trastuzumab is a recombinant humanised IgG1 monoclonal antibody against the human epidermal growth factor receptor 2 (HER2). Overexpression of HER2 is observed in 20% - 30% of primary breast cancers. Studies indicate that breast cancer patients whose tumours overexpress HER2 have a shortened disease-free survival compared to patients whose tumours do not overexpress HER2. The extracellular domain of the receptor (ECD, p105) can be shed into the blood stream and measured in serum samples.

Mechanism of action

Trastuzumab binds with high affinity and specificity to sub-domain IV, a juxta-membrane region of HER2’s extracellular domain. Binding of trastuzumab to HER2 inhibits ligand-independent HER2 signalling and prevents the proteolytic cleavage of its extracellular domain, an activation mechanism of HER2. As a result, trastuzumab has been shown, in both *in vitro* assays and in animals, to inhibit the proliferation of human tumour cells that overexpress HER2. Additionally, trastuzumab is a potent mediator of antibody-dependent cell-mediated cytotoxicity (ADCC). *In vitro*, trastuzumab-mediated ADCC has been shown to be preferentially exerted on HER2 overexpressing cancer cells compared with cancer cells that do not overexpress HER2.

Detection of HER2 overexpression or HER2 gene amplification

Detection of HER2 overexpression or HER2 gene amplification in breast cancer

Herceptin should only be used in patients whose tumours have HER2 overexpression or HER2 gene amplification as determined by an accurate and validated assay. HER2 overexpression should be detected using an immunohistochemistry (IHC)-based assessment of fixed tumour blocks (see section 4.4). HER2 gene amplification should be detected using fluorescence *in situ* hybridisation (FISH) or chromogenic *in situ* hybridisation (CISH) of fixed tumour blocks. Patients are eligible for Herceptin treatment if they show strong HER2 overexpression as described by a 3+ score by IHC or a positive FISH or CISH result.

To ensure accurate and reproducible results, the testing must be performed in a specialised laboratory, which can ensure validation of the testing procedures.

The recommended scoring system to evaluate the IHC staining patterns is as stated in Table 2:

Table 2: Recommended scoring system to evaluate the IHC staining patterns

<table>
<thead>
<tr>
<th>Score</th>
<th>Staining pattern</th>
<th>HER2 overexpression assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No staining is observed or membrane staining is observed in < 10 % of the tumour cells</td>
<td>Negative</td>
</tr>
<tr>
<td>1+</td>
<td>A faint/barely perceptible membrane staining is detected in > 10 % of the tumour cells. The cells are only stained in part of their membrane.</td>
<td>Negative</td>
</tr>
<tr>
<td>2+</td>
<td>A weak to moderate complete membrane staining is detected in > 10 % of the tumour cells.</td>
<td>Equivocal</td>
</tr>
<tr>
<td>3+</td>
<td>Strong complete membrane staining is detected in > 10 % of the tumour cells.</td>
<td>Positive</td>
</tr>
</tbody>
</table>

In general, FISH is considered positive if the ratio of the HER2 gene copy number per tumour cell to the chromosome 17 copy number is greater than or equal to 2, or if there are more than 4 copies of the HER2 gene per tumour cell if no chromosome 17 control is used.
In general, CISH is considered positive if there are more than 5 copies of the HER2 gene per nucleus in greater than 50 % of tumour cells.

For full instructions on assay performance and interpretation please refer to the package inserts of validated FISH and CISH assays. Official recommendations on HER2 testing may also apply.

For any other method that may be used for the assessment of HER2 protein or gene expression, the analyses should only be performed by laboratories that provide adequate state-of-the-art performance of validated methods. Such methods must clearly be precise and accurate enough to demonstrate overexpression of HER2 and must be able to distinguish between moderate (congruent with 2+) and strong (congruent with 3+) overexpression of HER2.

Clinical efficacy and safety

Metastatic breast cancer

Intravenous formulation

Herceptin has been used in clinical trials as monotherapy for patients with MBC who have tumours that overexpress HER2 and who have failed one or more chemotherapy regimens for their metastatic disease (Herceptin alone).

Herceptin has also been used in combination with paclitaxel or docetaxel for the treatment of patients who have not received chemotherapy for their metastatic disease. Patients who had previously received anthracycline-based adjuvant chemotherapy were treated with paclitaxel (175 mg/m² infused over 3 hours) with or without Herceptin. In the pivotal trial of docetaxel (100 mg/m² infused over 1 hour) with or without Herceptin, 60 % of the patients had received prior anthracycline-based adjuvant chemotherapy. Patients were treated with Herceptin until progression of disease.

The efficacy of Herceptin in combination with paclitaxel in patients who did not receive prior adjuvant anthracyclines has not been studied. However, Herceptin plus docetaxel was efficacious in patients whether or not they had received prior adjuvant anthracyclines.

The test method for HER2 overexpression used to determine eligibility of patients in the pivotal Herceptin monotherapy and Herceptin plus paclitaxel clinical trials employed immunohistochemical staining for HER2 of fixed material from breast tumours using the murine monoclonal antibodies CB11 and 4D5. These tissues were fixed in formalin or Bouin’s fixative. This investigative clinical trial assay performed in a central laboratory utilised a 0 to 3+ scale. Patients classified as staining 2+ or 3+ were included, while those staining 0 or 1+ were excluded. Greater than 70 % of patients enrolled exhibited 3+ overexpression. The data suggest that beneficial effects were greater among those patients with higher levels of overexpression of HER2 (3+).

The main test method used to determine HER2 positivity in the pivotal trial of docetaxel, with or without Herceptin, was immunohistochemistry. A minority of patients was tested using fluorescence in-situ hybridisation (FISH). In this trial, 87 % of patients entered had disease that was IHC3+, and 95 % of patients entered had disease that was IHC3+ and/or FISH-positive.
Weekly dosing in metastatic breast cancer

The efficacy results from the monotherapy and combination therapy studies are summarised in Table 3:

Table 3: Efficacy results from the monotherapy and combination therapy studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monotherapy</th>
<th>Combination Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herceptin¹</td>
<td>Herceptin plus paclitaxel² N=68</td>
</tr>
<tr>
<td>Response rate (95 %CI)</td>
<td>18 % (13-25)</td>
<td>49 % (36- 61)</td>
</tr>
<tr>
<td>Median duration of response (months) (95 %CI)</td>
<td>9.1 (5.6-10.3)</td>
<td>8.3 (7.3-8.8)</td>
</tr>
<tr>
<td>Median TTP (months) (95 %CI)</td>
<td>3.2 (2.6-3.5)</td>
<td>7.1 (6.2-12.0)</td>
</tr>
<tr>
<td>Median Survival (months) (95 %CI)</td>
<td>16.4 (12.3-ne)</td>
<td>24.8 (18.6-33.7)</td>
</tr>
</tbody>
</table>

TTP = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.
1. Study H0649g: IHC3+ patient subset
2. Study H0648g: IHC3+ patient subset
3. Study M77001: Full analysis set (intent-to-treat), 24 months results

Combination treatment with Herceptin and anastrozole

Herceptin has been studied in combination with anastrozole for first line treatment of MBC in HER2 overexpressing, hormone-receptor (i.e. estrogen-receptor (ER) and/or progesterone-receptor (PR)) positive postmenopausal patients. Progression free survival was doubled in the Herceptin plus anastrozole arm compared to anastrozole (4.8 months versus 2.4 months). For the other parameters the improvements seen for the combination were for overall response (16.5 % versus 6.7 %); clinical benefit rate (42.7 % versus 27.9 %); time to progression (4.8 months versus 2.4 months). For time to response and duration of response no difference could be recorded between the arms. The median overall survival was extended by 4.6 months for patients in the combination arm. The difference was not statistically significant, however more than half of the patients in the anastrozole alone arm crossed over to a Herceptin containing regimen after progression of disease.
Three -weekly dosing in metastatic breast cancer

The efficacy results from the non-comparative monotherapy and combination therapy studies are summarised in Table 4:

Table 4: Efficacy results from the non-comparative monotherapy and combination therapy studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monotherapy</th>
<th>Combination Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herceptin¹</td>
<td>Herceptin plus paclitaxel³</td>
</tr>
<tr>
<td>N=105</td>
<td>N=72</td>
<td>N=32</td>
</tr>
<tr>
<td>Response rate (95 %CI)</td>
<td>24 % (15-35)</td>
<td>27 % (14-43)</td>
</tr>
<tr>
<td>Median duration of response (months) (range)</td>
<td>10.1 (2.8-35.6)</td>
<td>7.9 (2.1-18.8)</td>
</tr>
<tr>
<td>Median TTP (months) (95 %CI)</td>
<td>3.4 (2.8-4.1)</td>
<td>7.7 (4.2-8.3)</td>
</tr>
<tr>
<td>Median Survival (months) (95 %CI)</td>
<td>ne</td>
<td>ne</td>
</tr>
</tbody>
</table>

TTP = time to progression; "ne" indicates that it could not be estimated or it was not yet reached.
1. Study WO16229: loading dose 8 mg/kg, followed by 6 mg/kg 3 weekly schedule
2. Study MO16982: loading dose 6 mg/kg weekly x 3; followed by 6 mg/kg 3-weekly schedule
3. Study BO15935
4. Study MO16419

Sites of progression

The frequency of progression in the liver was significantly reduced in patients treated with the combination of Herceptin and paclitaxel, compared to paclitaxel alone (21.8 % versus 45.7 %; p=0.004). More patients treated with Herceptin and paclitaxel progressed in the central nervous system than those treated with paclitaxel alone (12.6 % versus 6.5 %; p=0.377).

Early breast cancer (adjuvant setting)

Intravenous formulation

Early breast cancer is defined as non-metastatic primary invasive carcinoma of the breast. In the adjuvant treatment setting, Herceptin was investigated in 4 large multicentre, randomised, trials.
- Study BO16348 was designed to compare one and two years of three-weekly Herceptin treatment versus observation in patients with HER2 positive EBC following surgery, established chemotherapy and radiotherapy (if applicable). In addition, comparison of two years of Herceptin treatment versus one year of Herceptin treatment was performed. Patients assigned to receive Herceptin were given an initial loading dose of 8 mg/kg, followed by 6 mg/kg every three weeks for either one or two years.
- Studies NSABP B-31 and NCCTG N9831 that comprise the joint analysis were designed to investigate the clinical utility of combining Herceptin treatment with paclitaxel following AC chemotherapy, additionally the NCCTG N9831 study also investigated adding Herceptin sequentially to AC→P chemotherapy in patients with HER2 positive EBC following surgery.
- Study BCIRG 006 study was designed to investigate combining Herceptin treatment with docetaxel either following AC chemotherapy or in combination with docetaxel and carboplatin in patients with HER2 positive EBC following surgery.

Early breast cancer in the BO16348 Study was limited to operable, primary, invasive adenocarcinoma of the breast, with axillary nodes positive or axillary nodes negative if tumors at least 1 cm in diameter.
In the joint analysis of the NSABP B-31 and NCCTG N9831 studies, EBC was limited to women with operable breast cancer at high risk, defined as HER2-positive and axillary lymph node positive or HER2 positive and lymph node negative with high risk features (tumor size > 1 cm and ER negative or tumor size > 2 cm, regardless of hormonal status).

In the BCIRG 006 study HER2 positive, EBC was defined as either lymph node positive or high risk node negative patients with no (pN0) lymph node involvement, and at least 1 of the following factors: tumour size greater than 2 cm, estrogen receptor and progesterone receptor negative, histological and/or nuclear grade 2-3, or age < 35 years.

The efficacy results from study BO16348 following 12 months* and 8 years** median follow-up are summarized in the Table 5:

Table 5: Efficacy results from study BO16348

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Median follow-up</th>
<th>Median follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observation</td>
<td>Herceptin</td>
</tr>
<tr>
<td></td>
<td>N=1693</td>
<td>1 Year N = 1693</td>
</tr>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>219 (12.9 %)</td>
<td>127 (7.5 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1474 (87.1 %)</td>
<td>1566 (92.5 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>0.54</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>208 (12.3 %)</td>
<td>113 (6.7 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1485 (87.7 %)</td>
<td>1580 (93.3 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>0.51</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distant disease-free survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>184 (10.9 %)</td>
<td>99 (5.8 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1508 (89.1 %)</td>
<td>1594 (94.6 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>< 0.0001</td>
<td>0.50</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival (death)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. patients with event</td>
<td>40 (2.4 %)</td>
<td>31 (1.8 %)</td>
</tr>
<tr>
<td>- No. patients without event</td>
<td>1653 (97.6 %)</td>
<td>1662 (98.2 %)</td>
</tr>
<tr>
<td>P-value versus Observation</td>
<td>0.24</td>
<td>0.0005</td>
</tr>
<tr>
<td>Hazard Ratio versus Observation</td>
<td>0.75</td>
<td>0.76</td>
</tr>
</tbody>
</table>

*Co-primary endpoint of DFS of 1 year versus observation met the pre-defined statistical boundary
**Final analysis (including crossover of 52 % of patients from the observation arm to Herceptin)
*** There is a discrepancy in the overall sample size due to a small number of patients who were randomized after the cut-off date for the 12-month median follow-up analysis

The efficacy results from the interim efficacy analysis crossed the protocol pre-specified statistical boundary for the comparison of 1-year of Herceptin versus observation. After a median follow-up of 12 months, the hazard ratio (HR) for disease free survival (DFS) was 0.54 (95 % CI 0.44, 0.67) which translates into an absolute benefit, in terms of a 2-year disease-free survival rate, of 7.6 percentage points (85.8 % versus 78.2 %) in favour of the Herceptin arm.

A final analysis was performed after a median follow-up of 8 years, which showed that 1 year Herceptin treatment is associated with a 24 % risk reduction compared to observation only (HR=0.76,
95 % CI 0.67, 0.86). This translates into an absolute benefit in terms of an 8 year disease free survival rate of 6.4 percentage points in favour of 1 year Herceptin treatment.

In this final analysis, extending Herceptin treatment for a duration of two years did not show additional benefit over treatment for 1 year [DFS HR in the intent to treat (ITT) population of 2 years versus 1 year=0.99 (95 % CI: 0.87, 1.13), p-value=0.90 and OS HR=0.98 (0.83, 1.15); p-value= 0.78]. The rate of asymptomatic cardiac dysfunction was increased in the 2-year treatment arm (8.1 % versus 4.6 % in the 1-year treatment arm). More patients experienced at least one grade 3 or 4 adverse event in the 2-year treatment arm (20.4 %) compared with the 1-year treatment arm (16.3 %).

In the NSABP B-31 and NCCTG N9831 studies Herceptin was administered in combination with paclitaxel, following AC chemotherapy.

Doxorubicin and cyclophosphamide were administered concurrently as follows:

- intravenous push doxorubicin, at 60 mg/ m², given every 3 weeks for 4 cycles.
- intravenous cyclophosphamide, at 600 mg/ m² over 30 minutes, given every 3 weeks for 4 cycles.

Paclitaxel, in combination with Herceptin, was administered as follows:

- intravenous paclitaxel - 80 mg/m² as a continuous intravenous infusion, given every week for 12 weeks.
- intravenous paclitaxel - 175 mg/m² as a continuous intravenous infusion, given every 3 weeks for 4 cycles (day 1 of each cycle).

The efficacy results from the joint analysis of the NSABP B-31 and NCCTG 9831 trials at the time of the definitive analysis of DFS are summarized in Table 6. The median duration of follow up was 1.8 years for the patients in the AC→P arm and 2.0 years for patients in the AC→PH arm.

Table 6: Summary of Efficacy results from the joint analysis studies NSABP B-31 and NCCTG N9831 at the time of the definitive DFS analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→P (n=1679)</th>
<th>AC→PH (n=1672)</th>
<th>Hazard Ratio vs AC→P (95 % CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event (%)</td>
<td>261 (15.5)</td>
<td>133 (8.0)</td>
<td>0.48 (0.39, 0.59)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Distant Recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>193 (11.5)</td>
<td>96 (5.7)</td>
<td>0.47 (0.37, 0.60)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Death (OS event)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>92 (5.5)</td>
<td>62 (3.7)</td>
<td>0.67 (0.48, 0.92)</td>
<td>p=0.014**</td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; H: trastuzumab

* at median duration of follow up of 1.8 years for the patients in the AC→P arm and 2.0 years for patients in the AC→PH arm

** p value for OS did not cross the pre-specified statistical boundary for comparison of AC→PH vs. AC→P

For the primary endpoint, DFS, the addition of Herceptin to paclitaxel chemotherapy resulted in a 52 % decrease in the risk of disease recurrence. The hazard ratio translates into an absolute benefit, in terms of 3-year disease-free survival rate estimates of 11.8 percentage points (87.2 % versus 75.4 %) in favour of the AC→PH (Herceptin) arm.
At the time of a safety update after a median of 3.5-3.8 years follow up, an analysis of DFS reconfirms the magnitude of the benefit shown in the definitive analysis of DFS. Despite the cross-over to Herceptin in the control arm, the addition of Herceptin to paclitaxel chemotherapy resulted in a 52 % decrease in the risk of disease recurrence. The addition of Herceptin to paclitaxel chemotherapy also resulted in a 37 % decrease in the risk of death.

The pre-planned final analysis of OS from the joint analysis of studies NSABP B-31 and NCCTG N9831 was performed when 707 deaths had occurred (median follow-up 8.3 years in the AC→PH group). Treatment with AC→PH resulted in a statistically significant improvement in OS compared with AC→P (stratified HR=0.64; 95% CI [0.55, 0.74]; log-rank p-value < 0.0001). At 8 years, the survival rate was estimated to be 86.9% in the AC→PH arm and 79.4% in the AC→P arm, an absolute benefit of 7.4% (95% CI 4.9%, 10.0%).

The final OS results from the joint analysis of studies NSABP B-31 and NCCTG N9831 are summarized in Table 7:

Table 7: Final Overall Survival Analysis from the joint analysis of trials NSABP B-31 and NCCTG N9831

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→P (N=2032)</th>
<th>AC→PH (N=2031)</th>
<th>p-value versus AC→P</th>
<th>Hazard Ratio versus AC→P (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (OS event):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event (%)</td>
<td>418 (20.6%)</td>
<td>289 (14.2%)</td>
<td>< 0.0001</td>
<td>0.64 (0.55, 0.74)</td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; H: trastuzumab

DFS analysis was also performed at the final analysis of OS from the joint analysis of studies NSABP B-31 and NCCTG N9831. The updated DFS analysis results (stratified HR = 0.61; 95% CI [0.54, 0.69]) showed a similar DFS benefit compared to the definitive primary DFS analysis, despite 24.8% patients in the AC→P arm who crossed over to receive Herceptin. At 8 years, the disease-free survival rate was estimated to be 77.2% (95% CI: 75.4, 79.1) in the AC→PH arm, an absolute benefit of 11.8% compared with the AC→P arm.

In the BCIRG 006 study Herceptin was administered either in combination with docetaxel, following AC chemotherapy (AC→DH) or in combination with docetaxel and carboplatin (DCarbH).

Docetaxel was administered as follows:
- intravenous docetaxel - 100 mg/m2 as an intravenous infusion over 1 hour, given every 3 weeks for 4 cycles (day 2 of first docetaxel cycle, then day 1 of each subsequent cycle)

or
- intravenous docetaxel - 75 mg/m2 as an intravenous infusion over 1 hour, given every 3 weeks for 6 cycles (day 2 of cycle 1, then day 1 of each subsequent cycle)

which was followed by:
- carboplatin – at target AUC = 6 mg/mL/min administered by intravenous infusion over 30-60 minutes repeated every 3 weeks for a total of six cycles

Herceptin was administered weekly with chemotherapy and 3 weekly thereafter for a total of 52 weeks.

The efficacy results from the BCIRG 006 are summarized in Tables 8 and 9. The median duration of follow up was 2.9 years in the AC→D arm and 3.0 years in each of the AC→DH and DCarbH arms.
Table 8: Overview of efficacy analyses BCIRG 006 AC→D versus AC→DH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→D (n=1073)</th>
<th>AC→DH (n=1074)</th>
<th>Hazard Ratio vs AC→D (95 % CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distant recurrence No. patients with event</td>
<td>144</td>
<td>95</td>
<td>0.59 (0.46, 0.77)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Death (OS event) No. patients with event</td>
<td>80</td>
<td>49</td>
<td>0.58 (0.40, 0.83)</td>
<td>p=0.0024</td>
</tr>
</tbody>
</table>

AC→D = doxorubicin plus cyclophosphamide, followed by docetaxel; AC→DH = doxorubicin plus cyclophosphamide, followed by docetaxel plus trastuzumab; CI = confidence interval

Table 9: Overview of efficacy analyses BCIRG 006 AC→D versus DCarbH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AC→D (n=1073)</th>
<th>DCarbH (n=1074)</th>
<th>Hazard Ratio vs AC→D (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distant recurrence No. patients with event</td>
<td>144</td>
<td>103</td>
<td>0.65 (0.50, 0.84)</td>
</tr>
<tr>
<td>Death (OS event) No. patients with event</td>
<td>80</td>
<td>56</td>
<td>0.66 (0.47, 0.93)</td>
</tr>
</tbody>
</table>

AC→D = doxorubicin plus cyclophosphamide, followed by docetaxel; DCarbH = docetaxel, carboplatin and trastuzumab; CI = confidence interval

In the BCIRG 006 study for the primary endpoint, DFS, the hazard ratio translates into an absolute benefit, in terms of 3-year disease-free survival rate estimates of 5.8 percentage points (86.7 % versus 80.9 %) in favour of the AC→DH (Herceptin) arm and 4.6 percentage points (85.5 % versus 80.9 %) in favour of the DCarbH (Herceptin) arm compared to AC→D.

In study BCIRG 006, 213/1075 patients in the DCarbH (TCH) arm, 221/1074 patients in the AC→DH (AC→TH) arm, and 217/1073 in the AC→D (AC→T) arm had a Karnofsky performance status ≤90 (either 80 or 90). No disease-free survival (DFS) benefit was noticed in this subgroup of patients (hazard ratio = 1.16, 95 % CI [0.73, 1.83] for DCarbH (TCH) versus AC→D (AC→T); hazard ratio 0.97, 95 % CI [0.60, 1.55] for AC→DH (AC→TH) versus AC→D).
In addition a post-hoc exploratory analysis was performed on the data sets from the joint analysis (JA) NSABP B-31/NCCTG N9831* and BCIRG006 clinical studies combining DFS events and symptomatic cardiac events and summarised in Table 10:

Table 10: Post-hoc exploratory analysis results from the joint analysis NSABP B-31/NCCTG N9831* and BCIRG006 clinical studies combining DFS events and symptomatic cardiac events

<table>
<thead>
<tr>
<th>NSABP B-31 and NCCTG N9831</th>
<th>BCIRG 006</th>
<th>BCIRG 006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary efficacy analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS Hazard ratios</td>
<td>0.48</td>
<td>0.61</td>
</tr>
<tr>
<td>(95 % CI)</td>
<td>(0.39, 0.59)</td>
<td>(0.49, 0.77)</td>
</tr>
<tr>
<td>p-value</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Long term follow-up efficacy analysis **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS Hazard ratios</td>
<td>0.61</td>
<td>0.72</td>
</tr>
<tr>
<td>(95 % CI)</td>
<td>(0.54, 0.69)</td>
<td>(0.61, 0.85)</td>
</tr>
<tr>
<td>p-value</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Post-hoc exploratory analysis with DFS and symptomatic cardiac events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard ratios (95 % CI)</td>
<td>0.67</td>
<td>0.77</td>
</tr>
<tr>
<td>Long term follow-up **</td>
<td>(0.60, 0.75)</td>
<td>(0.66, 0.90)</td>
</tr>
</tbody>
</table>

A: doxorubicin; C: cyclophosphamide; P: paclitaxel; D: docetaxel; Carb: carboplatin; H: trastuzumab
CI = confidence interval
* At the time of the definitive analysis of DFS. Median duration of follow up was 1.8 years in the AC→P arm and 2.0 years in the AC→PH arm
** Median duration of long term follow-up for the Joint Analysis clinical studies was 8.3 years (range: 0.1 to 12.1) for the AC→PH arm and 7.9 years (range: 0.0 to 12.2) for the AC→P arm; Median duration of long term follow-up for the BCIRG 006 study was 10.3 years in both the AC→D arm (range: 0.0 to 12.6) and the DCarbH arm (range: 0.0 to 13.1), and was 10.4 years (range: 0.0 to 12.7) in the AC→DH arm

Early breast cancer – (neoadjuvant-adjuvant setting)

Intravenous formulation

So far, no results are available which compare the efficacy of Herceptin administered with chemotherapy in the adjuvant setting with that obtained in the neo-adjuvant/adjuvant setting.

In the neoadjuvant-adjuvant treatment setting, study MO16432, a multicentre randomised trial, was designed to investigate the clinical efficacy of concurrent administration of Herceptin with neoadjuvant chemotherapy including both an anthracycline and a taxane, followed by adjuvant Herceptin, up to a total treatment duration of 1 year. The study recruited patients with newly diagnosed locally advanced (Stage III) or inflammatory EBC. Patients with HER2+ tumours were randomised to receive either neoadjuvant chemotherapy concurrently with neoadjuvant-adjuvant Herceptin, or neoadjuvant chemotherapy alone.
In study MO16432, Herceptin (8 mg/kg loading dose, followed by 6 mg/kg maintenance every 3 weeks) was administered concurrently with 10 cycles of neoadjuvant chemotherapy as follows:

- Doxorubicin 60mg/m² and paclitaxel 150 mg/m², administered 3-weekly for 3 cycles,

which was followed by

- Paclitaxel 175 mg/m² administered 3-weekly for 4 cycles,

which was followed by

- CMF on day 1 and 8 every 4 weeks for 3 cycles

which was followed after surgery by

- additional cycles of adjuvant Herceptin (to complete 1 year of treatment)

The efficacy results from Study MO16432 are summarized in Table 11. The median duration of follow-up in the Herceptin arm was 3.8 years.

Table 11: Efficacy results from MO16432

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chemo + Herceptin (n=115)</th>
<th>Chemo only (n=116)</th>
<th>Hazard Ratio (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-free survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>46</td>
<td>59</td>
<td>0.65 (0.44, 0.96) p=0.0275</td>
</tr>
<tr>
<td>Total pathological complete response*</td>
<td>40 % (31.0, 49.6)</td>
<td>20.7 % (13.7, 29.2)</td>
<td>p=0.0014</td>
</tr>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patients with event</td>
<td>22</td>
<td>33</td>
<td>0.59 (0.35, 1.02) p=0.0555</td>
</tr>
</tbody>
</table>

* defined as absence of any invasive cancer both in the breast and axillary nodes

An absolute benefit of 13 percentage points in favour of the Herceptin arm was estimated in terms of 3-year event-free survival rate (65 % versus. 52 %).

Subcutaneous formulation

Study BO22227 was designed to demonstrate non-inferiority of treatment with Herceptin subcutaneous formulation versus Herceptin intravenous formulation based on co-primary PK and efficacy endpoints (trastuzumab C_{trough} at pre-dose Cycle 8, and pCR rate at definitive surgery, respectively). A total of 595 patients with HER2-positive, operable or locally advanced breast cancer (LABC) including inflammatory breast cancer received eight cycles of either Herceptin intravenous formulation or Herceptin subcutaneous formulation concurrently with chemotherapy (4 cycles of docetaxel, 75 mg/m² intravenous infusion, followed by 4 cycles of FEC ([5-Fluorouracil, 500 mg/m²; epirubicin, 75 mg/m²; cyclophosphamide, 500 mg/m² each intravenous bolus or infusion]), followed by surgery, and continued therapy with Herceptin intravenous formulation or Herceptin subcutaneous formulation as originally randomized for 10 additional cycles, for a total of one year of treatment.

The analysis of the efficacy co-primary endpoint, pCR, defined as absence of invasive neoplastic cells in the breast, resulted in rates of 40.7 % (95 % CI: 34.7, 46.9) in the Herceptin intravenous arm and 45.4 % (95 % CI: 39.2 %, 51.7 %) in the Herceptin subcutaneous arm, a difference of 4.7 percentage points in favour of the Herceptin subcutaneous arm. The lower boundary of the one-sided 97.5 %
confidence interval for the difference in pCR rates was -4.0, establishing the non-inferiority of Herceptin subcutaneous for the co-primary endpoint.

Table 12: Summary of pathological Complete Response (pCR)

<table>
<thead>
<tr>
<th></th>
<th>Herceptin IV (N = 263)</th>
<th>Herceptin SC (N=260)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR (absence of invasive neoplastic cells in breast)</td>
<td>107 (40.7%)</td>
<td>118 (45.4%)</td>
</tr>
<tr>
<td>Non-responders</td>
<td>156 (59.3%)</td>
<td>142 (54.6%)</td>
</tr>
<tr>
<td>Exact 95% CI for pCR Rate*</td>
<td>(34.7; 46.9)</td>
<td>(39.2; 51.7)</td>
</tr>
<tr>
<td>Difference in pCR (SC minus IV arm)</td>
<td>4.70</td>
<td>-4.0</td>
</tr>
<tr>
<td>Lower bound one-sided 97.5% CI for the difference in pCR**</td>
<td>-4.0</td>
<td>-4.0</td>
</tr>
</tbody>
</table>

*Confidence interval for one sample binomial using Pearson-Clopper method
**Continuity correction of Anderson and Hauck (1986) has been used in this calculation

Analyses with longer term follow-up of a median duration exceeding 40 months supported the non-inferior efficacy of Herceptin subcutaneous compared to Herceptin intravenous with comparable results of both EFS and OS (3-year EFS rates of 73% in the Herceptin intravenous arm and 76% in the Herceptin subcutaneous arm, and 3-year OS rates of 90% in the Herceptin intravenous arm and 92% in the Herceptin subcutaneous arm).

For non-inferiority of the PK co-primary endpoint, steady-state trastuzumab C\textsubscript{trough} value at the end of treatment Cycle 7, refer to section 5.2. Pharmacokinetic Properties.

For the comparative safety profile see section 4.8.

Study MO28048 investigating the safety and tolerability of Herceptin subcutaneous formulation as adjuvant therapy in HER2 positive EBC patients who were enrolled in either a Herceptin subcutaneous vial cohort (N=1868 patients, including 20 patients receiving neoadjuvant therapy) or a Herceptin subcutaneous administration system cohort (N=710 patients, including 21 patients receiving neoadjuvant therapy) resulted in no new safety signals. Results were consistent with the known safety profile for Herceptin intravenous and Herceptin subcutaneous formulations. In addition, treatment of lower body weight patients with Herceptin subcutaneous fixed dose in adjuvant EBC was not associated with increased safety risk, adverse events and serious adverse events, compared to the higher body weight patients.

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with Herceptin in all subsets of the paediatric population for breast cancer (see section 4.2 for information on paediatric use).

5.2 **Pharmacokinetic properties**

The pharmacokinetics of trastuzumab at a dose of 600 mg administered three-weekly by the subcutaneous route was compared to the intravenous route (8 mg/kg loading dose, 6 mg/kg maintenance every three weeks) in the phase III study BO22227. The pharmacokinetic results for the co primary endpoint, C\textsubscript{trough} pre dose Cycle 8, showed non-inferiority of the Herceptin subcutaneous compared to the Herceptin intravenous dose adjusted by body weight.

The mean C\textsubscript{trough} during the neoadjuvant treatment phase, at the pre dose Cycle 8 time point, was higher in the Herceptin subcutaneous arm (78.7 µg/mL) than the Herceptin intravenous arm (57.8 µg/mL) of the study. During the adjuvant phase of treatment, at the pre-dose Cycle 13 time point, the mean C\textsubscript{trough} values were 90.4 µg/mL and 62.1 µg/mL, respectively. Based on the observed data in study BO22227, steady state with the intravenous formulation was reached at cycle 8. With Herceptin subcutaneous formulation, concentrations were approximately at steady-state following Cycle 7 dose (pre-dose Cycle 8) with small increase in concentration (<15%) up to cycle 13.
C_{trough} at the subcutaneous pre-dose cycle 18 was 90.7 µg/mL and is similar to that of cycle 13, suggesting no further increase after cycle 13.

The median T_{max} following subcutaneous administration was approximately 3 days, with high interindividual variability (range 1-14 days). The mean C_{max} was expectedly lower in the Herceptin subcutaneous formulation (149 µg/mL) than in the intravenous arm (end of infusion value: 221 µg/mL).

The mean $\text{AUC}_{0-21\text{ days}}$ following the Cycle 7 dose was approximately 10% higher with the Herceptin subcutaneous formulation as compared to the Herceptin intravenous formulation, with mean AUC values of 2268 µg/mL•day and 2056 µg/mL•day, respectively. The $\text{AUC}_{0-21\text{ days}}$ following Cycle 12 dose was approximately 20% higher with the Herceptin subcutaneous formulation than the Herceptin intravenous dose, with mean AUC values of 2610 µg/mL•day and 2179 µg/mL•day, respectively. Due to the significant impact of body weight on trastuzumab clearance and the use of a fixed dose for the subcutaneous administration the difference in exposure between subcutaneous and intravenous administration was dependent on body weight: in patients with a body weight < 51 kg, mean steady state AUC of trastuzumab was about 80% higher after subcutaneous than after intravenous treatment whereas in the highest BW group (> 90 kg) AUC was 20% lower after subcutaneous than after intravenous treatment.

A population PK model with parallel linear and nonlinear elimination from the central compartment was constructed using pooled Herceptin SC and Herceptin IV PK data from the phase III study BO22227 to describe the observed PK concentrations following Herceptin IV and Herceptin SC administration in EBC patients. Bioavailability of trastuzumab given as the subcutaneous formulation was estimated to be 77.1%, and the first order absorption rate constant was estimated to be 0.4 day⁻¹. Linear clearance was 0.111 L/day and the central compartment volume (V_c) was 2.91 L. The Michaelis-Menten parameter values were 11.9 mg/day and 33.9 µg/mL for V_{max} and K_m, respectively. Body weight and serum alanine aminotransferase (SGPT/ALT) showed a statistically significant influence on PK, however, simulations demonstrated that no dose adjustments are required in EBC patients. The population predicted PK exposure parameter values (median with 5th - 95th Percentiles) for Herceptin SC dosing regimens in EBC patients are shown in Table 13 below.

A population PK model with parallel linear and nonlinear elimination from the central compartment was constructed using pooled Herceptin SC and Herceptin IV PK data from the phase III study BO22227 to describe the observed PK concentrations following Herceptin IV and Herceptin SC administration in EBC patients. Bioavailability of trastuzumab given as the subcutaneous formulation was estimated to be 77.1%, and the first order absorption rate constant was estimated to be 0.4 day⁻¹. Linear clearance was 0.111 L/day and the central compartment volume (V_c) was 2.91 L. The Michaelis-Menten parameter values were 11.9 mg/day and 33.9 µg/mL for V_{max} and K_m, respectively. Body weight and serum alanine aminotransferase (SGPT/ALT) showed a statistically significant influence on PK, however, simulations demonstrated that no dose adjustments are required in EBC patients. The population predicted PK exposure parameter values (median with 5th - 95th Percentiles) for Herceptin SC dosing regimens in EBC patients are shown in Table 13 below.

Table 13 Population Predicted PK Exposure Values (median with 5th - 95th Percentiles) for the Herceptin SC 600 mg Q3W Dosing Regimen in EBC patients

<table>
<thead>
<tr>
<th>Primary tumor type and Regimen</th>
<th>Cycle</th>
<th>N</th>
<th>C_{min} (µg/mL)</th>
<th>C_{max} (µg/mL)</th>
<th>$\text{AUC}_{0-21\text{days}}$ (µg.day/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBC 600 mg Herceptin SC q3w</td>
<td>Cycle 1</td>
<td>297</td>
<td>28.2 (14.8 - 40.9)</td>
<td>79.3 (56.1 - 109)</td>
<td>1065 (718 - 1504)</td>
</tr>
<tr>
<td></td>
<td>Cycle 7 (steady state)</td>
<td>297</td>
<td>75.0 (35.1 - 123)</td>
<td>149 (86.1 - 214)</td>
<td>2337 (1258 - 3478)</td>
</tr>
</tbody>
</table>

Trastuzumab washout
Trastuzumab washout period was assessed following subcutaneous administration using the population PK model. The results of these simulations indicate that at least 95% of patients will reach concentrations that are < 1 µg/mL (approximately 3% of the population predicted $C_{\text{min,ss}}$, or about 97% washout) by 7 months.

5.3 Preclinical safety data
Herceptin Intravenous
There was no evidence of acute or multiple dose-related toxicity in studies of up to 6 months, or reproductive toxicity in teratology, female fertility or late gestational toxicity/placental transfer
studies. Herceptin is not genotoxic. A study of trehalose, a major formulation excipient did not reveal any toxicities.

No long-term animal studies have been performed to establish the carcinogenic potential of Herceptin, or to determine its effects on fertility in males.

Herceptin Subcutaneous

A single dose study in rabbits and a 13-week repeat dose toxicity study in Cynomolgus monkeys were conducted. The rabbit study was performed to specifically examine local tolerance aspects. The 13-week study was performed to confirm that the change in route of administration and the use of the novel excipient recombinant human hyaluronidase (rHuPH20) did not have an effect on the Herceptin safety characteristics. Herceptin subcutaneous formulation was locally and systemically well tolerated.

Hyaluronidase is found in most tissues of the human body. Non-clinical data for recombinant human hyaluronidase reveal no special hazard for humans based on conventional studies of repeated dose toxicity including safety pharmacology endpoints. Reproductive toxicology studies with rHuPH20 revealed embryofetal toxicity in mice at high systemic exposure, but did not show teratogenic potential.

6. **PHARMACEUTICAL PARTICULARS**

6.1 **List of excipients**

- Recombinant human hyaluronidase (rHuPH20)
- L-histidine
- L-histidine hydrochloride monohydrate
- α,α-trehalose dihydrate
- L-methionine
- Polysorbate 20
- Water for injections

6.2 **Incompatibilities**

Herceptin subcutaneous formulation is a ready to use solution which should not be mixed or diluted with other products.

6.3 **Shelf life**

21 months.

Once transferred from the vial to the syringe the medicinal product is physically and chemically stable for 48 hours at 2°C – 8°C and subsequently 6 hours at ambient temperature (max. 30°C) in diffused daylight.

As Herceptin does not contain any antimicrobial-preservative, from a microbiological point of view, the medicine should be used immediately.

6.4 **Special precautions for storage**

Store in a refrigerator (2°C – 8°C).

Do not freeze.

Keep the vial in the outer carton in order to protect from light.

Once removed from the refrigerator Herceptin subcutaneous formulation must be administered within 6 hours and should not be kept above 30°C.

For storage conditions of the opened medicinal product, see section 6.3 and 6.6.
6.5 Nature and contents of container

One 6 mL clear glass type I vial with butyl rubber stopper laminated with a fluoro-resin film containing 5 mL of solution (600 mg of trastuzumab).

Each carton contains one vial.

6.6 Special precautions for disposal and other handling

Herceptin should be inspected visually to ensure there is no particulate matter or discolouration prior to administration.

Herceptin is for single-use only.

As Herceptin does not contain any antimicrobial-preservative, from a microbiological point of view, the medicine should be used immediately. If not used immediately, preparation should take place in controlled and validated aseptic conditions. After transfer of the solution to the syringe, it is recommended to replace the transfer needle by a syringe closing cap to avoid drying of the solution in the needle and not compromise the quality of the medicinal product. The hypodermic injection needle must be attached to the syringe immediately prior to administration followed by volume adjustment to 5 mL.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/00/145/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 28 August 2000
Date of latest renewal: 28 August 2010

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER(S) OF THE BIOLOGICAL ACTIVE SUBSTANCE(S) AND MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER(S) OF THE BIOLOGICAL ACTIVE SUBSTANCE(S) AND MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer(s) of the biological active substance(s)

Roche Diagnostics GmbH
Pharma Biotech Penzberg
Nonnenwald 2
D-82377 Penzberg
Germany

Genentech Inc.
1000 New Horizons Way
Vacaville, CA 95688
USA

Roche Singapore Technical Operations Pte. Ltd.
10 Tuas Bay Link
637394 Singapore
Singapore

Lonza Biologics Tuas Pte Ltd
35 Tuas South Ave. 6
637377 Singapore
Singapore

Name and address of the manufacturer(s) responsible for batch release

Roche Pharma AG
Emil-Barell-Strasse 1
79639 Grenzach-Wyhlen
Germany

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

• Periodic Safety Update Reports

The requirements for submission of periodic safety update reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.
D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk Management Plan (RMP)

The MAH shall perform the pharmacovigilance activities detailed in the Pharmacovigilance Plan, as agreed in the RMP presented in Module 1.8.2 of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:
- At the request of the European Medicines Agency.
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON

1. NAME OF THE MEDICINAL PRODUCT

Herceptin 150 mg powder for concentrate for solution for infusion

Trastuzumab

2. STATEMENT OF ACTIVE SUBSTANCE(S)

The vial contains 150 mg trastuzumab. After reconstitution 1 ml concentrate contains 21 mg of trastuzumab

3. LIST OF EXCIPIENTS

L-histidine hydrochloride monohydrate, L-histidine, polysorbate 20, α,α-trehalose dehydrate.

4. PHARMACEUTICAL FORM AND CONTENTS

Powder for concentrate for solution for infusion

1 vial

5. METHOD AND ROUTE(S) OF ADMINISTRATION

For intravenous use only after reconstitution and dilution

Read the package leaflet before use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

Store in a refrigerator (2°C – 8°C)
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/00/145/001

13. BATCH NUMBER

Batch

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted.

17. UNIQUE IDENTIFIER – 2D BARCODE

<2D barcode carrying the unique identifier included.>

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC:
SN:
NN:
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

VIAL LABEL

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

 Herceptin 150 mg powder for infusion
 Trastuzumab
 For intravenous use only

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

 EXP

4. **BATCH NUMBER**

 Lot

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

6. **OTHER**
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON

1. NAME OF THE MEDICINAL PRODUCT

Herceptin 600 mg solution for injection in vial
Trastuzumab

2. STATEMENT OF ACTIVE SUBSTANCE(S)

One vial contains 600 mg/5 mL trastuzumab.

3. LIST OF EXCIPIENTS

Recombinant human hyaluronidase (rHuPH20)
L-histidine
L-histidine hydrochloride monohydrate
α,α-trehalose dihydrate
L-methionine
Polysorbate 20
Water for injections

4. PHARMACEUTICAL FORM AND CONTENTS

Solution for injection
1 vial

5. METHOD AND ROUTE(S) OF ADMINISTRATION

For subcutaneous use only.
Read the package leaflet before use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP
9. SPECIAL STORAGE CONDITIONS

Store in a refrigerator (2ºC – 8ºC)
Keep the vial in the outer carton in order to protect from light
Do not freeze

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/00/145/002

13. BATCH NUMBER

Batch

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted

17. UNIQUE IDENTIFIER – 2D BARCODE

<2D barcode carrying the unique identifier included.>

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC:
SN:
NN:
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIAL LABEL</td>
</tr>
</tbody>
</table>

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

Herceptin 600 mg solution for injection
Trastuzumab
For subcutaneous use only

2. METHOD OF ADMINISTRATION

3. EXPIRY DATE

EXP

4. BATCH NUMBER

Lot

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

600 mg/5 ml

6. OTHER
B. PACKAGE LEAFLET
Herceptin contains the active substance trastuzumab, which is a monoclonal antibody. Monoclonal antibodies attach to specific proteins or antigens. Trastuzumab is designed to bind selectively to an antigen called human epidermal growth factor receptor 2 (HER2). HER2 is found in large amounts on the surface of some cancer cells where it stimulates their growth. When Herceptin binds to HER2 it stops the growth of such cells and causes them to die.

Your doctor may prescribe Herceptin for the treatment of breast and gastric cancer when:

- You have early breast cancer, with high levels of a protein called HER2.
- You have metastatic breast cancer (breast cancer that has spread beyond the original tumour) with high levels of HER2. Herceptin may be prescribed in combination with the chemotherapy medicine paclitaxel or docetaxel as first treatment for metastatic breast cancer or it may be prescribed alone if other treatments have proved unsuccessful. It is also used in combination with medicines called aromatase inhibitors with patients with high levels of HER2 and hormone receptor-positive metastatic breast cancer (cancer that is sensitive to the presence of female sex hormones).
- You have metastatic gastric cancer with high levels of HER2, when it is in combination with the other cancer medicines capecitabine or 5-flourouracil and cisplatin.

2. What you need to know before you are given Herceptin

Do not use Herceptin if:

- you are allergic to trastuzumab, to murine (mouse) proteins, or to any of the other ingredients of this medicine (listed in section 6).
- you have severe breathing problems at rest due to your cancer or if you need oxygen treatment.

Warnings and precautions

Your doctor will closely supervise your therapy.
Heart checks
Treatment with Herceptin alone or with a taxane may affect the heart, especially if you have ever used an anthracycline (taxanes and anthracyclines are two other kinds of medicine used to treat cancer). The effects may be moderate to severe and could cause death. Therefore, your heart function will be checked before, during (every three months) and after (up to two to five years) treatment with Herceptin. If you develop any signs of heart failure (inadequate pumping of blood by the heart), your heart function may be checked more frequently (every six to eight weeks), you may receive treatment for heart failure or you may have to stop Herceptin treatment.

Talk to your doctor, pharmacist or nurse before you are given Herceptin if:

- you have had heart failure, coronary artery disease, heart valve disease (heart murmurs), high blood pressure, taken any high blood pressure medicine or are currently taking any high blood pressure medicine.

- you have ever had or are currently using a medicine called doxorubicin or epirubicin (medicines used to treat cancer). These medicines (or any other anthracyclines) can damage heart muscle and increase the risk of heart problems with Herceptin.

- you suffer from breathlessness, especially if you are currently using a taxane. Herceptin can cause breathing difficulties, especially when it is first given. This could be more serious if you are already breathless. Very rarely, patients with severe breathing difficulties before treatment have died when they were given Herceptin.

- you have ever had any other treatment for cancer.

If you receive Herceptin with any other medicine to treat cancer, such as paclitaxel, docetaxel, an aromatase inhibitor, capecitabine, 5-fluorouracil, or cisplatin you should also read the patient information leaflets for these products.

Children and adolescents
Herceptin is not recommended for anyone under the age of 18 years.

Other medicines and Herceptin
Tell your doctor, pharmacist or nurse if you are taking, have recently taken or may take any other medicines.

It may take up to 7 months for Herceptin to be removed from the body. Therefore you should tell your doctor, pharmacist or nurse that you have had Herceptin if you start any new medicine in the 7 months after stopping treatment.

Pregnancy
- If you are pregnant, think you may be pregnant or are planning to have a baby, ask your doctor, pharmacist or nurse for advice before taking this medicine.
- You should use effective contraception during treatment with Herceptin and for at least 7 months after treatment has ended.
- Your doctor will advise you of the risks and benefits of taking Herceptin during pregnancy. In rare cases, a reduction in the amount of (amniotic) fluid that surrounds the developing baby within the womb has been observed in pregnant women receiving Herceptin. This condition may be harmful to your baby in the womb and has been associated with the lungs not developing fully resulting in foetal death.

Breast-feeding
Do not breast-feed your baby during Herceptin therapy and for 7 months after the last dose of Herceptin as Herceptin may pass to your baby through your breast milk.

Ask your doctor or pharmacist for advice before taking any medicine.
Driving and using machines
It is not known whether Herceptin can affect your ability to drive a car or operate machines. However, if during treatment you experience symptoms, such as chills or fever, you should not drive or use machines until these symptoms disappear.

3. How Herceptin is given

Before starting the treatment your doctor will determine the amount of HER2 in your tumour. Only patients with a large amount of HER2 will be treated with Herceptin. Herceptin should only be given by a doctor or nurse. Your doctor will prescribe a dose and treatment regimen that is right for you. The dose of Herceptin depends on your body weight.

Two different types (formulations) of Herceptin exist:
• one is given as an infusion into a vein (intravenous infusion)
• the other is given as an injection under the skin (subcutaneous injection).

It is important to check the product labels to ensure that the correct formulation is being given as prescribed. Herceptin intravenous formulation is not for subcutaneous use and should be given as an intravenous infusion only.

Your doctor may consider switching your Herceptin intravenous treatment to Herceptin subcutaneous treatment (and vice versa) if considered appropriate for you.

Herceptin intravenous formulation is given as an intravenous infusion (“drip”) directly into your veins. The first dose of your treatment is given over 90 minutes and you will be observed by a health professional while it is being given in case you have any side effects. If the first dose is well tolerated the next doses may be given over 30 minutes (see section 2 under “Warnings and precautions”). The number of infusions you receive will depend on how you respond to the treatment. Your doctor will discuss this with you.

In order to prevent medication errors it is important to check the vial labels to ensure that the medicine being prepared and given is Herceptin (trastuzumab) and not trastuzumab emtansine.

For early breast cancer, metastatic breast cancer and metastatic gastric cancer, Herceptin is given every 3 weeks. Herceptin may also be given once a week for metastatic breast cancer.

If you stop using Herceptin
Do not stop using this medicine without talking to your doctor first. All doses should be taken at the right time every week or every three weeks (depending on your dosing schedule). This helps your medicine work as well as it can.

It may take up to 7 months for Herceptin to be removed from your body. Therefore your doctor may decide to continue to check your heart functions, even after you finish treatment.

If you have any further questions on the use of this medicine, ask your doctor, pharmacist or nurse.

4. Possible side effects

Like all medicines, Herceptin can cause side effects, although not everybody gets them. Some of these side effects may be serious and may lead to hospitalisation.

During a Herceptin infusion, chills, fever and other flu like symptoms may occur. These are very common (may affect more than 1 in 10 people). Other infusion-related symptoms are: feeling sick (nausea), vomiting, pain, increased muscle tension and shaking, headache, dizziness, breathing difficulties, wheezing, high or low blood pressure, heart rhythm disturbances (palpitations, heart fluttering or irregular heart beat), swelling of the face and lips, rash and feeling tired. Some of these
symptoms can be serious and some patients have died (see section 2 under “Warnings and precautions”).

These effects mainly occur with the first intravenous infusion (“drip” into your vein) and during the first few hours after the start of the infusion. They are usually temporary. You will be observed by a health care professional during the infusion and for at least six hours after the start of the first infusion and for two hours after the start of other infusions. If you develop a reaction, they will slow down or stop the infusion and may give you treatment to counteract the side effects. The infusion may be continued after the symptoms improve.

Occasionally, symptoms start later than six hours after the infusion begins. If this happens to you, contact your doctor immediately. Sometimes, symptoms may improve and then get worse later.

Other side effects can occur at any time during treatment with Herceptin, not just related to an infusion. Heart problems can sometimes occur during treatment and occasionally after treatment has stopped and can be serious. They include weakening of the heart muscle possibly leading to heart failure, inflammation (swollen, red, hot, and in pain) of the lining around the heart and heart rhythm disturbances. This can lead to symptoms such as:

- breathlessness (including breathlessness at night),
- cough,
- fluid retention (swelling) in the legs or arms,
- palpitations (heart fluttering or irregular heart beat).

Your doctor will monitor your heart regularly during and after treatment but you should tell your doctor immediately if you notice any of the above symptoms.

If you experience any of the above symptoms when your treatment with Herceptin has finished, you should see your doctor and tell them that you have previously been treated with Herceptin.

Very common side effects of Herceptin: may affect more than 1 in 10 people

- infections
- diarrhoea
- constipation
- heartburn (dyspepsia)
- weakness
- skin rashes
- chest pain
- abdominal pain
- joint pain
- low counts of red blood cells and white blood cells (which help fight infection) sometimes with fever
- muscle pain
- conjunctivitis
- watery eyes
- nose bleeds
- runny nose
- hair loss
- tremor
- hot flush
- dizziness
- nail disorders
- weight loss
- loss of appetite
• inability to sleep (insomnia)
• altered taste
• low platelet count
• bruising
• numbness or tingling of the fingers and toes
• redness, swelling or sores in your mouth and/or throat
• pain, swelling, redness or tingling of hands and/or feet
• breathlessness
• headache
• cough
• vomiting
• nausea

Common side effects of Herceptin: may affect up to 1 in 10 people

• allergic reactions
• throat infections
• bladder and skin infections
• shingles
• inflammation of the breast
• inflammation of the pancreas or liver
• kidney disorders
• increased muscle tone or tension (hypertonia)
• pain in the arms and/or legs
• itchy rash
• sleepiness (somnolence)
• haemorrhoids
• itchiness
• dry mouth and skin
• dry eyes
• sweating
• feeling weak and unwell
• anxiety
• depression
• abnormal thinking
• asthma
• infection of lungs
• lung disorders
• back pain
• neck pain
• bone pain
• acne
• leg cramps

Uncommon side effects of Herceptin: may affect up to 1 in 100 people:

• deafness
• bumpy rash
• blood infection

Rare side effects of Herceptin: may affect up to 1 in 1000 people

• weakness
• jaundice
• inflammation or scarring of the lungs

Other side effects that have been reported with Herceptin use: frequency cannot be estimated from the available data

• abnormal or impaired blood clotting
• anaphylactic reactions
• high potassium levels
• swelling of the brain
• swelling or bleeding at the back of the eyes
• shock
• swelling of the lining of the heart
• slow heart rate
• abnormal heart rhythm
• respiratory distress
• respiratory failure
• acute accumulation of fluid in the lungs
• acute narrowing of the airways
• abnormally low oxygen levels in the blood
• difficulty in breathing when lying flat
• liver damage/failure
• swelling of the face, lips and throat
• kidney failure
• abnormally low levels of fluid around baby in womb
• failure of lungs to develop in the womb
• abnormal kidney development in the womb

Some of the side-effects you experience may be due to your underlying cancer. If you receive Herceptin in combination with chemotherapy, some of them may also be due to the chemotherapy.

If you get any side effects, talk to your doctor, pharmacist or nurse.

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Herceptin**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the vial label after EXP. The expiry date refers to the last day of that month.

Store in a refrigerator (2°C – 8°C).

Infusion solutions should be used immediately after dilution. Do not use Herceptin if you notice any particulate matter or discoloration prior to administration.

Medicines should not be disposed of via wastewater or household waste. Ask your pharmacist how to dispose of medicines no longer required. These measures will help to protect the environment.

6. **Contents of the pack and other information**

What Herceptin contains

• The active substance is trastuzumab. Each vial contains 150 mg trastuzumab that has to be dissolved in 7.2 mL of water for injection. The resulting solution contains approximately 21 mg/mL trastuzumab.

• The other ingredient(s) are L-histidine hydrochloride monohydrate, L-histidine, α,α-trehalose dihydrate, polysorbate 20.
What Herceptin looks like and contents of the pack

Herceptin is a powder for concentrate for solution for intravenous infusion, which is supplied in a glass vial with a rubber stopper containing 150 mg of trastuzumab. The powder is a white to pale yellow pellet. Each carton contains 1 vial of powder.

Marketing Authorisation Holder

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

Manufacturer
Roche Pharma AG
Emil-Barell-Strasse 1
D-79639 Grenzach-Wyhlen
Germany

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
N.V. Roche S.A.
Tél/Tel: +32 (0) 2 525 82 11

Lietuva
UAB “Roche Lietuva”
Tel: +370 5 2546799

България
Рош България ЕООД
Тел: +359 2 818 44 44

Luxembourg/Luxemburg
(Voir/siehe Belgique/Belgien)

Česká republika
Roche s. r. o.
Tel: +420 - 2 20382111

Magyarország
Roche (Magyarország) Kft.
Tel: +36 - 23 446 800

Danmark
Roche a/s
Tlf: +45 - 36 39 99 99

Malta
(See United Kingdom)

Deutschland
Roche Pharma AG
Tel: +49 (0) 7624 140

Nederland
Roche Nederland B.V.
Tel: +31 (0) 348 438050

Eesti
Roche Eesti OÜ
Tel: +372 - 6 177 380

Norge
Roche Norge AS
Tlf: +47 - 22 78 90 00

Ελλάδα
Roche (Hellas) A.E.
Τηλ.: +30 210 61 66 100

Österreich
Roche Austria GmbH
Tel: +43 (0) 1 27739

España
Roche Farma S.A.
Tel: +34 - 91 324 81 00

Polska
Roche Polska Sp.z o.o.
Tel: +48 - 22 345 18 88
France
Roche
Tél: +33 (0)1 47 61 40 00

Hrvatska
Roche d.o.o.
Tel: +385 1 47 22 333

Ireland
Roche Products (Ireland) Ltd.
Tel: +353 (0) 1 469 0700

Ísland
Roche a/s
c/o Icepharma hf
Sími: +354 540 8000

Italia
Roche S.p.A.
Tel: +39 - 039 2471

Kύριος
Γ.Α.Σταμάτης & Σια Λτδ.
Τηλ: +357 - 22 76 62 76

Latvija
Roche Latvija SIA
Tel: +371 - 67 039831

Portugal
Roche Farmacêutica Química, Lda
Tel: +351 - 21 425 70 00

România
Roche România S.R.L.
Tel: +40 21 206 47 01

Slovenija
Roche farmacevtska družba d.o.o.
Tel: +386 - 1 360 26 00

Slovenská republika
Roche Slovensko, s.r.o.
Tel: +421 - 2 52638201

Suomi/Finland
Roche Oy
Puh/Tel: +358 (0) 10 554 500

Sverige
Roche AB
Tel: +46 (0) 8 726 1200

United Kingdom
Roche Products Ltd.
Tel: +44 (0) 1707 366000

This leaflet was last revised in

Detailed information on this medicine is available on the European Medicines Agency web site:
http://www.ema.europa.eu
This leaflet is available in all EU/EEA languages on the European Medicines Agency website.

The following information is intended for medical or healthcare professionals only

Always keep this medicine in the closed original pack at a temperature of 2°C – 8 ºC in a refrigerator. A vial of Herceptin reconstituted with water for injections (not supplied) is stable for 48 hours at 2°C – 8 ºC after reconstitution and must not be frozen.

Appropriate aseptic technique should be used. Each vial of Herceptin is reconstituted with 7.2 mL of water for injections (not supplied). Use of other reconstitution solvents should be avoided. This yields a 7.4 mL solution for single-dose use, containing approximately 21 mg/mL trastuzumab. A volume overage of 4% ensures that the labelled dose of 150 mg can be withdrawn from each vial.

Herceptin should be carefully handled during reconstitution. Causing excessive foaming during reconstitution or shaking the reconstituted Herceptin may result in problems with the amount of Herceptin that can be withdrawn from the vial.

Instructions for Reconstitution:

1) Using a sterile syringe, slowly inject 7.2 mL of water for injections in the vial containing the lyophilised Herceptin, directing the stream into the lyophilised cake.
2) Swirl vial gently to aid reconstitution. DO NOT SHAKE!

Slight foaming of the product upon reconstitution is not unusual. Allow the vial to stand undisturbed for approximately 5 minutes. The reconstituted Herceptin results in a colourless to pale yellow transparent solution and should be essentially free of visible particulates.

Determine the volume of the solution required:

- based on a loading dose of 4 mg trastuzumab/kg body weight, or a subsequent weekly dose of 2 mg trastuzumab/kg body weight:

\[
\text{Volume (mL)} = \frac{\text{Body weight (kg)} \times \text{dose (4 mg/kg for loading or 2 mg/kg for maintenance)}}{21} \quad \text{(mg/mL, concentration of reconstituted solution)}
\]

- based on a loading dose of 8 mg trastuzumab/kg body weight, or a subsequent 3-weekly dose of 6 mg trastuzumab/kg body weight:

\[
\text{Volume (mL)} = \frac{\text{Body weight (kg)} \times \text{dose (8 mg/kg for loading or 6 mg/kg for maintenance)}}{21} \quad \text{(mg/mL, concentration of reconstituted solution)}
\]

The appropriate amount of solution should be withdrawn from the vial and added to a polyvinylchloride, polyethylene or polypropylene infusion bag containing 250 mL of 0.9% sodium chloride solution. Do not use with glucose-containing solutions. The bag should be gently inverted to mix the solution in order to avoid foaming. Parenteral solutions should be inspected visually for particulates and discoloration prior to administration. Once the infusion is prepared it should be administered immediately. If diluted aseptically, it may be stored for 24 hours (do not store above 30°C).
Herceptin 600 mg solution for injection in vial
Trastuzumab

Read all of this leaflet carefully before you start using this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What Herceptin is and what it is used for
2. What you need to know before you are given Herceptin
3. How Herceptin is given
4. Possible side effects
5. How to store Herceptin
6. Contents of the pack and other information

1. What Herceptin is and what it is used for

Herceptin contains the active substance trastuzumab, which is a monoclonal antibody. Monoclonal antibodies attach to specific proteins or antigens. Trastuzumab is designed to bind selectively to an antigen called human epidermal growth factor receptor 2 (HER2). HER2 is found in large amounts on the surface of some cancer cells where it stimulates their growth. When Herceptin binds to HER2 it stops the growth of such cells and causes them to die.

Your doctor may prescribe Herceptin for the treatment of breast cancer when:
- You have early breast cancer, with high levels of a protein called HER2.
- You have metastatic breast cancer (breast cancer that has spread beyond the original tumour) with high levels of HER2. Herceptin may be prescribed in combination with the chemotherapy medicines paclitaxel or docetaxel as first treatment for metastatic breast cancer or it may be prescribed alone if other treatments have proved unsuccessful. It is also used in combination with medicines called aromatase inhibitors with patients with high levels of HER2 and hormone receptor-positive metastatic breast cancer (cancer that is sensitive to the presence of female sex hormones).

2. What you need to know before you are given Herceptin

Do not use Herceptin if:
- You are allergic to trastuzumab (the active substance of Herceptin), murine (mouse) proteins, or any of the other ingredients of this medicine (listed in section 6).
- You have severe breathing problems at rest due to your cancer or if you need oxygen treatment.

Warnings and precautions
Your doctor will closely supervise your therapy.

Heart checks
Treatment with Herceptin alone or with a taxane may affect the heart, especially if you have ever used an anthracycline (taxanes and anthracyclines are two other kinds of medicine used to treat cancer). The effects may be moderate to severe and could cause death. Therefore, your heart function will be checked before, during (every three months) and after (up to two to five years) treatment with Herceptin. If you develop any signs of heart failure (i.e. inadequate pumping of blood by the heart),
your heart function may be checked more frequently (every six to eight weeks), you may receive treatment for heart failure or you may have to stop Herceptin treatment.

Talk to your doctor, pharmacist or nurse before you are given Herceptin if:
- you have had heart failure, coronary artery disease, heart valve disease (heart murmurs), high blood pressure, taken any high blood pressure medicine or are currently taking any high blood pressure medicine.
- you have ever had or are currently using a medicine called doxorubicin or epirubicin (medicines used to treat cancer). These medicines (or any other anthracyclines) can damage heart muscle and increase the risk of heart problems with Herceptin.
- you suffer from breathlessness, especially if you are currently using a taxane. Herceptin can cause breathing difficulties, especially when it is first given. This could be more serious if you are already breathless. Very rarely, patients with severe breathing difficulties before treatment have died when they were given Herceptin.
- you have ever had any other treatment for cancer.

If you receive Herceptin with any other medicine to treat cancer, such as paclitaxel, docetaxel, an aromatase inhibitor, carboplatin or cisplatin you should also read the patient information leaflets for these products.

Children and adolescents
Herceptin is not recommended for anyone under the age of 18 years.

Other medicines and Herceptin
Tell your doctor, pharmacist or nurse if you are taking, have recently taken or might take any other medicines.

It may take up to 7 months for Herceptin to be removed from the body. Therefore you should tell your doctor, pharmacist or nurse that you have had Herceptin if you start any new medicine in the 7 months after stopping treatment.

Pregnancy
- If you are pregnant, think you may be pregnant or are planning to have a baby, you must tell your doctor, pharmacist or nurse before taking this medicine.
- You should use effective contraception during treatment with Herceptin and for at least 7 months after treatment has ended.

Your doctor will advise you of the risks and benefits of taking Herceptin during pregnancy. In rare cases, a reduction in the amount of (amniotic) fluid that surrounds the developing baby within the womb has been observed in pregnant women receiving Herceptin. This condition may be harmful to your baby in the womb and has been associated with the lungs not developing fully resulting in foetal death.

Breast-feeding
Do not breast-feed your baby during Herceptin therapy and for 7 months after the last dose of Herceptin as Herceptin may pass to your baby through your breast milk.

Ask your doctor, pharmacist or nurse for advice before taking any medicine.

Driving and using machines
It is not known whether Herceptin can affect your ability to drive a car or operate machines. However, if during treatment, you experience symptoms, such as chills or fever, you should not drive or use machines until these symptoms disappear.
3. **How Herceptin is given**

Before starting the treatment your doctor will determine the amount of HER2 in your tumour. Only patients with a large amount of HER2 will be treated with Herceptin. Herceptin should only be given by a doctor or nurse.

Two different types (formulations) of Herceptin exist:
- one is given as an infusion into a vein (intravenous infusion)
- the other is given as an injection under the skin (subcutaneous injection).

It is important to check the product labels to ensure that the correct formulation is being given as prescribed. Herceptin subcutaneous fixed dose formulation is not for intravenous use and should be given as a subcutaneous injection only.

Your doctor may consider switching your Herceptin intravenous treatment to Herceptin subcutaneous treatment (and vice versa) if considered appropriate for you.

In order to prevent medication errors it is also important to check the vial labels to ensure that the medicine being prepared and given is Herceptin (trastuzumab) and not trastuzumab emtansine.

The recommended dose is 600 mg. Herceptin is given as a subcutaneous injection (under the skin) over 2 to 5 minutes every three weeks.

The injection site should be alternated between the left and right thigh. New injections should be given at least 2.5 cm away from an old site. No injection should be given into areas where the skin is red, bruised, tender or hard.

If other medicines for subcutaneous use are used during the treatment course with Herceptin, a different injection site should be used.

Herceptin should not be mixed or diluted with other products.

If you stop using Herceptin

Do not stop using this medicine without talking to your doctor first. All doses should be taken at the right time every three weeks. This helps your medicine work as well as it can.

It may take up to 7 months for Herceptin to be removed from your body. Therefore your doctor may decide to continue to check your heart functions, even after you finish treatment.

If you have any further questions on the use of this medicine, ask your doctor, pharmacist or nurse.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them. Some of these side effects may be serious and may lead to hospitalisation.

During treatment with Herceptin, chills, fever and other flu like symptoms may occur. These are very common (may affect more than 1 in 10 people). Other symptoms are: feeling sick (nausea), vomiting, pain, increased muscle tension and shaking, headache, dizziness, breathing difficulties, wheezing, high or low blood pressure, heart rhythm disturbances (palpitations, heart fluttering or irregular heart beat), swelling of the face and lips, rash and feeling tired. Some of these symptoms can be serious and some patients have died (see the section “Warnings and precautions”).

You will be observed by a healthcare professional during the administration and for six hours after the start of the first administration and for two hours after the start of other administrations.
Heart problems can sometimes occur during treatment and occasionally after treatment has stopped and can be serious. They include weakening of the heart muscle possibly leading to heart failure, inflammation (swollen, red, hot, and in pain) of the lining around the heart and heart rhythm disturbances. This can lead to symptoms such as:

- breathlessness (including breathlessness at night)
- cough
- fluid retention (swelling) in the legs or arms
- palpitations (heart fluttering or irregular heart beat).

Your doctor will monitor your heart regularly during and after treatment but you should tell your doctor immediately if you notice any of the above symptoms.

If you experience any of the above symptoms when your treatment with Herceptin has finished, you should see your doctor and tell them that you have previously been treated with Herceptin.

Two different types (formulations) of Herceptin exist:

- one is given as an infusion into a vein over 30 to 90 minutes
- the other is given as a subcutaneous injection over 2 to 5 minutes.

In the clinical study comparing these two formulations, infections and cardiac events leading to hospitalisation were more frequent with the subcutaneous formulation. There were also more local reactions at the site of injection and more increases in blood pressure. Other side effects were similar.

Very common side effects of Herceptin: may affect more than 1 in 10 people

- infections
- diarrhoea
- constipation
- heartburn (dyspepsia)
- weakness
- skin rashes
- chest pain
- abdominal pain
- joint pain
- low counts of red blood cells and white blood cells (which help fight infection) sometimes with fever
- muscle pain
- conjunctivitis
- watery eyes
- nose bleeds
- runny nose
- hair loss
- tremor
- hot flush
- dizziness
- nail disorders
- weight loss
- loss of appetite
- inability to sleep (insomnia)
- altered taste
- low platelet count
- bruising
- numbness or tingling of the fingers and toes
- redness, swelling or sores in your mouth and/or throat
- pain, swelling, redness or tingling of hands and/or feet
- breathlessness
- headache
- cough
- vomiting
- nausea.

Common side effects of Herceptin: may affect up to 1 in 10 people

- allergic reactions
- throat infections
- bladder and skin infections
- shingles
- inflammation of the breast
- inflammation of the pancreas or liver
- kidney disorders
- increased muscle tone or tension (hypertonia)
- pain in the arms and/or legs
- itchy rash
- sleepiness (somnolence)
- haemorrhoids
- itchiness
- dry mouth and skin
- dry eyes
- sweating
- feeling weak and unwell
- anxiety
- depression
- abnormal thinking
- asthma
- infection of lungs
- lung disorders
- back pain
- neck pain
- bone pain
- acne
- leg cramps

Uncommon side effects of Herceptin: may affect up to 1 in 100 people

- deafness
- bumpy rash
- blood infection.

Rare side effects of Herceptin: may affect up to 1 in 1,000 people

- weakness
- jaundice
- inflammation or scarring of the lungs.

Other side effects that have been reported with Herceptin use: frequency cannot be estimated from the available data

- abnormal or impaired blood clotting
- anaphylactic reactions
- high potassium levels
- swelling of the brain
- swelling or bleeding at the back of the eyes
- shock
- swelling of the lining of the heart
- slow heart rate
- abnormal heart rhythm
- respiratory distress
- respiratory failure
- acute accumulation of fluid in the lungs
- acute narrowing of the airways
- abnormally low oxygen levels in the blood
- difficulty in breathing when lying flat
• liver damage/failure
• swelling of the face, lips and throat
• kidney failure
• abnormally low levels of fluid around baby in womb
• failure of lungs to develop in the womb
• abnormal kidney development in the womb

Some of the side effects you experience may be due to your underlying breast cancer. If you receive Herceptin in combination with chemotherapy, some of them may also be due to the chemotherapy.

If you get any side effects, talk to your doctor, pharmacist or nurse.

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Herceptin

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the vial label after EXP. The expiry date refers to the last day of that month.

Store in a refrigerator (2°C – 8°C).

Keep the vial in the outer carton to protect from light.

Do not freeze.

Upon opening of the vial, the solution should be used immediately.

Do not use this medicine if you notice any particulate matter or discoloration prior to administration.

Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What Herceptin contains

• The active substance is trastuzumab. One vial of 5 mL contains 600 mg of trastuzumab.

• The other ingredients are recombinant human hyaluronidase (rHuPH20), L-histidine, L-histidine hydrochloride monohydrate, α,α-trehalose dihydrate, L-methionine, polysorbate 20, water for injections.

What Herceptin looks like and contents of the pack
Herceptin is a solution for injection that is supplied in a glass vial with a butyl rubber stopper containing 5 mL (600 mg) of trastuzumab. The solution is clear to opalescent and colourless to yellowish.

Each carton contains one vial.
Marketing Authorisation Holder

Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom

Manufacturer

Roche Pharma AG
Emil-Barell-Strasse 1
79639 Grenzach-Wyhlen
Germany

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
N.V. Roche S.A.
Tél/Tel: +32 (0) 2 525 82 11

Lietuva
UAB “Roche Lietuva”
Tel: +370 5 2546799

България
Рош България ЕООД
Тел: +359 2 818 44 44

Luxembourg/Luxemburg
(Voir/siehe Belgique/Belgien)

Česká republika
Roche s. r. o.
Tel: +420 - 2 20382111

Magyarország
Roche (Magyarország) Kft.
Tel: +36 - 23 446 800

Danmark
Roche a/s
Tlf: +45 - 36 39 99 99

Malta
(See United Kingdom)

Deutschland
Roche Pharma AG
Tel: +49 (0) 7624 140

Nederland
Roche Nederland B.V.
Tel: +31 (0) 348 438050

Eesti
Roche Eesti OÜ
Tel: + 372 - 6 177 380

Norge
Roche Norge AS
Tlf: +47 - 22 78 90 00

Ελλάδα
Roche (Hellas) A.E.
Τηλ: +30 210 61 66 100

Österreich
Roche Austria GmbH
Tel: +43 (0) 1 27739

España
Roche Farma S.A.
Tel: +34 - 91 324 81 00

Polska
Roche Polska Sp.z o.o.
Tel: +48 - 22 345 18 88

France
Roche
Tél: +33 (0)1 47 61 40 00

Portugal
Roche Farmacêutica Química, Lda
Tel: +351 - 21 425 70 00
This leaflet was last revised in

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu

This leaflet is available in all EU/EEA languages on the European Medicines Agency website.