ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT
TRISENOX 1 mg/ml concentrate for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION
One ml of TRISENOX contains 1 mg of arsenic trioxide
For the full list of excipients, see section 6.1

3. PHARMACEUTICAL FORM
Concentrate for solution for infusion
Sterile, clear, colourless, aqueous solution.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications
TRISENOX is indicated for induction of remission, and consolidation in adult patients with:
- Newly diagnosed low-to-intermediate risk acute promyelocytic leukaemia (APL) (white blood cell count, ≤ 10 x 10^3/µl) in combination with all-trans-retinoic acid (ATRA)
- Relapsed/refractory acute promyelocytic leukaemia (APL)(Previous treatment should have included a retinoid and chemotherapy)
characterised by the presence of the t(15;17) translocation and/or the presence of the Pro-Myelocytic Leukaemia/Retinoic-Acid-Receptor-alpha (PML/RAR-alpha) gene.

The response rate of other acute myelogenous leukaemia subtypes to arsenic trioxide has not been examined.

4.2 Posology and method of administration
TRISENOX must be administered under the supervision of a physician who is experienced in the management of acute leukaemias, and the special monitoring procedures described in section 4.4 must be followed.

Posology
The same dose is recommended for adults and elderly.

Newly diagnosed low-to-intermediate risk acute promyelocytic leukaemia (APL)

Induction treatment schedule
TRISENOX must be administered intravenously at a dose of 0.15 mg/kg/day, given daily until complete remission is achieved. If complete remission has not occurred by day 60, dosing must be discontinued.
Consolidation schedule
TRISENOX must be administered intravenously at a dose of 0.15 mg/kg/day, 5 days per week. Treatment should be continued for 4 weeks on and 4 weeks off, for a total of 4 cycles.

Relapsed/refractory acute promyelocytic leukaemia (APL)

Induction treatment schedule
TRISENOX must be administered intravenously at a fixed dose of 0.15 mg/kg/day given daily until complete remission is achieved (less than 5% blasts present in cellular bone marrow with no evidence of leukaemic cells). If complete remission has not occurred by day 50, dosing must be discontinued.

Consolidation schedule
Consolidation treatment must begin 3 to 4 weeks after completion of induction therapy. TRISENOX is to be administered intravenously at a dose of 0.15 mg/kg/day for 25 doses given 5 days per week, followed by 2 days interruption, repeated for 5 weeks.

Dose delay, modification and reinitiation
Treatment with TRISENOX must be temporarily interrupted before the scheduled end of therapy at any time that a toxicity grade 3 or greater on the National Cancer Institute Common Toxicity Criteria is observed and judged to be possibly related to TRISENOX treatment. Patients who experience such reactions that are considered TRISENOX related must resume treatment only after resolution of the toxic event or after recovery to baseline status of the abnormality that prompted the interruption. In such cases, treatment must resume at 50% of the preceding daily dose. If the toxic event does not recur within 7 days of restarting treatment at the reduced dose, the daily dose can be escalated back to 100% of the original dose. Patients who experience a recurrence of toxicity must be removed from treatment. For ECG, electrolytes abnormalities and hepatotoxicity see section 4.4.

Special populations

Patients with hepatic impairment
Since no data are available across all hepatic impairment groups and hepatotoxic effects may occur during the treatment with TRISENOX, caution is advised in the use of TRISENOX in patients with hepatic impairment (see section 4.4 and 4.8).

Patients with renal impairment
Since no data are available across all renal impairment groups, caution is advised in the use of TRISENOX in patients with renal impairment.

Paediatric population
The safety and efficacy of TRISENOX in children aged up to 17 years has not been established. Currently available data for children aged 5 to 16 years are described in section 5.1 but no recommendation on a posology can be made. No data are available for children under 5 years.

Method of administration
TRISENOX must be administered intravenously over 1-2 hours. The infusion duration may be extended up to 4 hours if vasomotor reactions are observed. A central venous catheter is not required. Patients must be hospitalised at the beginning of treatment due to symptoms of disease and to ensure adequate monitoring.

For instructions on preparation of the medicinal product before administration, see section 6.6.
4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Clinically unstable APL patients are especially at risk and will require more frequent monitoring of electrolyte and glycaemia levels as well as more frequent haematologic, hepatic, renal and coagulation parameter tests.

Leukocyte activation syndrome (APL differentiation syndrome)
27% of patients with APL, in the relapsed/refractory setting, treated with arsenic trioxide have experienced symptoms similar to a syndrome called the retinoic-acid-acute promyelocytic leukaemia (RA-APL) or APL differentiation syndrome, characterised by fever, dyspnoea, weight gain, pulmonary infiltrates and pleural or pericardial effusions, with or without leukocytosis. This syndrome can be fatal. In newly diagnosed APL patients treated with arsenic trioxide and all-trans-retinoic acid (ATRA), APL differentiation syndrome was observed in 19% including 5 severe cases. At the first signs that could suggest the syndrome (unexplained fever, dyspnoea and/or weight gain, abnormal chest auscultatory findings or radiographic abnormalities), treatment with TRISENOX must be temporarily discontinued and high-dose steroids (dexamethasone 10 mg intravenously twice a day) must be immediately initiated, irrespective of the leukocyte count and continued for at least 3 days or longer until signs and symptoms have abated. If clinically justified/required, concomitant diuretic therapy is also recommended. The majority of patients do not require permanent termination of TRISENOX therapy during treatment of the APL differentiation syndrome. As soon as signs and symptoms have subsided, treatment with TRISENOX can be resumed at 50% of the previous dose during the first 7 days. Thereafter, in the absence of worsening of the previous toxicity, TRISENOX might be resumed at full dosage. In the case of the reappearance of symptoms TRISENOX should be reduced to the previous dosage. In order to prevent the development of the APL differentiation syndrome during induction treatment, prednisone (0.5 mg/kg body weight per day throughout induction treatment) may be administered from day 1 of TRISENOX application to the end of induction therapy in APL patients. It is recommended that chemotherapy not be added to treatment with steroids since there is no experience with administration of both steroids and chemotherapy during treatment of the leukocyte activation syndrome due to TRISENOX. Post-marketing experience suggests that a similar syndrome may occur in patients with other types of malignancy. Monitoring and management for these patients should be as described above.

Electrocardiogram (ECG) abnormalities
Arsenic trioxide can cause QT interval prolongation and complete atrioventricular block. QT prolongation can lead to a torsade de points-type ventricular arrhythmia, which can be fatal. Previous treatment with anthracyclines may increase the risk of QT prolongation. The risk of torsade de points is related to the extent of QT prolongation, concomitant administration of QT prolonging medicinal products (such as class la and III antiarythmics (e.g. quinidine, amiodarone, sotalol, dofetilide), antipsychotics (e.g. thioridazine), antidepressants (e.g. amitriptyline), some macrolides (e.g. erythromycin), some antihistamines (e.g. terfenadine and astemizole), some quinolone antibiotics (e.g. sparfloxacin), and other individual medicinal products known to increase QT interval (e.g. cisapride)), a history of torsade de points, pre-existing QT interval prolongation, congestive heart failure, administration of potassium-wasting diuretics, amphotericin B or other conditions that result in hypokalemia or hypomagnesaemia. In clinical trials, in the relapsed/refractory setting, 40% of patients treated with TRISENOX experienced at least one QT corrected (QTc) interval prolongation greater than 500 msec. Prolongation of the QTc was observed between 1 and 5 weeks after TRISENOX infusion, and then returned to baseline by the end of 8 weeks after TRISENOX infusion. One patient (receiving multiple, concomitant medicinal products, including amphotericin B) had asymptomatic torsade de points during induction therapy for relapsed APL with arsenic trioxide. In newly diagnosed APL patients 15.6% showed QTc prolongation with arsenic trioxide in combination with ATRA (see section 4.8). In one newly diagnosed patient induction treatment was terminated because of severe prolongation of the QTc interval and electrolyte abnormalities on day 3 of induction treatment.
ECG and electrolyte monitoring recommendations

Prior to initiating therapy with TRISENOX, a 12-lead ECG must be performed and serum electrolytes (potassium, calcium, and magnesium) and creatinine must be assessed; preexisting electrolyte abnormalities must be corrected and, if possible, medicinal products that are known to prolong the QT interval must be discontinued. Patients with risk factors of QTc prolongation or risk factors of torsade de pointes should be monitored with continuous cardiac monitoring (ECG). For QTc greater than 500 msec, corrective measures must be completed and the QTc reassessed with serial ECGs and, if available, a specialist advice could be sought prior to considering using TRISENOX. During therapy with TRISENOX, potassium concentrations must be kept above 4 mEq/l and magnesium concentrations must be kept above 1.8 mg/dl. Patients who reach an absolute QT interval value > 500 msec must be reassessed and immediate action must be taken to correct concomitant risk factors, if any, while the risk/benefit of continuing versus suspending TRISENOX therapy must be considered. If syncope, rapid or irregular heartbeat develops, the patient must be hospitalised and monitored continuously, serum electrolytes must be assessed, TRISENOX therapy must be temporarily discontinued until the QTc interval regresses to below 460 msec, electrolyte abnormalities are corrected, and the syncope and irregular heartbeat cease. After recovery, treatment should be resumed at 50 % of the preceding daily dose. If QTc prolongation does not recur within 7 days of restarting treatment at the reduced dose, treatment with TRISENOX can be resumed at 0.11 mg/kg body weight per day for a second week. The daily dose can be escalated back to 100% of the original dose if no prolongation occurs. There are no data on the effect of arsenic trioxide on the QTc interval during the infusion. Electrocardiograms must be obtained twice weekly, and more frequently for clinically unstable patients, during induction and consolidation.

Hepatotoxicity (grade 3 or greater)

In newly diagnosed patients with low to intermediate risk APL 63.2 % developed grade 3 or 4 hepatic toxic effects during induction or consolidation treatment with arsenic trioxide in combination with ATRA (see section 4.8). However, toxic effects resolved with temporary discontinuation of either arsenic trioxide, ATRA or both. Treatment with TRISENOX must be discontinued before the scheduled end of therapy at any time that a hepatotoxicity grade 3 or greater on the National Cancer Institute Common Toxicity Criteria is observed. As soon as bilirubin and/or SGOT and/or alkaline phosphatase are decreased to below 4 times the normal upper level, treatment with TRISENOX should be resumed at 50 % of the previous dose during the first 7 days. Thereafter, in absence of worsening of the previous toxicity, TRISENOX should be resumed at full dosage. In case of reappearance of hepatotoxicity, TRISENOX must be permanently discontinued.

Dose delay and modification

Treatment with TRISENOX must be temporarily interrupted before the scheduled end of therapy at any time that a toxicity grade 3 or greater on the National Cancer Institute Common Toxicity Criteria is observed and judged to be possibly related to TRISENOX treatment. (see section 4.2)

Laboratory tests

The patient’s electrolyte and glycaemia levels, as well as haematologic, hepatic, renal and coagulation parameter tests must be monitored at least twice weekly, and more frequently for clinically unstable patients during the induction phase and at least weekly during the consolidation phase.
Patients with renal impairment
Since no data are available across all renal impairment groups, caution is advised in the use of TRISENOX in patients with renal impairment. The experience in patients with severe renal impairment is insufficient to determine if dose adjustment is required. The use of TRISENOX in patients on dialysis has not been studied.

Patients with hepatic impairment
Since no data are available across all hepatic impairment groups and hepatotoxic effects may occur during the treatment with arsenic trioxide caution is advised in the use of TRISENOX in patients with hepatic impairment (see section 4.4 on hepatotoxicity and section 4.8). The experience in patients with severe hepatic impairment is insufficient to determine if dose adjustment is required.

Elderly
There is limited clinical data on the use of TRISENOX in the elderly population. Caution is needed in these patients.

Hyperleukocytosis
Treatment with arsenic trioxide has been associated with the development of hyperleukocytosis (≥ 10 x 10³/μl) in some relapsed/refractory APL patients. There did not appear to be a relationship between baseline white blood cell (WBC) counts and development of hyperleukocytosis nor did there appear to be a correlation between baseline WBC count and peak WBC counts. Hyperleukocytosis was never treated with additional chemotherapy and resolved on continuation of TRISENOX. WBC counts during consolidation were not as high as during induction treatment and were < 10 x 10³/μl, except in one patient who had a WBC count of 22 x 10³/μl during consolidation. Twenty relapsed/refractory APL patients (50 %) experienced leukocytosis; however, in all these patients, the WBC count was declining or had normalized by the time of bone marrow remission and cytotoxic chemotherapy or leukopheresis was not required. In newly diagnosed patients with low to intermediate risk APL leukocytosis developed during induction therapy in 35 of 74 (47 %) patients (see section 4.8). However all cases were successfully managed with hydroxyurea therapy.

In newly diagnosed and relapsed/refractory APL patients who develop sustained leukocytosis after initiation of therapy, hydroxyurea should be administered. Hydroxyurea should be continued at a given dose to keep the white blood cell count ≤ 10 x 10³/μl and subsequently tapered.

Table 1 Recommendation for initiation of hydroxyurea

<table>
<thead>
<tr>
<th>WBC</th>
<th>Hydroxyurea</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–50 x 10³/μl</td>
<td>500 mg four times a day</td>
</tr>
<tr>
<td>> 50 x 10³/μl</td>
<td>1000 mg four times a day</td>
</tr>
</tbody>
</table>

Development of second primary malignancies
The active ingredient of TRISENOX, arsenic trioxide, is a human carcinogen. Monitor patients for the development of second primary malignancies.

4.5 Interaction with other medicinal products and other forms of interaction

No formal assessments of pharmacokinetic interactions between TRISENOX and other therapeutic medicinal products have been conducted.

Medicinal products known to cause QT/QTc interval prolongation, hypokalemia or hypomagnesaemia

QT/QTc prolongation is expected during treatment with arsenic trioxide, and torsade de pointes and complete heart block have been reported. Patients who are receiving, or who have received, medicinal products known to cause hypokalemia or hypomagnesaemia, such as diuretics and amphotericin B, may be at higher risk for torsade de pointes. Caution is advised when TRISENOX is coadministered with other medicinal products known to cause QT/QTc interval prolongation such as macrolide antibiotics, the antipsychotic thioridazine, or medicinal products known to cause hypokalemia or
hypomagnesaemia. Additional information about QT prolonging medicinal agents, is provided in Section 4.4.

Medicinal products known to cause hepatotoxic effects

Hepatotoxic effects may occur during the treatment with arsenic trioxide, caution is advised when TRISENOX is coadministered with other medicinal products known to cause hepatotoxic effects (see section 4.4 and 4.8).

Other antileukaemic medicinal products

The influence of TRISENOX on the efficacy of other antileukaemic medicinal products is unknown.

4.6 Fertility, pregnancy and lactation

Contraception in males and females

Women of childbearing potential and men must use effective contraception during treatment with TRISENOX.

Pregnancy

Arsenic trioxide has been shown to be embryotoxic and teratogenic in animal studies (see section 5.3). There are no studies in pregnant women using TRISENOX. If this medicinal product is used during pregnancy or if the patient becomes pregnant while taking this product, the patient must be informed of the potential harm to the foetus.

Breast-feeding

Arsenic is excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from TRISENOX, breastfeeding must be discontinued prior to and throughout administration.

Fertility

No clinical or non-clinical fertility studies have been conducted with TRISENOX.

4.7 Effects on ability to drive and use machines

TRISENOX has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable effects

Summary of the safety profile

Related adverse reactions of CTC grade 3 and 4 occurred in 37% of relapsed/refractory APL patients in clinical trials. The most commonly reported reactions were hyperglycaemia, hypokalaemia, neutropenia, and increased alanine amino transferase (ALT). Leukocytosis occurred in 50% of patients with relapsed/refractory APL, as determined by haematology assessments.

Serious adverse reactions were common (1-10%) and not unexpected in the relapsed/refractory population. Those serious adverse reactions attributed to arsenic trioxide included APL differentiation syndrome (3), leukocytosis (3), prolonged QT interval (4, 1 with torsade de pointes), atrial fibrillation/atrial flutter (1), hyperglycaemia (2) and a variety of serious adverse reactions related to haemorrhage, infections, pain, diarrhoea, nausea.

In general, treatment-emergent adverse events tended to decrease over time, in relapsed/refractory APL patients perhaps accounted for by amelioration of the underlying disease process. Patients tended
to tolerate consolidation and maintenance treatment with less toxicity than in induction. This is probably due to the confounding of adverse events by the uncontrolled disease process early on in the treatment course and the myriad concomitant medicinal products required to control symptoms and morbidity.

In a phase 3, multicenter, noninferiority trial comparing all-trans-retinoic acid (ATRA) plus chemotherapy with ATRA plus arsenic trioxide in newly diagnosed low-to-intermediate risk APL patients (Study APL0406; see also section 5.1), serious adverse reactions including hepatic toxicity, thrombocytopenia, neutropenia and QTc prolongation were observed in patients treated with arsenic trioxide.

Tabulated list of adverse reactions

The following undesirable effects have been reported in the APL0406 study in newly diagnosed patients and in clinical trials and/or post-marketing experience in relapsed/refractory APL patients. Undesirable effects are listed in table 2 below as MedDRA preferred term by system organ class and frequencies observed during TRISENOX clinical trials in 52 patients with refractory/relapsed APL. Frequencies are defined as: (very common ≥ 1/10), (common ≥ 1/100 to < 1/10), (uncommon ≥ 1/1,000 to < 1/100), not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>All grades</th>
<th>Grades ≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Sepsis</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Leukocytosis</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pancytopenia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Anaemia</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td>Very Common</td>
<td>Very Common</td>
</tr>
<tr>
<td>Hypokalaemia</td>
<td>Very Common</td>
<td>Very Common</td>
</tr>
<tr>
<td>Hypomagnesaemia</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Hypermetraemia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Ketoacidosis</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Hypermagnesaemia</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Fluid retention</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confusional state</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Headache</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Convulsion</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision blurred</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Ventricular extrasystoles</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>Not known</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasculitis</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Common</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory, thoracic and mediastinal disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentiation syndrome</td>
<td>Very Common</td>
<td>Very Common</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pleuritic pain</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pulmonary alveolar haemorrhage</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>Not known</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gastrointestinal disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Nausea</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>Common</td>
<td>Common</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin and subcutaneous tissue disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruritus</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Rash</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Erythema</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Face oedema</td>
<td>Common</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Musculoskeletal and connective tissue disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Myalgia</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Bone pain</td>
<td>Common</td>
<td>Common</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renal and urinary disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal failure</td>
<td>Common</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General disorders and administration site conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrexia</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Pain</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Oedema</td>
<td>Very Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Chest pain</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Chills</td>
<td>Common</td>
<td>Not known</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine amino transferase increased</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Aspartate amino transferase increased</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Electrocardiogram QT prolonged</td>
<td>Very Common</td>
<td>Common</td>
</tr>
<tr>
<td>Hyperbilirubinaemia</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Blood creatinine increased</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Weight increased</td>
<td>Common</td>
<td>Not known</td>
</tr>
<tr>
<td>Gamma-glutamyltransferase increased*</td>
<td>Not known*</td>
<td>Not known*</td>
</tr>
</tbody>
</table>

*In the CALGB study C9710, 2 cases of grade ≥3 increased GGT were reported out of the 200 patients who received TRISENOX consolidation cycles (cycle 1 and cycle 2) versus none in the control arm.

Description of selected adverse reactions
Differentiation syndrome
During TRISENOX treatment, 14 of the 52 patients in the APL studies in the relapsed setting had one or more symptoms of APL differentiation syndrome, characterised by fever, dyspnoea, weight gain, pulmonary infiltrates and pleural or pericardial effusions, with or without leukocytosis (see section 4.4). Twenty-seven patients had leukocytosis (WBC $\geq 10 \times 10^3/\mu l$) during induction, 4 of whom had values above 100,000/μl. Baseline white blood cell (WBC) counts did not correlate with development of leukocytosis on study, and WBC counts during consolidation therapy were not as high as during induction. In these studies, leukocytosis was not treated with chemotherapeutic medicinal products. Medicinal products that are used to lower the white blood cell count often exacerbate the toxicities associated with leukocytosis, and no standard approach has proven effective. One patient treated under a compassionate use program died from cerebral infarct due to leukocytosis, following treatment with chemotherapeutic medicinal products to lower WBC count. Observation is the recommended approach with intervention only in selected cases.

Mortality in the pivotal studies in the relapsed setting from disseminated intravascular coagulation (DIC) associated haemorrhage was very common (> 10%), which is consistent with the early mortality reported in the literature.

In newly diagnosed patients with low to intermediate risk APL, differentiation syndrome was observed in 19 % including 5 severe cases.

In post marketing experience, a differentiation syndrome, like retinoic acid syndrome, has also been reported for the treatment of malignancies other than APL with TRISENOX.

QT interval prolongation
Arsenic trioxide can cause QT interval prolongation (see section 4.4). QT prolongation can lead to a torsade de pointes-type ventricular arrhythmia, which can be fatal. The risk of torsade de pointes is related to the extent of QT prolongation, concomitant administration of QT prolonging medicinal products, a history of torsade de pointes, preexisting QT interval prolongation, congestive heart failure, administration of potassium-wasting diuretics, or other conditions that result in hypokalaemia or hypomagnesaemia. One patient (receiving multiple, concomitant medicinal products, including amphotericin B) had asymptomatic torsade de pointes during induction therapy for relapsed APL with arsenic trioxide. She went onto consolidation without further evidence of QT prolongation.

In newly diagnosed patients, with low to intermediate risk APL, QTc prolongation was observed in 15.6 %. In one patient induction treatment was terminated because of severe prolongation of the QTc interval and electrolyte abnormalities on day 3.

Peripheral neuropathy
Peripheral neuropathy, characterised by paresthesia/dysesthesia, is a common and well known effect of environmental arsenic. Only 2 relapsed/refractory APL patients discontinued treatment early due to this adverse event and one went on to receive additional TRISENOX on a subsequent protocol. Forty-four percent of relapsed/refractory APL patients experienced symptoms that could be associated with neuropathy; most were mild to moderate and were reversible upon cessation of treatment with TRISENOX.

Hepatotoxicity (grade 3-4)
In newly diagnosed patients with low to intermediate risk APL 63.2 % developed grade 3 or 4 hepatic toxic effects during induction or consolidation treatment with TRISENOX in combination with ATRA. However, toxic effects resolved with temporary discontinuation of either TRISENOX, ATRA or both (see section 4.4).

Haematological and gastrointestinal toxicity
In newly diagnosed patients with low to intermediate risk APL, gastrointestinal toxicity, grade 3-4 neutropenia and grade 3 or 4 thrombocytopenia occurred, however these were 2.2 times less frequent in patients treated with TRISENOX in combination with ATRA compared to patients treated with ATRA + chemotherapy.
Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

If symptoms suggestive of serious acute arsenic toxicity (e.g., convulsions, muscle weakness and confusion) appear, TRISENOX must be immediately discontinued and chelating therapy with penicillamine at a daily dose ≤ 1 gm per day may be considered. The duration of treatment with penicillamine must be evaluated taking into account the urinary arsenic laboratory values. For patients who cannot take oral medicinal product, dimercaprol administered at a dose of 3 mg/kg intramuscularly every 4 hours until any immediately life-threatening toxicity has subsided may be considered. Thereafter, penicillamine at a daily dose ≤ 1 gm per day may be given. In the presence of coagulopathy, the oral administration of the chelating agent Dimercaptosuccinic Acid Succimer (DCI) 10 mg/kg or 350 mg/m² every 8 hours during 5 days and then every 12 hours during 2 weeks is recommended. For patients with severe, acute arsenic overdose, dialysis should be considered.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other antineoplastic agents, ATC code: L01XX27

Mechanism of action

The mechanism of action of TRISENOX is not completely understood. Arsenic trioxide causes morphological changes and deoxyribonucleic acid (DNA) fragmentation characteristic of apoptosis in NB4 human promyelocytic leukaemia cells in vitro. Arsenic trioxide also causes damage or degradation of the fusion protein Pro-Myelocytic Leukaemia/Retinoic Acid Receptor-alpha (PML/RAR alpha).

Clinical efficacy and safety

Newly diagnosed non high risk APL patients

TRISENOX has been investigated in 77 newly diagnosed patients with low to intermediate risk APL, in a controlled, randomized, non-inferiority Phase 3 clinical study comparing the efficacy and safety of TRISENOX combined with all-trans-retinoic acid (ATRA) with those of ATRA+chemotherapy (eg, idarubicin and mitoxantrone) (Study APL0406). Patients with newly diagnosed APL confirmed by the presence of t(15;17) or PML-RARα by RT-PCR or micro speckled PML nuclear distribution in leukemic cells were included. No data are available on patient with variant translocations like t(11;17) (PLZF/RARα). Patients with significant arrhythmias, EKG abnormalities (congenital long QT syndrome, history or presence of significant ventricular or atrial tachyarrhythmia, clinically significant resting bradycardia (<50 beats per minute), QTc > 450 msec on screening EKG, right bundle branch block plus left anterior hemiblock, bifascicular block) or neuropathy were excluded from the study.

Patients in the ATRA+TRISENOX treatment group received oral ATRA at 45 mg/m² daily and iv TRISENOX at 0.15 mg/kg daily until CR. During consolidation, ATRA was given at the same dose for periods of 2 weeks on and 2 weeks off for a total of 7 courses, and TRISENOX was given at the same dose 5 days per week, 4 weeks on and 4 weeks off, for a total of 4 courses. Patients in the ATRA+chemotherapy treatment group received iv idarubicin at 12 mg/m² on days 2, 4, 6, and 8 and oral ATRA at 45 mg/m² daily until CR. During consolidation, patients received idarubicin at 5 mg/m² on days 1 to 4 and ATRA at 45 mg/m² daily for 15 days, then iv mitoxantrone at 10 mg/m² on days 1 to 5 and ATRA again at 45 mg/m² daily for 15 days, and finally a single dose of idarubicin at 12
mg/m² and ATRA at 45 mg/m² daily for 15 days. Each course of consolidation was initiated at hematological recovery from the previous course defined as absolute neutrophil count >1.5×10⁹/L and platelets >100×10⁹/L. Patients in the ATRA+chemotherapy treatment group also received maintenance treatment for up to 2 years, consisting of oral 6-mercaptopurine at 50 mg/m² daily, intramuscular methotrexate at 15 mg/m² weekly, and ATRA at 45 mg/m² daily for 15 days every 3 months.

The key efficacy results are summarised in table 3 below:

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>ATRA + TRISENOX (n = 77) [%]</th>
<th>ATRA + Chemotherapy (n = 79) [%]</th>
<th>Confidence interval (CI)</th>
<th>P-value</th>
</tr>
</thead>
</table>
| 2-Year event-free survival (EFS)| 97 | 86 | 95 % CI for the difference, 2-22 percentage points | p<0.001 for noninferiority
for superiority of ATRA+TRISENOX
p = 0.02 |
| Hematologic complete remission (HCR) | 100 | 95 | | p = 0.12 |
| 2-Year overall survival (OS) | 99 | 91 | | p = 0.02 |
| 2-Year disease-free survival (DFS)| 97 | 90 | | p = 0.11 |
| 2-Year cumulative incidence of relapse (CIR) | 1 | 6 | | p = 0.24 |

APL = acute promyelocytic leukemia; ATRA = all-trans-retinoic acid

Relapsed/refractory APL

TRISENOX has been investigated in 52 APL patients, previously treated with an anthracycline and a retinoid regimen, in two open-label, single-arm, non-comparative studies. One was a single investigator clinical study (n=12) and the other was a multicentre, 9-institution study (n=40). Patients in the first study received a median dose of 0.16 mg/kg/day of TRISENOX (range 0.06 to 0.20 mg/kg/day) and patients in the multicentre study received a fixed dose of 0.15 mg/kg/day. TRISENOX was administered intravenously over 1 to 2 hours until the bone marrow was free of leukaemic cells, up to a maximum of 60 days. Patients with complete remission received consolidation therapy with TRISENOX for 25 additional doses over a 5 week period. Consolidation therapy began 6 weeks (range, 3-8) after induction in the single institution study and 4 weeks (range, 3-6) in the multicentre study. Complete remission (CR) was defined as the absence of visible leukaemic cells in the bone marrow and peripheral recovery of platelets and white blood cells.

Patients in the single centre study had relapsed following 1-6 prior therapy regimens and 2 patients had relapsed following stem cell transplantation. Patients in the multicentre study had relapsed following 1-4 prior therapy regimens and 5 patients had relapsed following stem cell transplantation. The median age in the single centre study was 33 years (age range 9 to 75). The median age in the multicentre study was 40 years (age range 5 to 73).

The results are summarised in the table 4 below.

Table 4
The single institution study included 2 paediatric patients (< 18 years old), both of whom achieved CR. The multicentre trial included 5 paediatric patients (< 18 years old), 3 of whom achieved CR. No children of less than 5 years of age were treated.

In a follow-up treatment after consolidation, 7 patients in the single institution study and 18 patients in the multicentre study received further maintenance therapy with TRISENOX. Three patients from the single institution study and 15 patients from the multicentre study had stem cell transplants after completing TRISENOX. The Kaplan-Meier median CR duration for the single institution study is 14 months and has not been reached for the multicentre study. At last follow-up, 6 of 12 patients in the single institution study were alive with a median follow-up time of 28 months (range 25 to 29). In the multicentre study 27 of 40 patients were alive with a median follow-up time of 16 months (range 9 to 25). Kaplan-Meier estimates of 18-month survival for each study are shown below.

Cytogenetic confirmation of conversion to a normal genotype and reverse transcriptase - polymerase chain reaction (RT-PCR) detection of PML/RARα conversion to normal are shown in table 5 below.

Cytogenetics after TRISENOX therapy

<table>
<thead>
<tr>
<th></th>
<th>Single centre pilot trial N = 12</th>
<th>Multicentre trial N = 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Cytogenetics [t(15;17)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absent (83%)</td>
<td>Present (9%)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RT-PCR for PML/ RARα</td>
<td>8 (73%)</td>
<td>3 (27%)</td>
</tr>
</tbody>
</table>

Responses were seen across all age groups tested, ranging from 6 to 75 years. The response rate was similar for both genders. There is no experience on the effect of TRISENOX on the variant APL containing the t(11;17) and t(5;17) chromosomal translocations.

Paediatric population

The experience in children is limited. Of 7 patients under 18 years of age (range 5 to 16 years) treated with TRISENOX at the recommended dose of 0.15 mg/kg/day, 5 patients achieved a complete response (see section 4.2).

5.2 Pharmacokinetic properties

The inorganic, lyophilized form of arsenic trioxide, when placed into solution, immediately forms the hydrolysis product arsenious acid (AsIII). AsIII is the pharmacologically active species of arsenic trioxide.

Distribution

The volume of distribution (Vd) for AsIII is large (>400 L) indicating significant distribution into the tissues with negligible protein binding. Vd is also weight dependent, increasing with increasing body weight. Total arsenic accumulates mainly in the liver, kidney, and heart and, to a lesser extent, in the lung, hair, and nails.

Biotransformation

The metabolism of arsenic trioxide involves oxidation of arsenious acid (AsIII), the active species of arsenic trioxide, to arsenic acid (AsV), as well as oxidative methylation to monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) by methyltransferases, primarily in the liver. The pentavalent metabolites, MMAV and DMAV, are slow to appear in plasma (approximately 10-24 hours after first administration of arsenic trioxide), but due to their longer half-life, accumulate more upon multiple dosing than does AsIII. The extent of accumulation of these metabolites is dependent on the dosing regimen. Approximate accumulation ranged from 1.4- to 8-fold following multiple as compared to single dose administration. AsV is present in plasma only at relatively low levels.

In vitro enzymatic studies with human liver microsomes revealed that arsenic trioxide has no inhibitory activity on substrates of the major cytochrome P450 enzymes such as 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4/5, 4A9/11. Substances that are substrates for these P450 enzymes are not expected to interact with TRISENOX.

Elimination

Approximately 15% of the administered TRISENOX dose is excreted in the urine as unchanged AsIII. The methylated metabolites of AsIII (MMAV, DMAV) are primarily excreted in the urine. The plasma concentration of AsIII declines from peak plasma concentration in a biphasic manner with a mean terminal elimination half-life of 10 to 14 hours. The total clearance of AsIII over the single-dose range of 7-32 mg (administered as 0.15 mg/kg) is 49 L/h and the renal clearance is 9 L/h. Clearance is not dependent on the weight of the subject or the dose administered over the dose range studied. The mean...
estimated terminal elimination half-lives of the metabolites MMAV and DMAV are 32 hours and 70 hours, respectively.

Renal impairment
Plasma clearance of AsIII was not altered in patients with mild renal impairment (creatinine clearance of 50-80 mL/min) or moderate renal impairment (creatinine clearance of 30-49 mL/min). The plasma clearance of AsIII in patients with severe renal impairment (creatinine clearance less than 30 mL/min) was 40% lower when compared with patients with normal renal function (see section 4.4).

Systemic exposure to MMAV and DMAV tended to be larger in patients with renal impairment; the clinical consequence of this is unknown but no increased toxicity was noted.

Hepatic impairment
Pharmacokinetic data from patients with hepatocellular carcinoma having mild to moderate hepatic impairment indicate that AsIII or AsV do not accumulate following twice-weekly infusions. No clear trend toward an increase in systemic exposure to AsIII, AsV, MMAV or DMAV was observed with decreasing level of hepatic function as assessed by dose-normalized (per mg dose) AUC.

Linearity/non-linearity
In the total single dose range of 7 to 32 mg (administered as 0.15 mg/kg), systemic exposure (AUC) appears to be linear. The decline from peak plasma concentration of AsIII occurs in a biphasic manner and is characterized by an initial rapid distribution phase followed by a slower terminal elimination phase. After administration at 0.15 mg/kg on a daily (n=6) or twice-weekly (n=3) regimen, an approximate 2-fold accumulation of AsIII was observed as compared to a single infusion. This accumulation was slightly more than expected based on single-dose results.

5.3 Preclinical safety data
Limited reproductive toxicity studies of arsenic trioxide in animals indicate embryotoxicity and teratogenicity (neural tube defects, anophthalmia and microphthalmia) at administration of 1-10 times the recommended clinical dose (mg/m²). Fertility studies have not been conducted with TRISENOX. Arsenic compounds induce chromosomal aberrations and morphological transformations of mammalian cells in vitro and in vivo. No formal carcinogenicity studies of arsenic trioxide have been performed. However, arsenic trioxide and other inorganic arsenic compounds are recognised as human carcinogens.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients
Sodium hydroxide
Hydrochloric acid (as pH adjuster)
Water for injections

6.2 Incompatibilities
In the absence of incompatibility studies, this medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf life
4 years.

After dilution in intravenous solutions, TRISENOX is chemically and physically stable for 24 hours at 15°C-30°C and 48 hours at refrigerated (2°C-8°C) temperatures. From a microbiological point of view, the product must be used immediately. If not used immediately, in-use storage times and
conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2°C-8°C, unless dilution has taken place in controlled and validated aseptic conditions.

6.4 Special precautions for storage

Do not freeze.

6.5 Nature and contents of container

Type I borosilicate glass ampoule containing 10 ml of concentrate. Each pack contains 10 ampoules.

6.6 Special precautions for disposal and other handling

Preparation of TRISENOX

Aseptic technique must be strictly observed throughout handling of TRISENOX since no preservative is present.

TRISENOX must be diluted with 100 to 250 ml of glucose 50 mg/ml (5%) solution for injection or sodium chloride 9 mg/ml (0.9%) solution for injection immediately after withdrawal from the ampoule. It is for single use only, and any unused portions of each ampoule must be discarded properly. Do not save any unused portions for later administration.

TRISENOX must not be mixed with or concomitantly administered in the same intravenous line with other medicinal products.

TRISENOX must be administered intravenously over 1-2 hours. The infusion duration may be extended up to 4 hours if vasomotor reactions are observed. A central venous catheter is not required.

The diluted solution must be clear and colourless. All parenteral solutions must be inspected visually for particulate matter and discoloration prior to administration. Do not use the preparation if foreign particulate matter is present.

Procedure for proper disposal

Any unused medicinal product, any items that come into contact with the product, or waste material must be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Teva B.V.
Swensweg 5
2031 GA Haarlem
Netherlands

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/02/204/001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 05 March 2002
Date of latest renewal: 05 March 2007
10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Almac Pharma Services Limited,
Almac House,
20 Seagoe Industrial Estate,
Craigavon,
BT63 5QD,
United Kingdom

Teva Operations Poland Sp. z o.o.
ul. Mogilska 80
31-546 Kraków
Poland

Teva Pharmaceuticals Europe B.V.
Swensweg 5,
2031 GA Haarlem,
The Netherlands

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (See Annex I: Summary of Product Characteristics, section 4.2)

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

• Periodic Safety Update Reports

The requirements for submission of periodic safety update reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

• Risk Management Plan (RMP)

The MAH shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

• At the request of the European Medicines Agency;
• Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON

1. NAME OF THE MEDICINAL PRODUCT

TRISENOX 1 mg/ml concentrate for solution for infusion arsenic trioxide

2. STATEMENT OF ACTIVE SUBSTANCE(S)

One ml contains 1 mg of arsenic trioxide

3. LIST OF EXCIPIENTS

Other ingredients:
- sodium hydroxide
- hydrochloric acid
- water for injections

4. PHARMACEUTICAL FORM AND CONTENTS

Concentrate for solution for infusion
10 ampoules of 10 ml (10 mg/10 ml)

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Intravenous use, single use only
Must be diluted before use – Read the package leaflet before use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children

7. OTHER SPECIAL WARNING(S), IF NECESSARY

Cytotoxic: handle with caution

8. EXPIRY DATE

EXP
Read the leaflet for the shelf-life of the diluted product
9. **SPECIAL STORAGE CONDITIONS**

Do not freeze

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Teva B.V.
Swensweg 5
2031 GA Haarlem
Netherlands

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/02/204/001

13. **BATCH NUMBER**

Lot:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

Medicinal product subject to medical prescription

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted

17. **UNIQUE IDENTIFIER – 2D BARCODE**

2D barcode carrying the unique identifier included

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC:
SN:
NN:
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

AMPOULE

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRISENOX 1 mg/ml concentrate for solution for infusion</td>
</tr>
<tr>
<td>arsenic trioxide</td>
</tr>
<tr>
<td>Intravenous use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METHOD OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single use only, must be diluted – see leaflet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg/10 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. OTHER</th>
</tr>
</thead>
</table>
B. PACKAGE LEAFLET
Package leaflet: Information for the user

TRISENOX 1 mg/ml concentrate for solution for infusion
arsenic trioxide

Read all of this leaflet carefully before you start using this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have further questions, please ask your doctor or your pharmacist or nurse.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor or pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:

1. What TRISENOX is and what it is used for
2. What you need to know before you use TRISENOX
3. How to use TRISENOX
4. Possible side effects
5. How to store TRISENOX
6. Contents of the pack and other information

1. What TRISENOX is and what it is used for

TRISENOX is used in adult patients with newly diagnosed low-to-intermediate risk acute promyelocytic leukaemia (APL), and in adult patients, whose disease has not responded to other therapies. APL is a unique type of myeloid leukaemia, a disease in which abnormal white blood cells and abnormal bleeding and bruising occur.

2. What you need to know before you use TRISENOX

Please tell your doctor or pharmacist if you are taking or have recently taken any other medicines, including medicines obtained without a prescription.

TRISENOX must be given under the supervision of a physician experienced in the treatment of acute leukaemias.

Do not use TRISENOX
If you are allergic to arsenic trioxide or any of the other ingredients of this medicine (listed in section 6).

Warnings and precautions
You must talk to your doctor or nurse before using TRISENOX, if
- you have impaired kidney function.
- you have any liver problems.

Your doctor will take the following precautions:
- Tests will be performed to check the amount of potassium, magnesium, calcium and creatinine in your blood before your first dose of TRISENOX.
- You should have an electrical recording of the heart (electrocardiogram ECG) performed before your first dose.
- Blood tests (potassium, calcium, liver function) should be repeated during your treatment with TRISENOX.
- In addition, you will receive electrocardiograms twice weekly.
- If you are at risk for a certain type of abnormal heart rhythm (e.g. torsade de pointes or QTc prolongation), your heart will be monitored continuously.
- Your doctor may monitor your health during and after treatment, since arsenic trioxide, the active substance in TRISENOX, may cause other cancers. You should report any new and exceptional symptoms and circumstances whenever you see your doctor.

Children and adolescents
TRISENOX is not recommended in children and adolescents below 18 years of age.

Other medicines and TRISENOX
Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines, including medicines obtained without a prescription.

In particular tell your doctor
- if you are taking any of various types of medicines which could cause a change in the rhythm of your heartbeat. These include:
 - some types of antiarrhythmics (medicines used to correct irregular heart beats, e.g. quinidine, amiodarone, sotalol, dofetilide)
 - medicines to treat psychosis (loss of contact with reality, e.g. thioridazine)
 - medicines for depression (e.g. amitriptyline)
 - some types of medicines to treat bacterial infections (e.g. erythromycin and sparfloxacin)
 - some medicines to treat allergies such as hayfever, called antihistamines (e.g. terfenadine and astemizole)
 - any medicines that cause a decrease in magnesium or potassium in your blood (e.g. amphotericin B)
 - cisapride (a medicine used to relieve certain stomach problems).

The effect of these medicines on your heartbeat can be made worse by TRISENOX. You must be sure to tell your doctor about all medicines you are taking.
- if you are taking or have recently taken any medicine which may affect your liver. If you are not sure, show the bottle or pack to your doctor.

TRISENOX with food and drink
There are no restrictions on your food or drink while you are receiving TRISENOX.

Pregnancy
Ask your doctor or pharmacist for advice before taking any medicine.
TRISENOX may cause harm to the foetus when used by pregnant women.
If you are able to become pregnant, you must use effective birth control during treatment with TRISENOX.
If you are pregnant or you become pregnant during the treatment with TRISENOX, you must ask your doctor for advice.
Men should also use effective contraception during treatment with TRISENOX.

Breast-feeding
Ask your doctor or pharmacist for advice before taking any medicine.
The arsenic in TRISENOX passes into breast milk.
Because TRISENOX can harm nursing infants, do not breast-feed while on TRISENOX.

Driving and using machines
TRISENOX is expected to have no or negligible influence on your ability to drive and use machines.
If you experience discomfort or if you feel unwell after a TRISENOX injection, you should wait until the symptoms go away before driving or using machines.

TRISENOX contains sodium
Trisenox contains less than 1 mmol sodium (23 mg) per dose. This means that the medicine is essentially ‘sodium-free’.
3. **How to use TRISENOX**

Duration and frequency of treatment

Patients with newly diagnosed acute promyelocytic leukaemia

Your doctor will give you TRISENOX once every day as an infusion. In your first treatment cycle, you may be treated every day up to 60 days at most or until your doctor determines that your disease is better. If your disease responds to TRISENOX, you will be given 4 additional treatment cycles of 20 doses given 5 days per week (followed by 2 days interruption) for 4 weeks followed by 4 weeks interruption. Your doctor will decide exactly how long you must continue on therapy with TRISENOX.

Patients with acute promyelocytic leukaemia, whose disease has not responded to other therapies

Your doctor will give you TRISENOX once every day as an infusion. In your first treatment cycle, you may be treated every day up to 50 days at most or until your doctor determines that your disease is better. If your disease responds to TRISENOX, you will be given a second treatment cycle of 25 doses given 5 days per week (followed by 2 days interruption) for 5 weeks. Your doctor will decide exactly how long you must continue on therapy with TRISENOX.

Method and route of administration

TRISENOX must be diluted with a solution containing glucose or a solution containing sodium chloride.

Trisenox is normally given by a doctor or a nurse. It is given as a drip (infusion) into a vein over 1-2 hours, but the infusion may last longer if side effects like flushing and dizziness occur.

TRISENOX must not be mixed with, or infused through the same tube with other medicines.

If your doctor gives you more TRISENOX than he/she should

You may experience convulsions, muscle weakness and confusion. If this happens, treatment with TRISENOX must be stopped immediately and your doctor will treat the arsenic overdose.

If you have any further question on the use of this medicine, ask your doctor or pharmacist.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Tell your doctor or nurse straight away if you notice the following side effects, as these may be signs of a severe condition called “differentiation syndrome”, which might be fatal:

- difficulty in breathing
- coughing
- chest pain
- fever

Tell your doctor or nurse straight away if you notice one or more of the following side effects, as these may be signs of allergic reaction:

- difficulty in breathing
- fever
- sudden weight gain
- water retention
- fainting
- palpitations (strong heartbeat you can feel in your chest)
While on treatment with TRISENOX, you may experience some of the following reactions:

Very common (may affect more than 1 in 10 people):
- fatigue (weariness), pain, fever, headache
- nausea, vomiting, diarrhoea
- dizziness, muscle pain, numbness or tingling
- rash or itching, increased blood sugar, oedema (swelling due to excess fluid)
- shortness of breath, fast heart beat, abnormal ECG heart tracing
- reduced potassium or magnesium in the blood, liver function tests abnormal including presence of excess bilirubin or gamma-glutamyltransferase in the blood

Common (may affect up to 1 in 10 people):
- reduction in blood cell counts (platelets, red and/or white blood cells), increased white blood cells
- chills, increased weight
- a fever due to an infection and low levels of white blood cells, herpes zoster infection
- chest pain, bleeding in the lung, hypoxia (low oxygen level), collection of fluid around the heart or the lung, low blood pressure, abnormal heart rhythm
- fit, joint or bone pain, inflammation of the blood vessels
- increased sodium or magnesium, ketones in the blood and urine (ketoacidosis), renal function tests abnormal, kidney failure
- stomach (abdominal) ache
- redness of the skin, swollen face, blurred vision

Not known (frequency cannot be estimated from the available data):
- lung infection, infection in the blood
- inflammation of the lungs which causes chest pain and breathlessness, cardiac failure
- dehydration, confusion

Reporting of side effects
If you get any side effects, talk to your doctor or pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in **Appendix V**. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store TRISENOX**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the ampoule label and the carton.

Do not freeze.

After dilution, if not used immediately, storage times and conditions before use are the responsibility of your doctor and would normally not be longer than 24 hours at 2°C – 8°C, unless dilution has taken place in a sterile environment.

This medicine must not be used if you notice foreign particulate matter or if the solution is discoloured.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help to protect the environment.

6. **Contents of the pack and other information**

What TRISENOX contains
- The active substance is arsenic trioxide 1 mg/ml
- The other ingredients are sodium hydroxide, hydrochloric acid and water for injections

What TRISENOX looks like and contents of the pack
TRISENOX is a concentrate for solution for infusion. TRISENOX is supplied in glass ampoules as a concentrated, sterile, clear, colourless, aqueous solution that is prepared and diluted at the hospital and given as an infusion into a blood vessel. Each carton contains 10 single-use glass ampoules. Each ampoule contains 10 mg of arsenic trioxide.

Marketing Authorisation Holder
Teva B.V., Swensweg 5, 2031 GA Haarlem, Netherlands

Manufacturer
Almac Pharma Services Limited, Almac House, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, United Kingdom

Teva Operations Poland Sp. z o.o., ul. Mogilska 80, 31-546 Kraków, Poland

Teva Pharmaceuticals Europe B.V., Swensweg 5, 2031 GA Haarlem, The Netherlands

This leaflet was last revised in {MM/YYYY}
Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu
There are also links to other websites about rare diseases and treatments.

The following information is intended for medical or healthcare professionals only:

ASEPTIC TECHNIQUE MUST BE STRICTLY OBSERVED THROUGHOUT HANDLING OF TRISENOX SINCE NO PRESERVATIVE IS PRESENT.

Dilution of TRISENOX
TRISENOX must be diluted before administration.
Personnel should be trained to handle and dilute arsenic trioxide and should wear appropriate protective clothing.

Opening the ampoule: Hold the ampoule of TRISENOX with the coloured point upwards and in front of you. Shake or tap the ampoule to get any fluid in the stem into the body of the ampoule. Now press your thumb on the coloured point and break the ampoule by holding firmly the body of the ampoule with the other hand.

Dilution: Carefully insert the needle of a syringe into the ampoule and draw up all of the content. TRISENOX must then be diluted immediately with 100 to 250 ml of glucose 50 mg/ml (5%) solution for injection or sodium chloride 9 mg/ml (0.9%) solution for injection.

Unused portions of each ampoule must be discarded properly. Do not save any unused portions for later administration.

Use of TRISENOX
For single use only. TRISENOX must not be mixed with or concomitantly administered in the same intravenous line with other medicinal products.
TRISENOX must be administered intravenously over 1-2 hours. The infusion duration may be extended up to 4 hours if vasomotor reactions are observed. A central venous catheter is not required.

The diluted solution must be clear and colourless. All parenteral solutions must be inspected visually for particulate matter and discoloration prior to administration. Do not use the preparation if foreign particulate matter is present.

After dilution in intravenous solutions, TRISENOX is chemically and physically stable for 24 hours at 15-30°C and 48 hours at refrigerated (2-8°C) temperatures. From a microbiological point of view, the product must be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2-8°C, unless dilution has taken place in controlled and validated aseptic conditions.

Procedure for proper disposal

Any unused product, any items that come into contact with the product, and waste material must be disposed of in accordance with local requirements.