ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT
Torisel 30 mg concentrate and solvent for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each vial of concentrate for solution for infusion contains 30 mg temsirolimus.

After first dilution of the concentrate with 1.8 ml of solvent, the concentration of temsirolimus is 10 mg/ml (see section 4.2).

Excipient with known effect
1 vial of concentrate contains 474 mg of anhydrous ethanol
1.8 ml of the solvent provided contains 358 mg anhydrous ethanol

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM
Concentrate and solvent for solution for infusion (sterile concentrate).

The concentrate is a clear, colourless to light-yellow solution, free from visible particulates.

The solvent is a clear to slightly turbid, light-yellow to yellow solution, free from visible particulates.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Renal cell carcinoma
Torisel is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC) who have at least three of six prognostic risk factors (see section 5.1).

Mantle cell lymphoma
Torisel is indicated for the treatment of adult patients with relapsed and/or refractory mantle cell lymphoma (MCL) (see section 5.1).

4.2 Posology and method of administration
This medicinal product must be administered under the supervision of a physician experienced in the use of antineoplastic medicinal products.

Posology
Patients should be given intravenous diphenhydramine 25 mg to 50 mg (or similar antihistamine) approximately 30 minutes before the start of each dose of temsirolimus (see section 4.4).

Treatment with Torisel should continue until the patient is no longer clinically benefiting from therapy or until unacceptable toxicity occurs.
Renal cell carcinoma

The recommended dose of temsirolimus for advanced RCC is 25 mg administered by intravenous infusion over a 30- to 60-minute period once a week.

Treatment of suspected adverse reactions may require temporary interruption and/or dose reduction of temsirolimus therapy. If a suspected reaction is not manageable with dose delays, then temsirolimus may be reduced by 5 mg/week decrements.

Mantle cell lymphoma

The recommended dosing regimen of temsirolimus for MCL is 175 mg, infused over a 30-60 minute period once a week for 3 weeks followed by weekly doses of 75 mg, infused over a 30-60 minute period. The starting dose of 175 mg was associated with a significant incidence of adverse events and required dose reductions/delays in the majority of patients. The contribution of the initial 175 mg doses to the efficacy outcome is currently not known.

Treatment of suspected adverse reactions may require temporary interruption and/or dose reduction of temsirolimus therapy according to the guidelines in the following tables. If a suspected reaction is not manageable with dose delays and/or optimal medical therapy, then the dose of temsirolimus should be reduced according to the dose reduction table below.

<table>
<thead>
<tr>
<th>Dose reduction level</th>
<th>Starting dose 175 mg</th>
<th>Continuing dose 75 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>75 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>-2</td>
<td>50 mg</td>
<td>25 mg</td>
</tr>
</tbody>
</table>

*a In the MCL clinical trial, up to two dose level reductions were allowed per patient.

Temsirolimus dose modifications based on weekly ANC and platelet counts

<table>
<thead>
<tr>
<th>ANC</th>
<th>Platelets</th>
<th>Dose of temsirolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1.0 x 10⁹/l</td>
<td>≥50 x 10⁹/l</td>
<td>100% of planned dose</td>
</tr>
<tr>
<td><1.0 x 10⁹/l</td>
<td><50 x 10⁹/l</td>
<td>Holda</td>
</tr>
</tbody>
</table>

*a Upon recovery to ANC ≥1.0 x 10⁹/l (1000 cells/mm³) and platelets to ≥50 x 10⁹/l (50,000 cells/mm³), the doses should be modified to the next lower dose level according to the table above. If the patient cannot maintain ANC >1.0 x 10⁹/l and platelets >50 x 10⁹/l on the new dose reduction level, then the next lower dose should be given once the counts have recovered. Abbreviation: ANC = absolute neutrophil count.

Special populations

Elderly

No specific dose adjustment is necessary in elderly patients.

Renal impairment

No dose adjustment is recommended in patients with renal impairment. Temsirolimus should be used with caution in patients with severe renal impairment (see section 4.4).

Hepatic impairment

Temsirolimus should be used with caution in patients with hepatic impairment (see section 4.4).

No dose adjustment is recommended for patients with advanced -RCC and mild to moderate hepatic impairment. For patients with RCC and severe hepatic impairment, the recommended dose for patients who have baseline platelets ≥100 x 10⁹/l is 10 mg intravenous once a week infused over a 30-60 minute period (see section 5.2).
Paediatric population

There is no relevant use of temsirolimus in the paediatric population for the indications of RCC and MCL.

Temsirolimus should not be used in the paediatric population for the treatment of neuroblastoma, rhabdomyosarcoma or high-grade glioma, because of efficacy concerns based on the available data (see section 5.1).

Method of administration

Torisel is for intravenous use only. The diluted solution must be administered by intravenous infusion.

The vial of concentrate must first be diluted with 1.8 ml of the supplied solvent to achieve a concentration of temsirolimus of 10 mg/ml. The required amount of the temsirolimus-solvent mixture (10 mg/ml) must be withdrawn and then rapidly injected into sodium chloride 9 mg/ml (0.9%) solution for injection.

For instructions on dilution and preparation of the medicinal product before administration, see section 6.6.

4.3 Contraindications

Hypersensitivity to temsirolimus, its metabolites (including sirolimus), polysorbate 80, or to any of the excipients listed in section 6.1.

Use of temsirolimus in patients with MCL with moderate or severe hepatic impairment is not recommended (see section 4.4).

4.4 Special warnings and precautions for use

The incidence and severity of adverse events is dose-dependent. Patients receiving the starting dose of 175 mg weekly for the treatment of MCL must be followed closely to decide on dose reductions/delays.

Paediatric population

Temsirolimus is not recommended for use in paediatric patients (see sections 4.2, 4.8 and 5.1).

Elderly

Based on the results of a Phase 3 study in RCC, elderly patients (≥65 years of age) may be more likely to experience certain adverse reactions, including oedema, diarrhoea, and pneumonia. Based on the results of a Phase 3 study in MCL, elderly patients (≥65 years of age) may be more likely to experience certain adverse reactions, including pleural effusion, anxiety, depression, insomnia, dyspnoea, leukopenia, lymphopenia, myalgia, arthralgia, taste loss, dizziness, upper respiratory infection, mucositis, and rhinitis.

Renal impairment/renal failure

Temsirolimus elimination by the kidneys is negligible; studies in patients with varying renal impairment have not been conducted (see sections 4.2 and 5.2). Temsirolimus has not been studied in patients undergoing haemodialysis.

Renal failure (including fatal outcomes) has been observed in patients receiving temsirolimus for advanced RCC and/or with pre-existing renal insufficiency (see section 4.8).
Hepatic impairment

Caution should be used when treating patients with hepatic impairment.

Temsirolimus is cleared predominantly by the liver. In an open-label, dose-escalation Phase 1 study in 110 subjects with advanced malignancies and either normal or impaired hepatic function, concentrations of temsirolimus and its metabolite sirolimus were increased in patients with elevated aspartate aminotransferase (AST) or bilirubin levels. Assessment of AST and bilirubin levels is recommended before initiation of temsirolimus and periodically after. An increased rate of fatal events was observed in patients with moderate and severe hepatic impairment. The fatal events included those due to progression of disease; however a causal relationship cannot be excluded.

Based on the Phase 1 study, no dose adjustment of temsirolimus is recommended for RCC patients with baseline platelet counts $\geq 100 \times 10^9/l$ and mild to moderate hepatic impairment (total bilirubin up to 3 times upper limit of normal [ULN] with any abnormality of AST, or as defined by Child-Pugh Class A or B). For patients with RCC and severe hepatic impairment (total bilirubin >3 times ULN with any abnormality of AST, or as defined by Child-Pugh Class C), the recommended dose for patients who have baseline platelets $\geq 100 \times 10^9/l$ is 10 mg intravenous once a week infused over a 30-60 minute period (see section 4.2).

Intracerebral bleeding

Patients with central nervous system (CNS) tumours (primary CNS tumours or metastases) and/or receiving anticoagulation therapy may be at an increased risk of developing intracerebral bleeding (including fatal outcomes) while receiving therapy with temsirolimus.

Thrombocytopenia, neutropenia, and anaemia

Grades 3 and 4 thrombocytopenia and/or neutropenia have been observed in the MCL clinical trial (see section 4.8). Patients on temsirolimus who develop thrombocytopenia may be at increased risk of bleeding events, including epistaxis (see section 4.8). Patients on temsirolimus with baseline neutropenia may be at risk of developing febrile neutropenia. Cases of anaemia have been reported in RCC and MCL (see section 4.8). Monitoring of complete blood count is recommended prior to initiating temsirolimus therapy and periodically thereafter.

Infections

Patients may be immunosuppressed and should be carefully observed for the occurrence of infections, including opportunistic infections. Among patients receiving 175 mg/week for the treatment of MCL, infections (including Grade 3 and 4 infections) were substantially increased compared to lower doses and compared to conventional chemotherapy. Cases of pneumocystis jiroveci pneumonia (PCP) some with fatal outcomes, have been reported in patients who received temsirolimus, many of whom also received corticosteroids or other immunosuppressive agents. Prophylaxis of PCP should be considered for patients who require concomitant use of corticosteroids or other immunosuppressive agents based upon current standard of care.

Cataracts

Cataracts have been observed in some patients who received the combination of temsirolimus and interferon-α (IFN-α).

Hypersensitivity/infusion reactions

Hypersensitivity/infusion reactions (including some life-threatening and rare fatal reactions), including and not limited to flushing, chest pain, dyspnoea, hypotension, apnoea, loss of consciousness, hypersensitivity and anaphylaxis, have been associated with the administration of temsirolimus (see
These reactions can occur very early in the first infusion, but may also occur with subsequent infusions. Patients should be monitored early during the infusion and appropriate supportive care should be available. The temsirolimus infusion should be interrupted in all patients with severe infusion reactions and appropriate medical therapy administered. A benefit-risk assessment should be done prior to the continuation of temsirolimus therapy in patients with severe or life-threatening reactions.

If a patient develops a hypersensitivity reaction during the temsirolimus infusion despite the premedication, the infusion must be stopped and the patient observed for at least 30 to 60 minutes (depending on the severity of the reaction). At the discretion of the physician, treatment may be resumed after the administration of an H₁-receptor antagonist (diphenhydramine or similar antihistamine) and a H₂-receptor antagonist (intravenous famotidine 20 mg or intravenous ranitidine 50 mg) approximately 30 minutes before restarting the temsirolimus infusion. Administration of corticosteroids may be considered; however, the efficacy of corticosteroid treatment in this setting has not been established. The infusion may then be resumed at a slower rate (up to 60 minutes) and should be completed within six hours from the time that temsirolimus is first added to sodium chloride 9 mg/ml (0.9%) solution for injection.

Because it is recommended that an H₁ antihistamine be administered to patients before the start of the intravenous temsirolimus infusion, temsirolimus should be used with caution in patients with known hypersensitivity to the antihistamine or in patients who cannot receive the antihistamine for other medical reasons.

Hypersensitivity reactions, including anaphylactic/anaphylactoid reactions, angioedema, exfoliative dermatitis and hypersensitivity vasculitis, have been associated with the oral administration of sirolimus.

Hyperglycaemia/glucose intolerance/diabetes mellitus

Patients should be advised that treatment with temsirolimus may be associated with an increase in blood glucose levels in diabetic and non-diabetic patients. In the RCC clinical trial, a Phase 3 clinical trial for RCC, 26% of patients reported hyperglycaemia as an adverse event. In the MCL clinical trial, a Phase 3 clinical trial for MCL, 11% of patients reported hyperglycaemia as an adverse event. This may result in the need for an increase in the dose of, or initiation of, insulin and/or hypoglycaemic agent therapy. Patients should be advised to report excessive thirst or any increase in the volume or frequency of urination.

Interstitial lung disease

There have been cases of non-specific interstitial pneumonitis, including fatal reports, occurring in patients who received weekly intravenous temsirolimus. Some patients were asymptomatic or had minimal symptoms with pneumonitis detected on computed tomography scan or chest radiograph. Others presented with symptoms such as dyspnoea, cough, and fever. Some patients required discontinuation of temsirolimus or treatment with corticosteroids and/or antibiotics, while some patients continued treatment without additional intervention. It is recommended that patients undergo baseline radiographic assessment by lung computed tomography scan or chest radiograph prior to the initiation of temsirolimus therapy. Periodical follow-up assessments may be considered. It is recommended that patients be followed closely for occurrence of clinical respiratory symptoms and patients should be advised to report promptly any new or worsening respiratory symptoms. If clinically significant respiratory symptoms develop, temsirolimus administration may be withheld until after recovery of symptoms and improvement of radiographic findings related to pneumonitis. Opportunistic infections such as PCP should be considered in the differential diagnosis. Empiric treatment with corticosteroids and/or antibiotics may be considered. For patients who require use of corticosteroids, prophylaxis of PCP should be considered based upon current standard of care.
Hyperlipaemia

The use of temsirolimus was associated with increases in serum triglycerides and cholesterol. In the RCC clinical trial 1, hyperlipaemia was reported as an adverse event in 27% of patients. In the MCL clinical trial, hyperlipaemia was reported as an adverse event in 9.3% of patients. This may require initiation, or increase, in the dose of lipid-lowering agents. Serum cholesterol and triglycerides should be tested before and during treatment with temsirolimus. The known association of temsirolimus with hyperlipaemia may predispose to myocardial infarction.

Wound healing complications

The use of temsirolimus has been associated with abnormal wound healing; therefore, caution should be exercised with the use of temsirolimus in the peri-surgical period.

Malignancies

The possible development of lymphoma and other malignancies, particularly of the skin, may result from immunosuppression. As usual for patients with increased risk for skin cancer, exposure to sunlight and ultraviolet (UV) light should be limited by wearing protective clothing and using a sunscreen with a high protection factor.

Concomitant use of temsirolimus with sunitinib

The combination of temsirolimus and sunitinib resulted in dose-limiting toxicity. Dose-limiting toxicities (Grade 3/4 erythematous maculopapular rash, gout/cellulitis requiring hospitalisation) were observed in 2 out of 3 patients treated in the first cohort of a Phase 1 study at doses of temsirolimus 15 mg intravenous per week and sunitinib 25 mg oral per day (Days 1-28 followed by a 2-week rest) (see section 4.5).

Concomitant use of angiotensin-converting enzyme (ACE) inhibitors and/or calcium channel blockers

Caution should be exercised when temsirolimus is given concomitantly with ACE inhibitors (e.g. ramipril) and/or calcium channel blockers (e.g. amlodipine). An increased risk of angioneurotic oedema (including delayed reactions occurring two months following initiation of therapy) is possible in patients who receive temsirolimus concomitantly with an ACE inhibitor and/or a calcium channel blocker (see sections 4.5 and 4.8).

Agents inducing CYP3A metabolism

Agents such as carbamazepine, phenobarbital, phenytoin, rifampicin, and St. John’s wort are strong inducers of CYP3A4/5 and may decrease composite exposure of the active drug substances, temsirolimus and its metabolite, sirolimus. Therefore, for patients with RCC, continuous administration beyond 5-7 days with agents that have CYP3A4/5 induction potential should be avoided. For patients with MCL, it is recommended that coadministration of CYP3A4/5 inducers should be avoided due to the higher dose of temsirolimus (see section 4.5).

Agents inhibiting CYP3A metabolism

Agents such as protease inhibitors (nelfinavir, ritonavir), antifungals (e.g. itraconazole, ketoconazole, voriconazole), and nefazodone are strong CYP3A4 inhibitors and may increase blood concentrations of the active drug substances, temsirolimus and its metabolite, sirolimus. Therefore, concomitant treatment with agents that have strong CYP3A4 inhibition potential should be avoided. Concomitant treatment with moderate CYP3A4 inhibitors (e.g. aprepitant, erythromycin, fluconazole, verapamil, grapefruit juice) should only be administered with caution in patients receiving 25 mg and should be avoided in patients receiving temsirolimus doses higher than 25 mg (see section 4.5). Alternative
treatments with agents that do not have CYP3A4 inhibition potential should be considered (see section 4.5).

Vaccinations

Immunosuppressants may affect responses to vaccination. During treatment with temsirolimus, vaccination may be less effective. The use of live vaccines should be avoided during treatment with temsirolimus. Examples of live vaccines are: measles, mumps, rubella, oral polio, Bacillus Calmette-Guérin (BCG), yellow fever, varicella, and TY21a typhoid vaccines.

Excipients

After first dilution of the concentrate with 1.8 ml of the supplied solvent, the concentrate-solvent mixture contains 35% volume ethanol (alcohol), i.e., up to 0.693 g per 25 mg dose of temsirolimus, equivalent to 17.6 ml beer or 7.3 ml wine per dose. Patients administered the higher dose of 175 mg of temsirolimus for the initial treatment of MCL may receive up to 4.85 g of ethanol (equivalent to 123 ml beer or 51 ml wine per dose).

Harmful for those suffering from alcoholism.

To be taken into account in pregnant or breast-feeding women, children and high-risk groups, such as patients with liver disease or epilepsy. The amount of alcohol in this medicinal product may alter the effects of other medicines. The amount of alcohol in this medicinal product may impair the ability to drive or use machines (see section 4.7).

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Concomitant use of temsirolimus with sunitinib

The combination of temsirolimus and sunitinib resulted in dose-limiting toxicity. Dose-limiting toxicities (Grade 3/4 erythematous maculopapular rash, gout/cellulitis requiring hospitalisation) were observed in 2 out of 3 patients treated in the first cohort of a Phase 1 study at doses of temsirolimus 15 mg intravenous per week and sunitinib 25 mg oral per day (Days 1-28 followed by a 2-week rest) (see section 4.4).

Concomitant use of angiotensin-converting enzyme (ACE) inhibitors and/or calcium channel blockers

An increased incidence of angioneurotic oedema (including delayed reactions occurring two months following initiation of therapy) has been observed in patients who received temsirolimus or other mTOR inhibitors in combination with an ACE inhibitor (e.g. ramipril) and/or a calcium channel blocker (e.g. amlodipine) (see sections 4.4 and 4.8).

Agents inducing CYP3A metabolism

Co-administration of temsirolimus with rifampicin, a potent CYP3A4/5 inducer, had no significant effect on temsirolimus maximum concentration (C_{max}) and area under the concentration vs. time curve (AUC) after intravenous administration, but decreased sirolimus C_{max} by 65% and AUC by 56%, compared to temsirolimus treatment alone. Therefore, concomitant treatment with agents that have CYP3A4/5 induction potential should be avoided (e.g. carbamazepine, phenobarbital, phenytoin, rifampicin, and St. John’s wort) (see section 4.4).

Agents inhibiting CYP3A metabolism

Co-administration of temsirolimus 5 mg with ketoconazole, a potent CYP3A4 inhibitor, had no significant effect on temsirolimus C_{max} or AUC; however, sirolimus AUC increased 3.1-fold, and
AUC_{sum} (temsirolimus + sirolimus) increased 2.3-fold compared to temsirolimus alone. The effect on the unbound concentrations of sirolimus has not been determined, but is expected to be larger than the effect on whole-blood concentrations due to the saturable binding to red blood cells. The effect may also be more pronounced at a 25 mg dose. Therefore, substances that are potent inhibitors of CYP3A4 activity (e.g. nelfinavir, ritonavir, itraconazole, ketoconazole, voriconazole, nefazodone) increase sirolimus blood concentrations. Concomitant treatment of temsirolimus with these agents should be avoided (see section 4.4).

Concomitant treatment with moderate CYP3A4 inhibitors (e.g., diltiazem, verapamil, clarithromycin, erythromycin, aprepitant, amiodarone) should only be administered with caution in patients receiving 25 mg and should be avoided in patients receiving temsirolimus doses higher than 25 mg.

Interaction with medicinal products metabolised by CYP2D6 or CYP3A4/5

In 23 healthy subjects the concentration of desipramine, a CYP2D6 substrate, was unaffected when 25 mg of temsirolimus was co-administered. In 36 patients with MCL, including 4 poor metabolisers, the effect of CYP2D6 inhibition after administration of single doses of 175 mg and 75 mg temsirolimus was investigated. Population PK analysis based on sparse sampling indicated no clinically significant interaction effect on AUC and Cmax of the CYP2D6 substrate desipramine. No clinically significant effect is anticipated when temsirolimus is co-administered with agents that are metabolised by CYP2D6.

The effect of a 175 or 75 mg temsirolimus dose on CYP3A4/5 substrates has not been studied. However, in vitro studies in human liver microsomes followed by physiologically-based pharmacokinetic modelling indicate that the blood concentrations achieved after a 175 mg dose of temsirolimus most likely leads to relevant inhibition of CYP3A4/5 (see section 5.2). Therefore, caution is advised during concomitant administration of temsirolimus at a dose of 175 mg with medicinal products that are metabolised predominantly via CYP3A4/5 and that have a narrow therapeutic index.

Interactions with medicinal products that are P-glycoprotein substrates

In an in vitro study, temsirolimus inhibited the transport of P-glycoprotein (P-gp) substrates with an IC₅₀ value of 2 µM. In vivo, the effect of P-gp inhibition has not been investigated in a clinical drug-drug interaction study, however, recent preliminary data from a Phase 1 study of combined lenalidomide (dose of 25 mg) and temsirolimus (dose of 20 mg) seem to support the in vitro findings and suggest an increased risk of adverse events. Therefore, when temsirolimus is co-administered with medicinal products which are P-gp substrates (e.g. digoxin, vincristine, colchicine, dabigatran, lenalidomide, and paclitaxel) close monitoring for adverse events related to the co-administered medicinal products should be observed.

Amphiphilic agents

Temsirolimus has been associated with phospholipidosis in rats. Phospholipidosis has not been observed in mice or monkeys treated with temsirolimus, nor has it been documented in patients treated with temsirolimus. Although phospholipidosis has not been shown to be a risk for patients administered temsirolimus, it is possible that combined administration of temsirolimus with other amphiphilic agents such as amiodarone or statins could result in an increased risk of amphiphilic pulmonary toxicity.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/Contraception in males and females

Due to the unknown risk related to potential exposure during early pregnancy, women of childbearing potential must be advised not to become pregnant while using Torisel.
Men with partners of childbearing potential should use medically acceptable contraception while receiving Torisel (see section 5.3).

Pregnancy

There are no adequate data from the use of temsirolimus in pregnant women. Studies in animals have shown reproductive toxicity. In reproduction studies in animals, temsirolimus caused embryo/foetotoxicity that was manifested as mortality and reduced foetal weights (with associated delays in skeletal ossification) in rats and rabbits. Teratogenic effects (omphalocele) were seen in rabbits (see section 5.3).

The potential risk for humans is unknown. Torisel must not be used during pregnancy, unless the risk for the embryo is justified by the expected benefit for the mother.

Breast-feeding

It is unknown whether temsirolimus is excreted in human breast milk. The excretion of temsirolimus in milk has not been studied in animals. However, sirolimus, the main metabolite of temsirolimus, is excreted in milk of lactating rats. Because of the potential for adverse reactions in breast-fed infants from temsirolimus, breast-feeding should be discontinued during therapy.

Fertility

In male rats, decreased fertility and partly reversible reductions in sperm counts were reported (see section 5.3).

4.7 Effects on ability to drive and use machines

Temsirolimus has no or negligible influence on the ability to drive and use machines based on the evidence available.

For patients receiving the higher dose of 175 mg intravenous of temsirolimus for the treatment of MCL, the amount of ethanol in this medicinal product may impair the ability to drive or use machines (see section 4.4).

4.8 Undesirable effects

Summary of the safety profile

The most serious reactions observed with temsirolimus in clinical trials are hypersensitivity/infusion reactions (including some life-threatening and rare fatal reactions), hyperglycaemia/glucose intolerance, infections, interstitial lung disease (pneumonitis), hyperlipaemia, intracranial haemorrhage, renal failure, intestinal perforation, wound healing complication, thrombocytopenia, neutropenia (including febrile neutropenia), pulmonary embolism.

The adverse reactions (all grades) experienced by at least 20% of the patients in RCC and MCL registration studies include anaemia, nausea, rash (including rash, pruritic rash, maculopapular rash, pustular rash), decreased appetite, oedema asthenia, fatigue, thrombocytopenia, diarrhoea, pyrexia, epistaxis, mucosal inflammation, stomatitis, vomiting, hyperglycaemia, hypercholesterolemia, dysgeusia, pruritus, cough, infection, pneumonia, dyspnoea.

Cataracts have been observed in some patients who received the combination of temsirolimus and IFN-α.

Based on the results of the phase 3 studies, elderly patients may be more likely to experience certain adverse reactions, including face oedema, pneumonia, pleural effusion, anxiety, depression, insomnia,
dyspnoea, leukopenia, lymphopenia, myalgia, arthralgia, ageusia, dizziness, upper respiratory infection, mucositis, and rhinitis.

Serious adverse reactions observed in clinical trials of temsirolimus for advanced RCC, but not in clinical trials of temsirolimus for MCL include: anaphylaxis, impaired wound healing, renal failure with fatal outcomes, and pulmonary embolism.

Serious adverse reactions observed in clinical trials of temsirolimus for MCL, but not in clinical trials of temsirolimus for advanced RCC include: thrombocytopenia, and neutropenia (including febrile neutropenia).

See section 4.4 for additional information concerning serious adverse reactions, including appropriate actions to be taken if specific reactions occur.

The occurrence of undesirable effects following the dose of 175 mg temsirolimus/week for MCL, e.g. Grade 3 or 4 infections or thrombocytopenia, is associated with a higher incidence than that observed with either 75 mg temsirolimus/week or conventional chemotherapy.

Tabulated list of adverse reactions

Adverse reactions that were reported in RCC and MCL patients in the phase 3 studies are listed below (Table 1), by system organ class, frequency and grade of severity (NCI-CTCAE). Frequencies are defined as follows: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000) and not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.
Table 1: Adverse reactions from clinical trials in RCC (study 3066K1-304) and in MCL (study 3066K1-305)

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency</th>
<th>Adverse reactions</th>
<th>All grades n (%)</th>
<th>Grade 3 & 4 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Very common</td>
<td>Bacterial and viral infections (including infection, viral infection, cellulitis, herpes zoster, oral herpes, influenza, herpes simplex, herpes zoster ophthalmic, herpes virus infection, bacterial infection, bronchitis*, abscess, wound infection, post-operative wound infections)</td>
<td>91 (28.3)</td>
<td>18 (5.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumonia* (including interstitial pneumonia)</td>
<td>35 (10.9)</td>
<td>16 (5.0)</td>
</tr>
<tr>
<td>Common</td>
<td></td>
<td>Sepsis* (including septic shock)</td>
<td>5 (1.5)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Candidiasis (including oral and anal candidiasis) and fungal infection/fungal skin infections</td>
<td>16 (5.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urinary tract infection (including cystitis)</td>
<td>29 (9.0)</td>
<td>6 (1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper respiratory tract infection</td>
<td>26 (8.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharyngitis</td>
<td>6 (1.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinusitis</td>
<td>10 (3.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhinitis</td>
<td>7 (2.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folliculitis</td>
<td>4 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Uncommon</td>
<td></td>
<td>Laryngitis</td>
<td>1 (0.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Very common</td>
<td>Neutropenia</td>
<td>46 (14.3)</td>
<td>30 (9.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thrombocytopenia**</td>
<td>97 (30.2)</td>
<td>56 (17.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anaemia</td>
<td>132 (41.1)</td>
<td>48 (15)</td>
</tr>
<tr>
<td>Common</td>
<td></td>
<td>Leukopenia **</td>
<td>29 (9.0)</td>
<td>10 (3.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymphopenia</td>
<td>25 (7.8)</td>
<td>16 (5.0)</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Common</td>
<td>Hypersensitivity reactions / drug hypersensitivity</td>
<td>24 (7.5)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Very common</td>
<td>Hyperglycaemia</td>
<td>63 (19.6)</td>
<td>31 (9.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypercholesterolaemia</td>
<td>60 (18.79)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertriglyceridaemia</td>
<td>56 (17.4)</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decreased appetite</td>
<td>107 (33.3)</td>
<td>9 (2.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypokalaemia</td>
<td>44 (13.7)</td>
<td>13 (4.0)</td>
</tr>
<tr>
<td>Common</td>
<td></td>
<td>Diabetes mellitus</td>
<td>10 (3.1)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dehydration</td>
<td>17 (5.3)</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypocalcaemia</td>
<td>21 (6.5)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypophosphataemia</td>
<td>26 (8.1)</td>
<td>14 (4.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperlipidaemia</td>
<td>4 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Very Common</td>
<td>Insomnia</td>
<td>45 (14.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Depression</td>
<td>16 (5.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anxiety</td>
<td>28 (8.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>System organ class</td>
<td>Frequency</td>
<td>Adverse reactions</td>
<td>All grades n (%)</td>
<td>Grade 3 & 4 n (%)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Very common</td>
<td>Dysgeusia</td>
<td>55 (17.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Headache</td>
<td>55 (17.1)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Dizziness</td>
<td>30 (9.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paresthesia</td>
<td>21 (6.5)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Somnolence</td>
<td>8 (2.5)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ageusia</td>
<td>6 (1.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Intracranial haemorrhage</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Common</td>
<td>Conjunctivitis (including conjunctivitis, lacrimal disorder)</td>
<td>16 (6.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Eye haemorrhage</td>
<td>3 (0.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Uncommon</td>
<td>Pericardial effusion</td>
<td>3 (0.9)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Common</td>
<td>Venous thromboembolism (including deep vein thrombosis, venous thrombosis)</td>
<td>7 (2.2)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thrombophlebitis</td>
<td>4 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertension</td>
<td>20 (6.2)</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Very common</td>
<td>Dyspnoea*</td>
<td>79 (24.6)</td>
<td>27 (8.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epistaxis **</td>
<td>69 (21.5)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Cough</td>
<td>93 (29)</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interstitial lung disease*</td>
<td>16 (5.0)</td>
<td>6 (1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleural effusion**</td>
<td>19 (5.9)</td>
<td>9 (2.8)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Pulmonary embolism</td>
<td>2 (0.6)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Very common</td>
<td>Nausea</td>
<td>109 (34.0)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrhoea</td>
<td>109 (34.0)</td>
<td>16 (5.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stomatitis</td>
<td>67 (20.9)</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vomiting</td>
<td>57 (17.8)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constipation</td>
<td>56 (17.4)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abdominal pain</td>
<td>56 (17.4)</td>
<td>10 (3.1)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Gastrointestinal haemorrhage (including anal, rectal, haemorrhoidal, lip, and mouth haemorrhage, gingival bleeding)</td>
<td>16 (5.0)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastritis **</td>
<td>7 (2.1)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dysphagia</td>
<td>13 (4.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abdominal distension</td>
<td>14 (4.4)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aphthous stomatitis</td>
<td>15 (4.7)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral pain</td>
<td>9 (2.8)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gingivitis</td>
<td>6 (1.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Intestinal/duodenal perforation</td>
<td>2 (0.6)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>System organ class</td>
<td>Frequency</td>
<td>Adverse reactions</td>
<td>All grades n (%)</td>
<td>Grade 3 & 4 n (%)</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Very common</td>
<td>Rash (including rash, pruritic rash, maculo-papular rash, rash, generalised rash, macular rash, papular rash)</td>
<td>138 (43.0)</td>
<td>16 (5.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pruritus (including pruritus generalised)</td>
<td>69 (21.5)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry skin</td>
<td>32 (10.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Dermatitis</td>
<td>6 (1.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exfoliative rash</td>
<td>5 (1.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acne</td>
<td>15 (4.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nail disorder</td>
<td>26 (8.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecchymosis***</td>
<td>5 (1.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petechiae***</td>
<td>4 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Very common</td>
<td>Arthralgia</td>
<td>50 (15.6)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back pain</td>
<td>53 (16.5)</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Myalgia</td>
<td>19 (5.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Common</td>
<td>Renal failure*</td>
<td>5 (1.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Very common</td>
<td>Fatigue</td>
<td>133 (41.4)</td>
<td>31 (9.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oedema (including generalised oedema, facial oedema, peripheral oedema, scrotal oedema, genital oedema)</td>
<td>122 (38.0)</td>
<td>11 (3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asthenia*</td>
<td>67 (20.9)</td>
<td>16 (5.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mucosal inflammation</td>
<td>66 (20.6)</td>
<td>7 (2.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrexia</td>
<td>91 (28.3)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pain</td>
<td>36 (11.2)</td>
<td>7 (2.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chills</td>
<td>32 (10.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chest pain</td>
<td>32 (10.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Impaired wound healing</td>
<td>2 (0.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Investigations</td>
<td>Very common</td>
<td>Blood creatinine increased</td>
<td>35 (10.9)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Increased aspartate aminotransferase</td>
<td>27 (8.4)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Increased alanine aminotransferase</td>
<td>17 (5.3)</td>
<td>2 (0.6)</td>
</tr>
</tbody>
</table>

Adverse reactions that were reported in post-marketing experience are listed below (Table 2).

Table 2: Adverse reactions reported in post-marketing setting

<table>
<thead>
<tr>
<th>System Organ class</th>
<th>Frequency</th>
<th>Adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Rare</td>
<td>Pneumocystis jiroveci pneumonia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Not known</td>
<td>Angioneurotic oedema-type reactions</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Not known</td>
<td>Stevens-Johnson syndrome</td>
</tr>
</tbody>
</table>

a: One fatal case
b: One pleural effusion fatal event occurred in the low-dose (175/25 mg) arm of the MCL study
*Most NCI-CTC Grade 3 and above reactions observed in clinical trials of temsirolimus for MCL ** Most NCI-CTC all grades reactions observed in clinical trials of temsirolimus for MCL
*** All NCI-CTC Grade 1 and 2 reactions observed in clinical trials of temsirolimus for MCL
****Interstitial lung disease is defined by a cluster of related Preferred Terms: interstitial lung disease (n = 6), pneumonitis* (n = 7), alveolitis (n = 1), alveolitis allergic (n = 1), pulmonary fibrosis (n = 1) and eosinophilic pneumonia (n = 0).
<table>
<thead>
<tr>
<th>System Organ class</th>
<th>Frequency</th>
<th>Adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Not known</td>
<td>Rhabdomyolysis</td>
</tr>
</tbody>
</table>

Description of selected adverse reactions

Post-marketing experience

Angioneurotic oedema-type reactions have been reported in some patients who received temsirolimus and ACE-inhibitors concomitantly.

Cases of PCP, some with fatal outcomes, have been reported (see section 4.4).

Paediatric population

In a Phase 1/2 study, 71 patients (59 patients, aged from 1 to 17 years old, and 12 patients, aged 18 to 21 years) were administered temsirolimus at doses ranging from 10 mg/m² to 150 mg/m² (see section 5.1).

The adverse reactions reported by the highest percentage of patients were haematologic (anaemia, leukopenia, neutropenia, and thrombocytopenia), metabolic (hypercholesterolemia, hyperlipaemia, hyperglycaemia, increase of serum aspartate amino transferase (AST) and serum alanine aminotransferase (ALT) plasma levels), and digestive (mucositis, stomatitis, nausea, and vomiting).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

There is no specific treatment for temsirolimus overdose. While temsirolimus has been safely administered to patients with renal cancer with repeated intravenous doses as high as 220 mg/m², in MCL, two administrations of 330 mg temsirolimus/week in one patient resulted in Grade 3 rectal bleeding and Grade 2 diarrhoea.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, protein kinase inhibitors; ATC code: L01X E09

Mechanism of action

Temsirolimus is a selective inhibitor of mTOR (mammalian target of rapamycin). Temsirolimus binds to an intracellular protein (FKBP-12), and the protein/temsirolimus complex binds and inhibits the activity of mTOR that controls cell division. In vitro, at high concentrations (10-20 μM), temsirolimus can bind and inhibit mTOR in the absence of FKBP-12. Biphasic dose response of cell growth inhibition was observed. High concentrations resulted in complete cell growth inhibition in vitro, whereas inhibition mediated by FKBP-12/temsirolimus complex alone resulted in approximately 50% decrease in cell proliferation. Inhibition of mTOR activity results in a G1 growth delay at nanomolar concentrations and growth arrest at micromolar concentrations in treated tumour cells resulting from selective disruption of translation of cell cycle regulatory proteins, such as D-type cyclins, c-myc, and ornithine decarboxylase. When mTOR activity is inhibited, its ability to phosphorylate, and thereby
control the activity of protein translation factors (4E-BP1 and S6K, both downstream of mTOR in the P13 kinase/AKT pathway) that control cell division, is blocked.

In addition to regulating cell cycle proteins, mTOR can regulate translation of the hypoxia-inducible factors, HIF-1 and HIF-2 alpha. These transcription factors regulate the ability of tumours to adapt to hypoxic microenvironments and to produce the angiogenic factor vascular endothelial growth factor (VEGF). The anti-tumour effect of temsirolimus, therefore, may also in part stem from its ability to depress levels of HIF and VEGF in the tumour or tumour microenvironment, thereby impairing vessel development.

Clinical efficacy and safety

Renal cell carcinoma

The safety and efficacy of temsirolimus in the treatment of advanced RCC were studied in the following two randomised clinical trials:

RCC clinical trial 1

RCC clinical trial 1 was a Phase 3, multi-centre, 3-arm, randomised, open-label study in previously untreated patients with advanced RCC and with 3 or more of 6 pre-selected prognostic risk factors (less than 1 year from time of initial RCC diagnosis to randomisation, Karnofsky performance status of 60 or 70, haemoglobin less than the lower limit of normal, corrected calcium of greater than 10 mg/dl, lactate dehydrogenase>1.5 times the upper limit of normal, more than 1 metastatic organ site). The primary study endpoint was overall survival (OS). Secondary endpoints included progression-free survival (PFS), objective response rate (ORR), clinical benefit rate, time to treatment failure (TTF), and quality adjusted survival measurement. Patients were stratified for prior nephrectomy status within 3 geographic regions and were randomly assigned (1:1:1) to receive IFN-α alone (n = 207), temsirolimus alone (25 mg weekly; n = 209), or the combination of IFN-α and temsirolimus (n = 210).

In RCC clinical trial 1, temsirolimus 25 mg was associated with a statistically significant advantage over IFN-α in the primary endpoint of OS at the 2nd pre-specified interim analysis (n = 446 events, p = 0.0078). The temsirolimus arm showed a 49% increase in median OS compared with the IFN-α arm. Temsirolimus also was associated with statistically significant advantages over IFN-α in the secondary endpoints of PFS, TTF, and clinical benefit rate.

The combination of temsirolimus 15 mg and IFN-α did not result in a significant increase in overall survival when compared to IFN-α alone at either the interim analysis (median 8.4 vs. 7.3 months, hazard ratio = 0.96, p = 0.6965) or final analysis (median 8.4 vs. 7.3 months, hazard ratio = 0.93, p = 0.4902). Treatment with the combination of temsirolimus and IFN-α resulted in a statistically significant increase in the incidence of certain Grade 3-4 adverse events (weight loss, anaemia, neutropenia, thrombocytopenia and mucosal inflammation) when compared to the adverse events observed in the IFN-α or temsirolimus-alone arms.
Summary of efficacy results in temsirolimus RCC clinical trial 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>temsirolimus n = 209</th>
<th>IFN-α n = 207</th>
<th>P-value<sup>a</sup></th>
<th>Hazard ratio (95% CI)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-specified interim analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median overall survival, Months (95% CI)</td>
<td>10.9 (8.6, 12.7)</td>
<td>7.3 (6.1, 8.8)</td>
<td>0.0078</td>
<td>0.73 (0.58, 0.92)</td>
</tr>
<tr>
<td>Final analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median overall survival, Months (95% CI)</td>
<td>10.9 (8.6, 12.7)</td>
<td>7.3 (6.1, 8.8)</td>
<td>0.0252</td>
<td>0.78 (0.63, 0.97)</td>
</tr>
<tr>
<td>Median progression-free survival by independent assessment Months (95% CI)</td>
<td>5.6 (3.9, 7.2)</td>
<td>3.2 (2.2, 4.0)</td>
<td>0.0042</td>
<td>0.74 (0.60, 0.91)</td>
</tr>
<tr>
<td>Median progression-free survival by investigator assessment Months (95% CI)</td>
<td>3.8 (3.6, 5.2)</td>
<td>1.9 (1.9, 2.2)</td>
<td>0.0028</td>
<td>0.74 (0.60, 0.90)</td>
</tr>
<tr>
<td>Overall response rate by independent assessment % (95% CI)</td>
<td>9.1 (5.2, 13.0)</td>
<td>5.3 (2.3, 8.4)</td>
<td>0.1361<sup>c</sup></td>
<td>NA</td>
</tr>
</tbody>
</table>

CI = confidence interval; NA = not applicable.
^a Based on log-rank test stratified by prior nephrectomy and region.
^b Based on Cox proportional hazard model stratified by prior nephrectomy and region (95% CI are descriptive only).
^c Based on Cochran-Mantel-Hansel test stratified by prior nephrectomy and region.

In RCC clinical trial 1, 31% of patients treated with temsirolimus were 65 or older. In patients younger than 65, median overall survival was 12 months (95% CI 9.9, 14.2) with a hazard ratio of 0.67 (95% CI 0.52, 0.87) compared with those treated with IFN-α. In patients 65 or older, median overall survival was 8.6 months (95% CI 6.4, 11.5) with a hazard ratio of 1.15 (95% CI 0.78, 1.68) compared with those treated with IFN-α.

RCC clinical trial 2

RCC clinical trial 2 was a randomised, double-blind, multi-centre, outpatient trial to evaluate the efficacy, safety, and pharmacokinetics of three dose levels of temsirolimus when administered to previously treated patients with advanced RCC. The primary efficacy endpoint was ORR, and OS was also evaluated. One hundred eleven (111) patients were randomly assigned in a 1:1:1 ratio to receive 25 mg, 75 mg, or 250 mg intravenous temsirolimus weekly. In the 25 mg arm (n = 36), all patients had metastatic disease; 4 (11%) had no prior chemo- or immunotherapy; 17 (47%) had one prior treatment, and 15 (42%) had 2 or more prior treatments for RCC. Twenty-seven (27, 75%) had undergone a nephrectomy. Twenty-four (24, 67%) were Eastern Cooperative Oncology Group (ECOG) performance status (PS) = 1, and 12 (33%) were ECOG PS = 0.

For patients treated weekly with 25 mg temsirolimus OS was 13.8 months (95% CI: 9.0, 18.7 months); ORR was 5.6% (95% CI: 0.7, 18.7%).

Mantle cell lymphoma

The safety and efficacy of intravenous temsirolimus for the treatment of relapsed and/or refractory MCL were studied in the following Phase 3 clinical study.
MCL clinical trial

MCL clinical trial is a controlled, randomised, open-label, multicentre, outpatient study comparing 2 different dosing regimens of temsirolimus with an investigator's choice of therapy in patients with relapsed and/or refractory MCL. Subjects with MCL (that was confirmed by histology, immunophenotype, and cyclin D1 analysis) who had received 2 to 7 prior therapies that included anthracyclines and alkylating agents, and rituximab (and could include haematopoietic stem cell transplant) and whose disease was relapsed and/or refractory were eligible for the study. Subjects were randomly assigned in a 1:1:1 ratio to receive intravenous temsirolimus 175 mg (3 successive weekly doses) followed by 75 mg weekly (n = 54), intravenous temsirolimus 175 mg (3 successive weekly doses) followed by 25 mg weekly (n = 54), or the investigator’s choice of single-agent treatment (as specified in the protocol; n = 54). Investigator's choice therapies included: gemcitabine (intravenous: 22 [41.5%]), fludarabine (intravenous: 12 [22.6%] or oral: 2 [3.8%]), chlorambucil (oral: 3 [5.7%]), cladribine (intravenous: 3 [5.7%]), etoposide (intravenous: 3 [5.7%]), cyclophosphamide (oral: 2 [3.8%]), thalidomide (oral: 2 [3.8%]), vinblastine (intravenous: 2 [3.8%]), alemtuzumab (intravenous: 1 [1.9%]), and lenalidomide (oral: 1 [1.9%]). The primary endpoint of the study was PFS, as assessed by an independent radiologist and oncology review. Secondary efficacy endpoints included OS and ORR.

The results for the MCL clinical trial are summarised in the following table. Temsirolimus 175/75 (temsirolimus 175 mg weekly for 3 weeks followed by 75 mg weekly) led to an improvement in PFS compared with investigator's choice in patients with relapsed and/or refractory MCL that was statistically significant (hazard ratio = 0.44; p-value = 0.0009). Median PFS of the temsirolimus 175/75 mg group (4.8 months) was prolonged by 2.9 months compared to the investigator's choice group (1.9 months). OS was similar.

Temsirolimus also was associated with statistically significant advantages over investigator’s choice in the secondary endpoint of ORR. The evaluations of PFS and ORR were based on blinded independent radiologic assessment of tumour response using the International Workshop Criteria.

Summary of efficacy results in temsirolimus MCL clinical trial

<table>
<thead>
<tr>
<th>Parameter</th>
<th>temsirolimus 175/75 mg n = 54</th>
<th>Investigator's choice (inv choice) n = 54</th>
<th>P-value</th>
<th>Hazard ratio (97.5% CI)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median progression-free survivalᵃ</td>
<td>4.8 (3.1, 8.1)</td>
<td>1.9 (1.6, 2.5)</td>
<td>0.0009celand</td>
<td>0.44 (0.25, 0.78)</td>
</tr>
<tr>
<td>Objective response rateᵇ</td>
<td>22.2 (11.1, 33.3)</td>
<td>1.9 (0.0, 5.4)</td>
<td>0.0019ández</td>
<td>NA</td>
</tr>
<tr>
<td>Overall survival</td>
<td>12.8 (8.6, 22.3)</td>
<td>10.3 (5.8, 15.8)</td>
<td>0.2970ᵉ</td>
<td>0.78 (0.49, 1.24)</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>0.47 (0.31, 0.61)</td>
<td>0.46 (0.30, 0.60)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ᵃ Compared with inv choice based on Cox proportional hazard model.
ᵇ Disease assessment is based on radiographic review by independent radiologists and review of clinical data by independent oncologists.
ᶜ Compared with inv choice based on log-rank test.
ᵈ Compared with inv choice alone based on Fisher's exact test.

Abbreviations: CI = confidence interval; NA = not applicable.
The temsirolimus 175 mg (3 successive weekly doses) followed by 25 mg weekly treatment arm did not result in a significant increase in PFS when compared with investigator’s choice (median 3.4 vs. 1.9 months, hazard ratio = 0.65, CI = 0.39, 1.10, p = 0.0618).

In the MCL clinical trial, there was no difference in efficacy in patients with respect to age, sex, race, geographic region, or baseline disease characteristics.

Paediatric population

In a Phase 1/2 safety and exploratory efficacy study, 71 patients (59 patients, aged from 1 to 17 years, and 12 patients, aged from 18 to 21 years) received temsirolimus as a 60-minute intravenous infusion once weekly in three-week cycles. In Part 1, 14 patients aged from 1 to 17 years with advanced recurrent/refractory solid tumours received temsirolimus at doses ranging from 10 mg/m² to 150 mg/m². In Part 2, 45 patients aged from 1 to 17 years with recurrent/relapsed rhabdomyosarcoma, neuroblastoma, or high grade glioma were administered temsirolimus at a weekly dose of 75 mg/m². Adverse events were generally similar to those observed in adults (see section 4.8).

Temsirolimus was found to be ineffective in paediatric patients with neuroblastoma, rhabdomyosarcoma, and high-grade glioma (n = 52). For subjects with neuroblastoma, the objective response rate was 5.3% (95% CI: 0.1%, 26.0%). After 12 weeks of treatment, no response was observed in subjects with rhabdomyosarcoma or high-grade glioma. None of the 3 cohorts met the criterion for advancing to the second stage of the Simon 2-stage design.

The European Medicines Agency has waived the obligation to submit the results of studies with Torisel in all subsets of the paediatric population in MCL (see section 4.2 on paediatric use).

5.2 Pharmacokinetic properties

Absorption

Following administration of a single 25 mg intravenous dose of temsirolimus in patients with cancer, mean C_{max} in whole blood was 585 ng/ml (coefficient of variation [CV] = 14%), and mean AUC in blood was 1627 ng•h/ml (CV = 26%). For patients receiving 175 mg weekly for 3 weeks followed by 75 mg weekly, estimated C_{max} in whole blood at end of infusion was 2457 ng/ml during Week 1, and 2574 ng/ml during Week 3.

Distribution

Temsirolimus exhibits a polyexponential decline in whole blood concentrations, and distribution is attributable to preferential binding to FKBP-12 in blood cells. The mean ±standard deviation (SD) dissociation constant (K_d) of binding was 5.1 ± 3.0 ng/ml, denoting the concentration at which 50% of binding sites in blood cells were occupied. Temsirolimus distribution is dose-dependent with mean (10th, 90th percentiles) maximal specific binding in blood cells of 1.4 mg (0.47 to 2.5 mg). Following a single 25 mg temsirolimus intravenous dose, mean steady-state volume of distribution in whole blood of patients with cancer was 172 liters.

Biotransformation

Sirolimus, an equally potent metabolite to temsirolimus, was observed as the principal metabolite in humans following intravenous treatment. During *in vitro* temsirolimus metabolism studies, sirolimus, seco-temsirolimus and seco-sirolimus were observed; additional metabolic pathways were hydroxylation, reduction and demethylation. Following a single 25 mg intravenous dose in patients with cancer, sirolimus AUC was 2.7-fold that of temsirolimus AUC, due principally to the longer half-life of sirolimus.
Following a single 25 mg intravenous dose of temsirolimus, temsirolimus mean ± SD systemic clearance from whole blood was 11.4 ± 2.4 l/h. Mean half-lives of temsirolimus and sirolimus were 17.7 hours and 73.3 hours, respectively. Following administration of 14C temsirolimus, excretion was predominantly via the faeces (78%), with renal elimination of active substance and metabolites accounting for 4.6% of the administered dose. Sulfate or glucuronide conjugates were not detected in the human faecal samples, suggesting that sulfation and glucuronidation do not appear to be major pathways involved in the excretion of temsirolimus. Therefore, inhibitors of these metabolic pathways are not expected to affect the elimination of temsirolimus.

Model-predicted values for clearance from plasma, after applying a 175 mg dose for 3 weeks, and subsequently 75 mg for 3 weeks, indicate temsirolimus and sirolimus metabolite trough concentrations of approximately 1.2 ng/ml and 10.7 ng/ml, respectively.

Temsirolimus and sirolimus were demonstrated to be substrates for P-gp in vitro.

Pharmacokinetic/pharmacodynamic relationship(s)

Inhibition of CYP isoforms

In in vitro studies in human liver microsomes, temsirolimus inhibited CYP3A4/5, CYP2D6, CYP2C9 and CYP2C8 catalytic activity with Ki values of 3.1, 1.5, 14 and 27 μM, respectively.

IC$_{50}$ values for inhibition of CYP2B6 and CYP2E1 by temsirolimus were 48 and 100 μM, respectively. Based on a whole blood mean C_{max} concentration of 2.6 μM for temsirolimus in MCL patients receiving the 175 mg dose there is a potential for interactions with concomitantly administered medicinal products that are substrates of CYP3A4/5 in patients treated with the 175 mg dose of temsirolimus (see section 4.5). Physiologically-based pharmacokinetic modelling has shown that after four weeks treatment with temsirolimus, the AUC of midazolam can be increased 3-to-4 fold and C_{max} around 1.5-fold when midazolam is taken within a few hours after the start of the temsirolimus infusion. However, it is unlikely that whole blood concentrations of temsirolimus after intravenous administration of temsirolimus will inhibit the metabolic clearance of concomitant medicinal products that are substrates of CYP2C9, CYP2C8, CYP2B6 or CYP2E1.

Special populations

Hepatic impairment

Temsirolimus should be used with caution when treating patients with hepatic impairment.

Temsirolimus is cleared predominantly by the liver.

Temsirolimus and sirolimus pharmacokinetics have been investigated in an open-label, dose-escalation study in 110 patients with advanced malignancies and either normal or impaired hepatic function. For 7 patients with severe hepatic impairment (ODWG, group D) receiving the 10 mg dose of temsirolimus, the mean AUC of temsirolimus was ~1.7-fold higher compared to 7 patients with mild hepatic impairment (ODWG, group B). For patients with severe hepatic impairment, a reduction of the temsirolimus dose to 10 mg is recommended to provide temsirolimus plus sirolimus exposures in blood (mean AUC$_{\text{sum}}$ approximately 6510 ng·h/ml; n=7), which approximate to those following the 25 mg dose (mean AUC$_{\text{sum}}$ approximately 6580 ng·h/ml; n=6) in patients with normal liver function (see sections 4.2 and 4.4).

The AUC$_{\text{sum}}$ of temsirolimus and sirolimus on day 8 in patients with mild and moderate hepatic impairment receiving 25 mg temsirolimus was similar to that observed in patients without hepatic impairment receiving 75 mg (mean AUC$_{\text{sum}}$ mild: approximately 9770 ng*h/ml, n=13; moderate: approximately 12380 ng*h/ml, n=6; normal approximately 10580 ng*h/ml, n=4).
Gender, weight, race, age
Temsirolimus and sirolimus pharmacokinetics are not significantly affected by gender. No relevant differences in exposure were apparent when data from the Caucasian population was compared with either the Japanese or Black population.

In population pharmacokinetic-based data analysis, increased body weight (between 38.6 and 158.9 kg) was associated with a two-fold range of trough concentration of sirolimus in whole blood.

Pharmacokinetic data on temsirolimus and sirolimus are available in patients up to age 79 years. Age does not appear to affect temsirolimus and sirolimus pharmacokinetics significantly.

Paediatric population
In the paediatric population, clearance of temsirolimus was lower and exposure (AUC) was higher than in adults. In contrast, exposure to sirolimus was commensurately reduced in paediatric patients, such that the net exposure as measured by the sum of temsirolimus and sirolimus AUCs (AUC\text{sum}) was comparable to that for adults.

5.3 Preclinical safety data
Adverse reactions not observed in clinical studies, but seen in animals at exposure levels similar to or even lower than clinical exposure levels and with possible relevance to clinical use, were as follows: pancreatic islet cell vacuolation (rat), testicular tubular degeneration (mouse, rat and monkey), lymphoid atrophy (mouse, rat and monkey), mixed cell inflammation of the colon/caecum (monkey), and pulmonary phospholipidosis (rat).

Diarrhoea with mixed cell inflammation of the caecum or colon was observed in monkeys and was associated with an inflammatory response, and may have been due to a disruption of the normal intestinal flora.

General inflammatory responses, as indicated by increased fibrinogen and neutrophils, and/or changes in serum protein, were observed in mice, rats, and monkeys, although in some cases these clinical pathology changes were attributed to skin or intestinal inflammation as noted above. For some animals, there were no specific clinical observations or histological changes that suggested inflammation.

Temsirolimus was not genotoxic in a battery of in vitro (bacterial reverse mutation in *Salmonella typhimurium* and *Escherichia coli*, forward mutation in mouse lymphoma cells, and chromosome aberrations in Chinese hamster ovary cells) and in vivo (mouse micronucleus) assays.

Carcinogenicity studies have not been conducted with temsirolimus; however, sirolimus, the major metabolite of temsirolimus in humans, was carcinogenic in mice and rats. The following effects were reported in mice and/or rats in the carcinogenicity studies conducted: granulocytic leukaemia, lymphoma, hepatocellular adenoma and carcinoma, and testicular adenoma.

Reductions in testicular weights and/or histological lesions (e.g., tubular atrophy and tubular giant cells) were observed in mice, rats, and monkeys. In rats, these changes were accompanied by a decreased weight of accessory sex organs (epididymides, prostate, seminal vesicles). In reproduction toxicity studies in animals, decreased fertility and partly reversible reductions in sperm counts were reported in male rats. Exposures in animals were lower than those seen in humans receiving clinically relevant doses of temsirolimus.
6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Concentrate
Anhydrous ethanol
d-all-α-Tocopherol (E 307)
Propylene glycol
Citric acid (E 330)

Solvent
Polysorbate 80 (E 433)
Macrogol 400
Anhydrous ethanol

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products, except those mentioned in section 6.6.

Torisel 30 mg concentrate must not be added directly to aqueous infusion solutions. Direct addition of Torisel 30 mg concentrate to aqueous solutions will result in precipitation of medicinal product.

Always dilute Torisel 30 mg concentrate with 1.8 ml of the supplied solvent before adding to the infusion solution. The concentrate-solvent mixture may only be administered in sodium chloride 9 mg/ml (0.9%) solution for injection.

Torisel, when diluted, contains polysorbate 80, which is known to increase the rate of di-(2-ethylhexyl) phthalate extraction (DEHP) from polyvinyl chloride (PVC). This incompatibility has to be considered during the preparation and administration of Torisel. It is important that the recommendations in sections 4.2 and 6.6 be followed closely.

PVC bags and medical devices must not be used for the administration of preparations containing polysorbate 80, because polysorbate 80 leaches DEHP from PVC.

6.3 Shelf life

Unopened vial
3 years.

After first dilution of Torisel 30 mg concentrate with 1.8 ml of the supplied solvent
24 hours when stored below 25°C and protected from light.

After further dilution of the concentrate-solvent mixture with sodium chloride 9 mg/ml (0.9%) solution for injection
6 hours when stored below 25°C and protected from light.

6.4 Special precautions for storage

Store in a refrigerator (2°C - 8°C)

Do not freeze.

Keep the vials in the outer carton in order to protect from light.

For storage conditions after dilution of the medicinal product, see section 6.3.
6.5 Nature and contents of container

Concentrate
Clear glass vial (type 1), with butyl rubber stopper and a plastic flip-top closure sealed with aluminum containing 1.2 ml of concentrate

Solvent
Clear glass vial (type 1), with butyl rubber stopper and a plastic flip-top closure sealed with aluminum containing 2.2 ml of solvent

Pack size: 1 vial of concentrate and 1 vial of solvent

6.6 Special precautions for disposal and other handling

During handling and preparation of admixtures, Torisel should be protected from excessive room light and sunlight.

Torisel, when diluted, contains polysorbate 80 and therefore appropriate administration materials must be used (see sections 6.1 and 6.2).

Bags/containers that come in contact with Torisel must be made of glass, polyolefin, or polyethylene.

Torisel concentrate and solvent should be inspected visually for particulate matter and discolouration prior to administration.

Do not use if particulates are present, or if discoloured. Use a new vial.

Dilution

The concentrate for solution for infusion must be diluted with the supplied solvent before administration in sodium chloride 9 mg/ml (0.9%) solution for injection.

Note: For MCL, multiple vials will be required for each dose over 25 mg. Each vial of Torisel must be diluted according to the instructions below. The required amount of concentrate–solvent mixture from each vial must be combined in one syringe for rapid injection into 250 ml of sodium chloride 9 mg/ml (0.9%) solution for injection (see section 4.2).

The concentrate-solvent mixture should be inspected visually for particulate matter and discolouration.

Do not use if particulates are present, or if discoloured.

In preparing the solution, the following two-step process must be carried out in an aseptic manner according to local standards for handling cytotoxic/cytostatic medicinal products:

STEP 1: DILUTION OF THE CONCENTRATE FOR SOLUTION FOR INFUSION WITH THE SUPPLIED SOLVENT

- Withdraw 1.8 ml of the supplied solvent.
- Inject the 1.8 ml of solvent into the vial of Torisel 30 mg concentrate.
- Mix the solvent and the concentrate well by inversion of the vial. Sufficient time should be allowed for air bubbles to subside. The solution should be a clear to slightly turbid, colourless to light-yellow to yellow solution, essentially free from visual particulates.

One vial of Torisel concentrate contains 30 mg of temsirolimus: when the 1.2 ml concentrate is combined with 1.8 ml of the supplied solvent, a total volume of 3.0 ml is obtained, and the
concentration of temsirolimus will be 10 mg/ml. The concentrate-solvent mixture is stable below 25°C for up to 24 hours.

STEP 2: ADMINISTRATION OF CONCENTRATE FOR SOLUTION FOR INFUSION-SOLVENT MIXTURE IN SODIUM CHLORIDE 9MG/ML (0.9%) SOLUTION FOR INJECTION

- Withdraw the required amount of concentrate-solvent mixture (containing temsirolimus 10 mg/ml) from the vial; i.e., 2.5 ml for a temsirolimus dose of 25 mg.
- Inject the withdrawn volume rapidly into 250 ml of sodium chloride 9 mg/ml (0.9%) solution for injection to ensure adequate mixing.

The admixture should be mixed by inversion of the bag or bottle, avoiding excessive shaking, as this may cause foaming.

The final diluted solution in the bag or bottle should be inspected visually for particulate matter and discolouration prior to administration. The admixture of Torisel in sodium chloride 9 mg/ml (0.9%) solution for injection should be protected from excessive room light and sunlight.

Administration

- Administration of the final diluted solution should be completed within six hours from the time that Torisel is first added to sodium chloride 9 mg/ml (0.9%) solution for injection.
- Torisel is infused over a 30- to 60-minute period once a week. The use of an infusion pump is the preferred method of administration to ensure accurate delivery of the medicinal product.
- Appropriate administration materials must be used to avoid excessive loss of medicinal product and to decrease the rate of DEHP extraction. The administration materials must consist of non-DEHP, non-PVC tubing with appropriate filter. An in-line polyethersulfone filter with a pore size of not greater than 5 microns is recommended for administration to avoid the possibility of particles bigger than 5 microns being infused. If the administration set available does not have an in-line filter incorporated, a filter should be added at the end of the set (i.e., an end-filter) before the admixture reaches the vein of the patient. Different end-filters can be used ranging in filter pore size from 0.2 microns up to 5 microns. The use of both an in-line and end-filter is not recommended (see sections 6.1 and 6.2).
- Torisel, when diluted, contains polysorbate 80, and therefore appropriate administration materials must be used (see sections 6.1 and 6.2). It is important that the recommendations in section 4.2 be followed closely.

Disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Pfizer Limited
Ramsgate Road
Sandwich
Kent CT13 9NJ
United Kingdom
8. MARKETING AUTHORISATION NUMBER(S)

EU/1/07/424/001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 19 November 2007
Date of the latest renewal: 20 September 2012

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency: http://www.ema.europa.eu
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Wyeth Lederle S.r.l.
Via Franco Gorgone
Zona Industriale
95100 Catania
Italy

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (See Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic Safety Update Reports

The requirements for submission of periodic safety update reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk Management Plan (RMP)

The MAH shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2. of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON

1. NAME OF THE MEDICINAL PRODUCT
Torisel 30 mg concentrate and solvent for solution for infusion temsirolimus

2. STATEMENT OF ACTIVE SUBSTANCE(S)
Each vial of 1.2 ml of concentrate for solution for infusion contains 30 mg temsirolimus.

After first dilution of the concentrate with 1.8 ml of the supplied solvent, the concentration of temsirolimus is 10 mg/ml.

3. LIST OF EXCIPIENTS
The concentrate also contains: anhydrous ethanol, all-
rac-α-tocopherol (E 307), propylene glycol and citric acid (E 330).

The solvent contains: polysorbate 80 (E 433), macrogol 400 and anhydrous ethanol.

See the package leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS
Concentrate and solvent for solution for infusion

One vial of 1.2 ml concentrate.

One vial of 2.2 ml solvent.

5. METHOD AND ROUTE(S) OF ADMINISTRATION
To be diluted before use.

Administration in infusion.

Read the package leaflet before use and for dilution instructions.

For intravenous use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN
Keep out of the sight and reach of children.
7. OTHER SPECIAL WARNING(S), IF NECESSARY

Cytotoxic: handle with caution.

8. EXPIRY DATE

EXP

Read the leaflet for the shelf life of the diluted product.

9. SPECIAL STORAGE CONDITIONS

Store in a refrigerator.

Do not freeze.

Keep the vials in the outer carton in order to protect from light.

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Pfizer Limited
Ramsgate Road
Sandwich
Kent CT13 9NJ
United Kingdom

12. MARKETING AUTHORITY NUMBER(S)

EU/1/07/424/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY
15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted.

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC:
SN:
NN:
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

CONCENTRATE VIAL

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

Torisel 30 mg sterile concentrate
temsirelimus
Intravenous use

2. METHOD OF ADMINISTRATION

Dilute before use

3. EXPIRY DATE

EXP

4. BATCH NUMBER

Lot

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

1.2 ml

6. OTHER

Cytotoxic
Store in a refrigerator
Do not freeze.
Keep the vial in the outer carton.
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

SOLVENT VIAL

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent for Torisel</td>
</tr>
<tr>
<td>IV use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METHOD OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>See package leaflet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains: polysorbate 80 (E 433), macrogol 400, anhydrous ethanol.</td>
</tr>
</tbody>
</table>
B. PACKAGE LEAFLET
Package leaflet: Information for the patient
Torisel 30 mg concentrate and solvent for solution for infusion
temsurolimus

Read all of this leaflet carefully before you are given this medicine because it contains important
information for you
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- If you get any side effects talk to your doctor, pharmacist or nurse. This includes any
 possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What Torisel is and what it is used for
2. What you need to know before you receive Torisel
3. How Torisel is given
4. Possible side effects
5. How to store Torisel
6. Contents of the pack and other information

1. What Torisel is and what it is used for

Torisel contains the active substance temsirolimus.

Temsirolimus is a selective inhibitor of the enzyme mTOR (mammalian target of rapamycin) that
blocks tumour cell growth and division.

Torisel is used to treat the following types of cancer in adults:
- Advanced cancer of the kidney (renal cancer).
- Previously treated mantle cell lymphoma, a type of cancer affecting the lymph nodes.

2. What you need to know before you receive Torisel

Do not use Torisel:
- if you are allergic to temsirolimus, to polysorbate 80 or to any of the other ingredients listed in
 section 6.
- if you are allergic to sirolimus (used to prevent the body from rejecting transplanted kidneys)
 since sirolimus is released from temsirolimus in the body.
- if you have mantle cell lymphoma and liver problems.

Warnings and precautions

Talk to your doctor, pharmacist or nurse before receiving Torisel:
- if you are allergic to antihistamines or cannot use antihistamines for other medical reasons.
 Antihistamines are given to help prevent an allergic reaction to Torisel, including some life-
 threatening and rare fatal allergic reactions. Discuss alternatives with your doctor.
- if you have or have had tumours in your brain or spinal cord, bleeding problems or
 bruising, or if you are taking medicines which prevent your blood from clotting (such as
 warfarin and acenocoumarol). Torisel may lead to a higher risk of bleeding into your brain.
Tell your doctor if you are taking blood thinning medicines or have any bleeding or bruising while you are on Torisel.

- **if you have shortness of breath, cough, and/or fever.** Torisel may weaken your immune system. You may be at risk of getting an infection of the blood, skin, upper respiratory tract (including pneumonia), and/or urinary tract while you are taking Torisel. Tell your doctor if you experience new or worsening symptoms, or if you are taking or have recently taken medicines that weaken your immune system.

- **if you have or have had inflammation of the lungs.** Torisel may cause non-specific interstitial pneumonitis. Some patients did not have symptoms or had minimal symptoms. For this reason, your doctor may recommend a lung assessment by computed tomography scan or chest x-ray before and during your Torisel treatment. Promptly tell your doctor of any new or worsening respiratory symptoms such as shortness of breath or difficulty breathing.

- **if you drink alcohol or are an alcoholic.** Torisel contains alcohol and can be harmful to those who drink alcohol or to those suffering from alcoholism. Tell your doctor if you have a drinking problem or consume alcohol (see section “Torisel contains ethanol [alcohol]”).

- **if you have or have had kidney problems.** Your doctor will monitor your kidney function.

- **if you have or have had liver problems.** Tell your doctor if you develop any of the following signs and symptoms of liver problems during Torisel treatment: itching, yellow eyes or skin, dark urine, and pain or discomfort in the right upper stomach area. Your doctor will do blood tests to check your liver function and then may decide to lower the dose of Torisel.

- **if you have or have had high cholesterol levels.** Torisel may elevate triglycerides and/or cholesterol, and this may require treatment with lipid-lowering agents (medicines used to reduce cholesterol in the blood).

- **if you are going to have surgery or if you had an operation recently.** Torisel may increase the risk of problems with wound healing. You will usually be taken off Torisel if you are having an operation. Your doctor will decide when to start Torisel again.

- **if you are planning to have a vaccination during treatment with Torisel.** A vaccination may be less effective or the use of certain vaccinations should be avoided during treatment with Torisel.

- **if you are over 65 years of age.** You may be more likely to have certain side effects, including swelling of your face, diarrhoea, pneumonia, anxiety, depression, shortness of breath, decreased number of white cells in the blood, increased frequency and quantity of urination, and infections in the mouth and/or the digestive tract, runny nose, dizziness and infections.

- **Torisel may increase blood glucose levels and worsen diabetes mellitus.** This may result in the need for insulin and/or oral antidiabetic agent therapy. Tell your doctor if you experience any excessive thirst or increased frequency and quantity of urination.

- **Torisel can decrease the number of blood cells that help in clotting and resisting infection.** This may increase the risk of bleeding/bruising and infection (see section “Possible side effects”).

- **if you have or have had eye problems like cataracts.** Your doctor may prescribe a visual examination before or during Torisel treatment.

- **if you are receiving Torisel, you may be at increased risk of cancers such as skin cancers and lymph node cancers (lymphoma).**

- **if you are receiving Torisel, you may be at increased risk of heart attack.** Tell your doctor if you experience symptoms such as pain or sensation of pressure in chest, arm, shoulders or jaw, shortness of breath, feeling sick (nausea), anxiety, sweating or dizziness.

Talk to your doctor, pharmacist, nurse if you have any concern.

Children and adolescents

This medicine is not for children and adolescents below 18 years of age because advanced cancer of the kidney and mantle cell lymphoma are not relevant for these patients, and it did not work in other cancers.
Other medicines and Torisel

Tell your doctor or pharmacist if you are taking or have recently taken any other medicines. Some medicines can interfere with the breakdown or metabolism of Torisel and therefore dose adjustment of Torisel may be required. In particular, you should inform your doctor or pharmacist if you are taking any of the following:

- protease inhibitors used in the treatment of Human Immunodeficiency Virus (HIV)
- antibiotics (including rifampicin) or antifungal medicines (including itraconazole, ketoconazole and voriconazole) used to treat infections
- nefazodone or selective serotonin re-uptake inhibitors used to treat depression
- anti-epileptic medicines, including carbamazepine, phenytoin and phenobarbital
- rifabutin used to treat infection in people with HIV and other diseases
- herbal medicines or natural remedies containing St. John’s wort (Hypericum perforatum) used to treat mild depression
- angiotensin converting enzyme (ACE) inhibitors (such as enalapril, ramipril, lisinopril) or a calcium channel blocker (such as amlodipine) used to treat high blood pressure or other cardiovascular problems
- amphiphilic medicines used to treat heart arrhythmias (such as amiodarone), or statins used to treat high cholesterol
- sunitinib used to treat cancer of the kidney
- medicines which are P-gp substrates (such as digoxin, vincristine, colchicine, dabigatran, lenalidomide, paclitaxel)

Torisel with food and drink

Grapefruit and grapefruit juice may increase blood concentrations of Torisel and should be avoided.

Pregnancy and breast-feeding

If you are pregnant or breast-feeding, think you may be pregnant or are planning to have a baby, ask your doctor for advice before receiving this medicine.

Torisel has not been studied in pregnant women, and it must not be used during pregnancy, unless clearly necessary.

Women of childbearing potential must avoid pregnancy by using an effective method of birth control during treatment with Torisel. Men with partners of childbearing potential should use medically acceptable contraception while receiving Torisel.

Women should not breast-feed during treatment with Torisel, as this medicine may interfere with the growth and development of the baby.

Driving and using machines

Torisel is unlikely to influence the ability to drive and use machines. However, feeling or being sick (nausea and vomiting) and difficulty in falling or staying asleep are very common side effects. If you feel sick (nausea and vomiting) or you have difficulty in falling or staying asleep, take special care when driving or using machines.

For patients receiving the higher dose of Torisel for the treatment of mantle cell lymphoma, the amount of alcohol in this medicine may impair your ability to drive or use machines (see section below “Torisel contains ethanol [alcohol]”).
Torisel contains ethanol (alcohol)

This medicine contains ethanol (alcohol), equivalent to 17.6 ml beer, 7.3 ml wine per 25 mg dose. Patients receiving the higher dose of 175 mg of Torisel for the initial treatment of mantle cell lymphoma may receive a dose of alcohol equivalent to up to 123 ml beer or 51 ml wine per dose. It is harmful if you are suffering from alcoholism, and it is to be taken into account in pregnant or breast-feeding women, children and high-risk groups such as patients with liver disease or epilepsy. The amount of alcohol in this medicine may impair your ability to drive or alter the effects of other medicines (see sections “Warning and precautions” and “Driving and using machines”).

3. How Torisel is given

Torisel will always be prepared and given to you by a doctor or another healthcare professional as an intravenous infusion (into your vein).

You should receive an injection of antihistamine (to try to prevent allergic reaction to Torisel) directly into your vein approximately 30 minutes before your dose of Torisel.

The Torisel concentrate must first be diluted with 1.8 ml of the supplied solvent to achieve a concentration of 10 mg/ml before administration in sodium chloride 9 mg/ml (0.9%) solution for injection (see dilution instructions at the end of the package leaflet).

For renal cancer, the recommended dose is 25 mg infused (as a drip) over a 30 to 60 minute period once weekly.

For mantle cell lymphoma, the recommended dose is 175 mg infused (as a drip) over a 30- to 60-minute period once weekly for 3 weeks followed by single weekly doses of 75 mg infused (as a drip) over a 30- to 60-minute period.

Treatment with Torisel should continue until you are no longer benefiting from therapy or until unacceptable side effects occur.

As this medicine is prepared and given by a healthcare professional, it is unlikely you will be given too much or that you will miss a dose.

If you are concerned about this, tell your doctor immediately.

If you have any further questions on the use of this medicine, ask your doctor, pharmacist or nurse.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Side effects may be more pronounced with the higher dose of 175 mg per week during initial treatment for mantle cell lymphoma.

The most important side effects you may experience during the treatment with Torisel are listed below. If you experience any of them, seek medical advice immediately.

Allergic reactions
You should tell your doctor or nurse immediately if you have symptoms of angioedema, such as swollen face, tongue or pharynx, and difficulty in breathing.

If you experience any of these during the administration of Torisel, the doctor or nurse will stop the infusion.
Bleeding in the brain
You should seek medical advice immediately if you feel confused, unusually tired, have difficulty in speaking or in swallowing and your pupils have different sizes. These symptoms might be caused by a bleeding in the brain.

Intestinal puncture, tear or holes
You should seek medical advice immediately if you have acute abdominal pain, high fever, nausea and vomiting, or blood in the stools. These symptoms might be caused by a perforation in your gut.

Kidney failure
You should seek medical advice immediately if you suffer from general swelling, shortness of breath, tiredness. These symptoms might be caused by a sudden decrease of kidney function.

Embolism in the lung
You should seek medical advice immediately if you experience shortness of breath, chest pain, coughing up blood, fast heartbeat, nausea, fainting, sweating, wheezing, and clammy or bluish skin. These symptoms might be caused by a blood clot in your lung.

You should also tell your doctor straight away:
- if you have cough, chest pain, difficulties in breathing. Your doctor may prescribe you an x-ray examination of your chest.
- if the number of white cells in your blood has decreased. This may increase the risk of getting fever and infections.
- if the number of platelet (a type of blood cell that helps to clot blood) has decreased. This may increase the risk of bleeding in your body.
- if your blood levels of cholesterol and triglycerides have increased.
- if you experience any excessive thirst or increased frequency and quantity of urination. Your doctor may prescribe you insulin and/or oral antidiabetic agent therapy.
- if you have recently undertaken a surgery. Your doctor may delay the administration of Torisel until the wound is fully recovered as this medicine could interfere with the healing processes of pre-existing wounds.

Other side effects with Torisel may include:

Very common side effects (may affect more than 1 in 10 people):
General feeling of weakness, chills, swelling due to fluid retention, pain (including abdominal, back, chest and joint pain), feeling sick to the stomach (nausea and vomiting), diarrhoea, constipation , headache, fever, sores and inflammation in the mouth and/or the digestive tract, cough, pneumonia, nose bleed, rash, itching, dry skin, decreased appetite, shortness of breath, low levels of potassium in the blood (which may cause muscle weakness), low red blood cell count, decreased number of a type of white blood cells which is associated with an increased risk of infection, high blood sugar, high cholesterol, high triglycerides abscess, infections (including eye infection, flu, viral infections, bronchitis), abnormal kidney function (including kidney failure), blood tests that show changes in the way the kidney is working, change in the sense of taste, difficulty falling asleep, low number of platelets which may cause bleeding and bruising.

Common side effects (may affect up to 1 in 10 people):
Runny nose, gum redness and swelling, mouth pain (including sores inside the mouth), stomach bloating, sore throat, high blood pressure, pink eye including watery eye disorder, taste loss, redness and swelling of the follicles in the skin, allergic reactions, severe scaling of the skin, increased blood clotting (including thrombosis of the veins), low levels of calcium in the blood, low levels of phosphates in the blood, upper respiratory infections, inflammation of the lung, fluid in the chest cavity, infection in the blood, dehydration, agitation, depression, numbness and tingling of the skin, dizziness, sleepiness, bleeding (from the lips, mouth, stomach or intestines), inflammation of the lining
of the stomach, trouble with swallowing, skin bleeding (bruising), small pin-point haemorrhage, nail disorder, acne, yeast infection, fungal infection, urinary tract infections, cystitis, blood tests that show changes in the way the liver is working, high blood fats other than triglycerides, diabetes, muscle pain.

Uncommon side effects (may affect up to 1 in 100 people):

Pericardial effusion (fluid around the heart that may require drainage and can affect the pumping of blood).

Bleeding into the brain in patients with brain tumours or who are on blood thinners, eye bleeding.

Embolism of the lung, perforation of the gut, problems with wound healing after surgery, inflammation and swelling of the voice box.

Rare side effects (may affect up to 1 in 1,000 people):

Lung infection caused by Pneumocystis jiroveci (*Pneumocystis jiroveci pneumonia*).

Side effects for which frequency is not known (cannot be estimated from available data):

Swelling of the face, lips, tongue, and throat, possibly causing difficulty breathing.

Serious reactions of the skin and/or mucous membranes which may include painful blisters and fever (*Stevens-Johnson syndrome*).

Unexplained muscle pain, tenderness or weakness which could indicate muscle damage (*rhabdomyolysis*)

Reporting of side effects

If you get any side effect, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Torisel**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date, which is stated on the vial label and carton. The expiry date refers to the last day of that month.

Store in a refrigerator (2°C - 8°C)

Do not freeze.

Keep the vials in the outer carton in order to protect from light.

After first dilution of the concentrate with 1.8 ml of the supplied solvent, the mixture may be stored for up to 24 hours below 25°C and protected from light prior to further dilution.

After further dilution of the concentrate-solvent mixture with sodium chloride 9 mg/ml (0.9%) solution for injection, the solution may be stored for up to 6 hours below 25°C and protected from light.

Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
6. Contents of the pack and other information

What Torisel contains

- The active substance is temsirolimus.

 Each vial of concentrate contains 30 mg of temsirolimus.

 After first dilution of the concentrate with 1.8 ml of the supplied solvent, the concentration of temsirolimus is 10 mg/ml.

- The other ingredients in the concentrate are anhydrous ethanol, all-rac-α-tocopherol (E 307), propylene glycol and citric acid (E 330). The solvent contains polysorbate 80 (E 433), macrogol 400 and anhydrous ethanol (see section “Torisel contains ethanol [alcohol]”).

What Torisel looks like and contents of the pack

Torisel is a concentrate and solvent for solution for infusion.

The concentrate is a clear, colourless to light-yellow solution. The solvent is a clear to slightly turbid, light-yellow to yellow solution. The solutions are essentially free from visible particulates.

Each pack of Torisel contains one glass vial of 1.2 ml of concentrate and one glass vial of 2.2 ml of solvent.

Marketing Authorisation Holder

Pfizer Limited
Ramsgate Road
Sandwich
Kent CT13 9NJ
United Kingdom

Manufacturer

Wyeth Lederle S.r.l.
Via Franco Gorgone
Zona Industriale
95100 Catania
Italy

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien
Pfizer S.A./N.V.
Tél/Tel: +32 (0)2 554 62 11

Česká republika
Pfizer PFE, spol. s r.o.
Tel: +420 283 004 111

Danmark
Pfizer ApS
Tlf: +45 44 201 100

Lietuva
Pfizer Luxembourg SARL filialas Lietuvoje
Tel. +3705 2514000

Luxembourg/Luxemburg
Pfizer S.A./N.V.
Tél/Tel: +32 (0)2 554 62 11

Magyarország
Pfizer Kft.
Tel.: +36 1 488 3700

Malta
Vivian Corporation Ltd.
Tel: +35621 344610
Deutschland
Pfizer Pharma GmbH
Tel: +49 (0)30 550055-51000

Eesti
Pfizer Luxembourg SARL Eesti filiaal
Tel: +372 666 7500

Ελλάδα
PFIZER ΕΛΛΑΣ Α.Ε.
Τηλ: +30 210 67 85 800

España
Pfizer, S.L.
Tel: +34 91 490 99 00

France
Pfizer
Tél: +33 (0)1 58 07 34 40

Hrvatska
Pfizer Croatia d.o.o.
Tel: + 385 1 3908 777

Ísland
Icepharma hf.
Sími: +354 540 8000

Italia
Pfizer S.r.l
Tel: +39 06 33 18 21

Κύπρος
PFIZER ΕΛΛΑΣ Α.Ε. (CYPRUS BRANCH)
Τηλ: +357 22 817690

Latvija
Pfizer Luxembourg SARL filiāle Latvijā
Tel. +371 67035775

Nederland
Pfizer bv
Tel: +31 (0)10 406 43 01

Norge
Pfizer Norge AS
Tlf: +47 67 52 61 00

Österreich
Pfizer Corporation Austria Ges.m.b.H.
Tel: +43 (0)1 521 15-0

Polska
Pfizer Polska Sp. z o.o.,
Tel: +48 22 335 61 00

Portugal
Pfizer Biofarmacêutica, Sociedade Unipessoal Lda
Tel: +351 21 423 5500

România
Pfizer Romania S.R.L
Tel: +40 (0) 21 207 28 00

Slovenija
Pfizer Luxembourg SARL, Pfiizer, podružnica za svetovanje s področja farmacevtske dejavnosti,
Ljubljana
Tel: +386 (0)1 52 11 400

Slovenská republika
Pfizer Luxembourg SARL, organizačná zložka
Tel: +421 2 3355 5500

Suomi/Finland
Pfizer Oy
Puh/Tel: +358 (0)9 430 040

Sverige
Pfizer Innovations AB
Tel: +46 (0)8 550 520 00

United Kingdom
Pfizer Limited
Tel: +44 (0)1304 616161

This leaflet was last revised in <{MM/YYYY} >

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site:
http://www.ema.europa.eu. There are also links to other websites about rare diseases and treatments.
The following information is intended for healthcare professionals only:

During handling and preparation of admixtures, Torisel should be protected from excessive room light and sunlight.

Bags/containers that come in contact with Torisel must be made of glass, polyolefin, or polyethylene. Polyvinyl chloride (PVC) bags and medical devices must not be used for the administration of preparations containing polysorbate 80, because polysorbate 80 leaches di-2-ethylhexylphthalate (DEHP) from PVC.

Torisel concentrate and solvent should be inspected visually for particulate matter and discolouration prior to administration.

Do not use if particulates are present, or if discoloured. Use a new vial.

Dilution

Torisel 30 mg concentrate must be diluted with 1.8 ml of the supplied solvent before administration in sodium chloride 9 mg/ml (0.9%) solution for injection.

Note: For mantle cell lymphoma, multiple vials will be required for each dose over 25 mg. Each vial of Torisel must be diluted according to the instructions below. The required amount of concentrate-solvent mixture from each vial must be combined in one syringe for rapid injection into 250 ml of sodium chloride 9 mg/ml (0.9%) solution for injection.

The concentrate-solvent mixture should be inspected visually for particulate matter and discolouration. **Do not use if particulates are present, or if discoloured.**

In preparing the solution, the following two-step process must be carried out in an aseptic manner according to local standards for handling cytotoxic/cytostatic medicines:

STEP 1: DILUTION OF CONCENTRATE WITH THE SUPPLIED SOLVENT

- Withdraw 1.8 ml of the supplied solvent.
- Inject the 1.8 ml of extracted solvent into the vial of Torisel 30 mg concentrate.
- Mix the solvent and the concentrate well by inversion of the vial. Sufficient time should be allowed for air bubbles to subside. The solution should be a clear to slightly turbid, colourless to light-yellow to yellow solution, essentially free from visual particulates.

One vial of Torisel 30 mg concentrate contains 30 mg of temsirolimus: when the 1.2 ml concentrate is combined with 1.8 ml of the supplied solvent, a total volume of 3.0 ml is obtained and the concentration of temsirolimus will be 10 mg/ml. The concentrate-solvent mixture is stable below 25°C for up to 24 hours.

STEP 2: ADMINISTRATION OF CONCENTRATE-SOLVENT MIXTURE IN SODIUM CHLORIDE INFUSION

- Withdraw the required amount of concentrate-solvent mixture (which contains temsirolimus 10 mg/ml) from the vial; i.e., 2.5 ml for a temsirolimus dose of 25 mg.
- Inject the withdrawn volume rapidly into 250 ml of sodium chloride 9 mg/ml (0.9%) solution for injection to ensure adequate mixing.

The admixture should be mixed by inversion of the bag or bottle, avoiding excessive shaking, as this may cause foaming.
The final diluted solution in the bag or bottle should be inspected visually for particulate matter and discolouration prior to administration. The admixture of Torisel in sodium chloride 9 mg/ml (0.9%) solution for injection should be protected from excessive room light and sunlight.

For mantle cell lymphoma, multiple vials will be required for each dose over 25 mg.

Administration

- Administration of the final diluted solution should be completed within six hours from the time that the Torisel is first added to sodium chloride 9 mg/ml (0.9%) solution for injection.
- Torisel is infused over a 30- to 60-minute period once a week. The use of an infusion pump is the preferred method of administration to ensure accurate delivery of the medicinal product.
- Appropriate administration materials must be used to avoid excessive loss of medicinal product and to decrease the rate of DEHP extraction. The administration materials must consist of non-DEHP, non-PVC tubing with appropriate filter. An in-line polyethersulfone filter with a pore size of not greater than 5 microns is recommended for administration to avoid the possibility of particles bigger than 5 microns being infused. If the administration set available does not have an in-line filter incorporated, a filter should be added at the end of the set (i.e., an end-filter) before the admixture reaches the vein of the patient. Different end-filters can be used ranging in filter pore size from 0.2 microns up to 5 microns. The use of both an in-line and end-filter is not recommended.
- Torisel, when diluted, contains polysorbate 80, and therefore appropriate administration materials must be used. It is important that the recommendations in sections 4.2 and 6.6 in the SmPC be followed closely.

Disposal

Any unused product or waste material should be disposed of in accordance with local requirements.