1. **NAME OF THE MEDICINAL PRODUCT**
IRESSA 250 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**
Each tablet contains 250 mg of gefitinib.

Excipients with known effect:
Each tablet contains 163.5 mg of lactose (as monohydrate).
Each tablet contains 3.86 mg of sodium.
For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**
Film-coated tablets (tablet).
Tablets are brown, round, biconvex, impressed with “IRESSA 250” on one side and plain on the other.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**
IRESSA is indicated as monotherapy for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with activating mutations of EGFR-TK (see section 4.4).

4.2 **Posology and method of administration**
Treatment with IRESSA should be initiated and supervised by a physician experienced in the use of anti-cancer therapies.

Posology
The recommended posology of IRESSA is one 250 mg tablet once a day. If a dose is missed, it should be taken as soon as the patient remembers. If it is less than 12 hours to the next dose, the patient should not take the missed dose. Patients should not take a double dose (two doses at the same time) to make up for a forgotten dose.

Paediatric population
The safety and efficacy of IRESSA in children and adolescents aged less than 18 years have not been established. There is no relevant use of gefitinib in the paediatric population in the indication of NSCLC.
Hepatic impairment
Patients with moderate to severe hepatic impairment (Child-Pugh B or C) due to cirrhosis have increased plasma concentrations of gefitinib. These patients should be closely monitored for adverse events. Plasma concentrations were not increased in patients with elevated aspartate transaminase (AST), alkaline phosphatase or bilirubin due to liver metastases (see section 5.2).

Renal impairment
No dose adjustment is required in patients with impaired renal function at creatinine clearance > 20 ml/min. Only limited data are available in patients with creatinine clearance ≤ 20 ml/min and caution is advised in these patients (see section 5.2).

Elderly
No dose adjustment is required on the basis of patient age (see section 5.2).

CYP2D6 poor metabolisers
No specific dose adjustment is recommended in patients with known CYP2D6 poor metaboliser genotype, but these patients should be closely monitored for adverse events (see section 5.2).

Dose adjustment due to toxicity
Patients with poorly tolerated diarrhoea or skin adverse reactions may be successfully managed by providing a brief (up to 14 days) therapy interruption followed by reinstatement of the 250 mg dose (see section 4.8). For patients unable to tolerate treatment after a therapy interruption, gefitinib should be discontinued and an alternative treatment should be considered.

Method of administration
The tablet may be taken orally with or without food, at about the same time each day. The tablet can be swallowed whole with some water or if dosing of whole tablets is not possible, tablets may be administered as a dispersion in water (non-carbonated). No other liquids should be used. Without crushing it, the tablet should be dropped in half a glass of drinking water. The glass should be swirled occasionally, until the tablet is dispersed (this may take up to 20 minutes). The dispersion should be drunk immediately after dispersion is complete (i.e. within 60 minutes). The glass should be rinsed with half a glass of water, which should also be drunk. The dispersion can also be administered through a naso-gastric or gastrostomy tube.

4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Breast-feeding (see section 4.6).

4.4 Special warnings and precautions for use
When considering the use of IRESSA as a treatment for locally advanced or metastatic NSCLC, it is important that EGFR mutation assessment of the tumour tissue is attempted for all patients. If a tumour sample is not evaluable, then circulating tumour DNA (ctDNA) obtained from a blood (plasma) sample may be used.
Only robust, reliable and sensitive test(s) with demonstrated utility for the determination of EGFR mutation status of tumours or ctDNA should be used to avoid false negative or false positive determinations (see section 5.1).

Interstitial lung disease (ILD)

Interstitial lung disease (ILD) which may be acute in onset, has been observed in 1.3% of patients receiving gefitinib, and some cases have been fatal (see section 4.8). If patients experience worsening of respiratory symptoms such as dyspnoea, cough and fever, IRESSA should be interrupted and the patient should be promptly investigated. If ILD is confirmed, IRESSA should be discontinued and the patient treated appropriately.

In a Japanese pharmacoepidemiological case control study in 3,159 patients with NSCLC receiving gefitinib or chemotherapy who were followed up for 12 weeks, the following risk factors for developing ILD (irrespective of whether the patient received IRESSA or chemotherapy) were identified: smoking, poor performance status (PS ≥ 2), CT scan evidence of reduced normal lung (≤ 50%), recent diagnosis of NSCLC (< 6 months), pre-existing ILD, older age (≥ 55 years old) and concurrent cardiac disease. An increased risk of ILD on gefitinib relative to chemotherapy was seen predominantly during the first 4 weeks of treatment (adjusted OR 3.8; 95% CI 1.9 to 7.7); thereafter the relative risk was lower (adjusted OR 2.5; 95% CI 1.1 to 5.8). Risk of mortality among patients who developed ILD on IRESSA or chemotherapy was higher in patients with the following risk factors: smoking, CT scan evidence of reduced normal lung (≤ 50%), pre-existing ILD, older age (≥ 65 years old), and extensive areas adherent to pleura (≥ 50%).

Hepatotoxicity and liver impairment

Liver function test abnormalities (including increases in alanine aminotransferase, aspartate aminotransferase, bilirubin) have been observed, uncommonly presenting as hepatitis (see section 4.8). There have been isolated reports of hepatic failure which in some cases led to fatal outcomes. Therefore, periodic liver function testing is recommended. Gefitinib should be used cautiously in the presence of mild to moderate changes in liver function. Discontinuation should be considered if changes are severe.

Impaired liver function due to cirrhosis has been shown to lead to increased plasma concentrations of gefitinib (see section 5.2).

Interactions with other medicinal products

CYP3A4 inducers may increase metabolism of gefitinib and decrease gefitinib plasma concentrations. Therefore, concomitant administration of CYP3A4 inducers (e.g. phenytoin, carbamazepine, rifampicin, barbiturates or herbal preparations containing St John’s wort/ *Hypericum perforatum*) may reduce efficacy of the treatment and should be avoided (see section 4.5).

In individual patients with CYP2D6 poor metaboliser genotype, treatment with a potent CYP3A4 inhibitor might lead to increased plasma levels of gefitinib. At initiation of treatment with a CYP3A4 inhibitor, patients should be closely monitored for gefitinib adverse reactions (see section 4.5).

International normalised ratio (INR) elevations and/or bleeding events have been reported in some patients taking warfarin together with gefitinib (see section 4.5). Patients taking warfarin and gefitinib concomitantly should be monitored regularly for changes in prothrombin time (PT) or INR.
Medicinal products that cause significant sustained elevation in gastric pH, such as proton-pump inhibitors and H₂-antagonists may reduce bioavailability and plasma concentrations of gefitinib and, therefore, may reduce efficacy. Antacids if taken regularly close in time to administration of gefitinib may have a similar effect (see sections 4.5 and 5.2).

Data from phase II clinical trials, where gefitinib and vinorelbine have been used concomitantly, indicate that gefitinib may exacerbate the neutropenic effect of vinorelbine.

Lactose
IRESSA contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

Sodium
IRESSA contains less than 1 mmol (23 mg) of sodium per tablet, that is to say it is essentially ‘sodium-free.’

Further precautions for use
Patients should be advised to seek medical advice immediately if they experience severe or persistent diarrhoea, nausea, vomiting or anorexia as these may indirectly lead to dehydration. These symptoms should be managed as clinically indicated (see section 4.8).

Patients presenting with signs and symptoms suggestive of keratitis such as acute or worsening: eye inflammation, lacrimation, light sensitivity, blurred vision, eye pain and/or red eye should be referred promptly to an ophthalmology specialist.

If a diagnosis of ulcerative keratitis is confirmed, treatment with gefitinib should be interrupted, and if symptoms do not resolve, or if symptoms recur on reintroduction of gefitinib, permanent discontinuation should be considered.

In a phase I/II trial studying the use of gefitinib and radiation in paediatric patients, with newly diagnosed brain stem glioma or incompletely resected supratentorial malignant glioma, 4 cases (1 fatal) of Central Nervous System (CNS) haemorrhages were reported from 45 patients enrolled. A further case of CNS haemorrhage has been reported in a child with an ependymoma from a trial with gefitinib alone. An increased risk of cerebral haemorrhage in adult patients with NSCLC receiving gefitinib has not been established.

Gastrointestinal perforation has been reported in patients taking gefitinib. In most cases this is associated with other known risk factors, including concomitant medications such as steroids or NSAIDS, underlying history of GI ulceration, age, smoking or bowel metastases at sites of perforation.

4.5 Interaction with other medicinal products and other forms of interaction

The metabolism of gefitinib is via the cytochrome P450 isoenzyme CYP3A4 (predominantly) and via CYP2D6.

Active substances that may increase gefitinib plasma concentrations
In vitro studies have shown that gefitinib is a substrate of p-glycoprotein (Pgp). Available data do not suggest any clinical consequences to this *in vitro* finding.
Substances that inhibit CYP3A4 may decrease the clearance of gefitinib. Concomitant administration with potent inhibitors of CYP3A4 activity (e.g. ketoconazole, posaconazole, voriconazole, protease inhibitors, clarithromycin, telithromycin) may increase gefitinib plasma concentrations. The increase may be clinically relevant since adverse reactions are related to dose and exposure. The increase might be higher in individual patients with CYP2D6 poor metaboliser genotype. Pre-treatment with itraconazole (a potent CYP3A4 inhibitor) resulted in an 80% increase in the mean AUC of gefitinib in healthy volunteers. In situations of concomitant treatment with potent inhibitors of CYP3A4 the patient should be closely monitored for gefitinib adverse reactions.

There are no data on concomitant treatment with an inhibitor of CYP2D6 but potent inhibitors of this enzyme might cause increased plasma concentrations of gefitinib in CYP2D6 extensive metabolisers by about 2-fold (see section 5.2). If concomitant treatment with a potent CYP2D6 inhibitor is initiated, the patient should be closely monitored for adverse reactions.

Active substances that may reduce gefitinib plasma concentrations

Substances that are inducers of CYP3A4 activity may increase metabolism and decrease gefitinib plasma concentrations and thereby reduce the efficacy of gefitinib. Concomitant medicinal products that induce CYP3A4 (e.g. phenytoin, carbamazepine, rifampicin, barbiturates or St John’s wort/ *Hypericum perforatum*) should be avoided. Pre-treatment with rifampicin (a potent CYP3A4 inducer) in healthy volunteers reduced mean gefitinib AUC by 83% (see section 4.4).

Substances that cause significant sustained elevation in gastric pH may reduce gefitinib plasma concentrations and thereby reduce the efficacy of gefitinib. High doses of short-acting antacids may have a similar effect if taken regularly close in time to administration of gefitinib. Concomitant administration of gefitinib with ranitidine at a dose that caused sustained elevations in gastric pH ≥ 5 resulted in a reduced mean gefitinib AUC by 47% in healthy volunteers (see section 4.4 and 5.2).

Active substances that may have their plasma concentrations altered by gefitinib

In vitro studies have shown that gefitinib has limited potential to inhibit CYP2D6. In a clinical trial in patients, gefitinib was co-administered with metoprolol (a CYP2D6 substrate). This resulted in a 35% increase in exposure to metoprolol. Such an increase might potentially be relevant for CYP2D6 substrates with narrow therapeutic index. When the use of CYP2D6 substrates are considered in combination with gefitinib, a dose modification of the CYP2D6 substrate should be considered especially for products with a narrow therapeutic window.

Gefitinib inhibits the transporter protein BCRP *in vitro*, but the clinical relevance of this finding is unknown.

Other potential interactions

INR elevations and/or bleeding events have been reported in some patients concomitantly taking warfarin (see section 4.4).

4.6 Fertility, pregnancy and lactation

Women of childbearing potential

Women of childbearing potential must be advised not to get pregnant during therapy.

Pregnancy
There are no data from the use of gefitinib in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3). The potential risk for humans is unknown. IRESSA should not be used during pregnancy unless clearly necessary.

Breast-feeding

It is not known whether gefitinib is secreted in human milk. Gefitinib and metabolites of gefitinib accumulated in milk of lactating rats (see section 5.3). Gefitinib is contraindicated during breast-feeding and therefore breast-feeding must be discontinued while receiving gefitinib therapy (see section 4.3).

4.7 Effects on ability to drive and use machines

During treatment with gefitinib, asthenia has been reported. Therefore, patients who experience this symptom should be cautious when driving or using machines.

4.8 Undesirable effects

Summary of the safety profile

In the pooled dataset from the ISEL, INTEREST and IPASS phase III clinical trials (2462 IRESSA-treated patients), the most frequently reported adverse drug reactions (ADRs), occurring in more than 20% of the patients, are diarrhoea and skin reactions (including rash, acne, dry skin and pruritus). ADRs usually occur within the first month of therapy and are generally reversible. Approximately 8% of patients had a severe ADR (common toxicity criteria (CTC) grade 3 or 4). Approximately 3% of patients stopped therapy due to an ADR.

Interstitial lung disease (ILD) has occurred in 1.3% of patients, often severe (CTC grade 3-4). Cases with fatal outcomes have been reported.

Tabulated list of adverse reactions

The safety profile presented in Table 1 is based on the gefitinib clinical development programme and postmarketed experience. Adverse reactions have been assigned to the frequency categories in Table 1 where possible based on the incidence of comparable adverse event reports in a pooled dataset from the ISEL, INTEREST and IPASS phase III clinical trials (2462 IRESSA-treated patients).

Frequencies of occurrence of undesirable effects are defined as: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000), not known (cannot be estimated from the available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

<table>
<thead>
<tr>
<th>Table 1 Adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse reactions by system organ class and frequency</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
</tr>
<tr>
<td>Eye disorders</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Allergic reactions (1.1%), including angioedema and urticaria</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Rare</td>
</tr>
<tr>
<td>Bullous conditions including toxic epidermal necrolysis, Stevens Johnson syndrome and erythema multiforme</td>
</tr>
<tr>
<td>Cutaneous vasculitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renal and urinary disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
</tr>
<tr>
<td>Asymptomatic laboratory elevations in blood creatinine</td>
</tr>
<tr>
<td>Proteinuria</td>
</tr>
<tr>
<td>Cystitis</td>
</tr>
<tr>
<td>Rare</td>
</tr>
<tr>
<td>Haemorrhagic cystitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General disorders and administration site conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very common</td>
</tr>
<tr>
<td>Asthenia, predominantly mild (CTC grade 1)</td>
</tr>
<tr>
<td>Common</td>
</tr>
<tr>
<td>Pyrexia</td>
</tr>
</tbody>
</table>

The frequency of adverse drug reactions relating to abnormal laboratory values is based on patients with a change from baseline of 2 or more CTC grades in the relevant laboratory parameters.

*This adverse reaction can occur in association with other dry conditions (mainly skin reactions) seen with gefitinib.

**This includes isolated reports of hepatic failure which in some cases led to fatal outcomes.

Interstitial lung disease (ILD)

In the INTEREST trial, the incidence of ILD type events was 1.4% (10) patients in the gefitinib group versus 1.1% (8) patients in the docetaxel group. One ILD-type event was fatal, and this occurred in a patient receiving gefitinib.

In the ISEL trial, the incidence of ILD-type events in the overall population was approximately 1% in both treatment arms. The majority of ILD-type events reported was from patients of Asian ethnicity and the ILD incidence among patients of Asian ethnicity receiving gefitinib therapy and placebo was approximately 3% and 4% respectively. One ILD-type event was fatal, and this occurred in a patient receiving placebo.

In a post-marketing surveillance study in Japan (3350 patients) the reported rate of ILD-type events in patients receiving gefitinib was 5.8%. The proportion of ILD-type events with a fatal outcome was 38.6%.

In a phase III open-label clinical trial (IPASS) in 1217 patients comparing IRESSA to carboplatin/paclitaxel doublet chemotherapy as first-line treatment in selected patients with advanced NSCLC in Asia, the incidence of ILD-type events was 2.6% on the IRESSA treatment arm versus 1.4% on the carboplatin/paclitaxel treatment arm.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
4.9 Overdose

There is no specific treatment in the event of overdose of gefitinib. However, in phase I clinical trials, a limited number of patients were treated with daily doses of up to 1000 mg. An increase of frequency and severity of some adverse reactions was observed, mainly diarrhoea and skin rash. Adverse reactions associated with overdose should be treated symptomatically; in particular severe diarrhoea should be managed as clinically indicated. In one study a limited number of patients were treated weekly with doses from 1500 mg to 3500 mg. In this study IRESSA exposure did not increase with increasing dose, adverse events were mostly mild to moderate in severity, and were consistent with the known safety profile of IRESSA.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: antineoplastic agents, protein kinase inhibitors; ATC code: L01XE02

Mechanism of action and pharmacodynamic effects

The epidermal growth factor (EGF) and its receptor (EGFR [HER1; ErbB1]) have been identified as key drivers in the process of cell growth and proliferation for normal and cancer cells. EGFR activating mutation within a cancer cell is an important factor in promotion of tumour cell growth, blocking of apoptosis, increasing the production of angiogenic factors and facilitating the processes of metastasis.

Gefitinib is a selective small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase and is an effective treatment for patients with tumours with activating mutations of the EGFR tyrosine kinase domain regardless of line of therapy. No clinically relevant activity has been shown in patients with known EGFR mutation-negative tumours.

The common EGFR activating mutations (Exon 19 deletions; L858R) have robust response data supporting sensitivity to gefitinib; for example a progression free survival HR (95% CI) of 0.489 (0.336, 0.710) for gefitinib vs. doublet chemotherapy [WJTOG3405]. Gefitinib response data is more sparse in patients whose tumours contain the less common mutations; the available data indicates that G719X, L861Q and S768I are sensitising mutations; and T790M alone or exon 20 insertions alone are resistance mechanisms.

Resistance

Most NSCLC tumours with sensitising EGFR kinase mutations eventually develop resistance to IRESSA treatment, with a median time to disease progression of 1 year. In about 60% of cases, resistance is associated with a secondary T790M mutation for which T790M targeted EGFR TKIs may be considered as a next line treatment option. Other potential mechanisms of resistance that have been reported following treatment with EGFR signal blocking agents include: bypass signalling such as HER2 and MET gene amplification and PIK3CA mutations. Phenotypic switch to small cell lung cancer has also been reported in 5-10% of cases.

Circulating Tumour DNA (ctDNA)
In the IFUM trial, mutation status was assessed in tumour and ctDNA samples derived from plasma, using the Therascreen EGFR RGQ PCR kit (Qiagen). Both ctDNA and tumour samples were evaluable for 652 patients out of 1060 screened. The objective response rate (ORR) in those patients who were tumour and ctDNA mutation positive was 77% (95% CI: 66% to 86%) and in those who were tumour only mutation positive 60% (95% CI: 44% to 74%).

Table 2 Summary of baseline mutation status for tumour and ctDNA samples in all screened patients evaluable for both samples

<table>
<thead>
<tr>
<th>Measure</th>
<th>Definition</th>
<th>IFUM rate % (CI)</th>
<th>IFUM N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>Proportion of tumour M+ that are M+ by ctDNA</td>
<td>65.7 (55.8, 74.7)</td>
<td>105</td>
</tr>
<tr>
<td>Specificity</td>
<td>Proportion of tumour M- that are M- by ctDNA</td>
<td>99.8 (99.0, 100.0)</td>
<td>547</td>
</tr>
</tbody>
</table>

These data are consistent with the pre-planned exploratory Japanese subgroup analysis in IPASS (Goto 2012). In that study ctDNA derived from serum, not plasma was used for EGFR mutation analysis using the EGFR Mutation Test Kit (DxS) (N= 86). In that study, sensitivity was 43.1%, specificity was 100%.

Clinical efficacy and safety

First line treatment

The randomised phase III first line IPASS study was conducted in patients in Asia\(^1\) with advanced (stage IIIB or IV) NSCLC of adenocarcinoma histology who were ex-light smokers (ceased smoking ≥ 15 years ago and smoked ≤ 10 pack years) or never smokers (see Table 3).

\(^1\)China, Hong Kong, Indonesia, Japan, Malaysia, Philippines, Singapore, Taiwan and Thailand.

Table 3 Efficacy outcomes for gefitinib versus carboplatin/paclitaxel from the IPASS study

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>Objective response rates and 95% CI for difference between treatments(^a)</th>
<th>Primary endpoint Progression free survival (PFS)(^a, b)</th>
<th>Overall survival(^a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1217</td>
<td>43.0% vs 32.2% [5.3%, 16.1%]</td>
<td>HR 0.74 [0.65, 0.85] 5.7 m vs 5.8 m p<0.0001</td>
<td>HR 0.90 [0.79, 1.02] 18.8 m vs 17.4 m p=0.1087</td>
</tr>
<tr>
<td>EGFR mutation-positive</td>
<td>261</td>
<td>71.2% vs 47.3% [12.0%, 34.9%]</td>
<td>HR 0.48 [0.36, 0.64] 9.5 m vs 6.3 m p<0.0001</td>
<td>HR 1.00 [0.76, 1.33] 21.6 m vs 21.9 m</td>
</tr>
</tbody>
</table>
Quality of life outcomes differed according to EGFR mutation status. In EGFR mutation-positive patients, significantly more IRESSA-treated patients experienced an improvement in quality of life and lung cancer symptoms vs. carboplatin/paclitaxel (see Table 4).

Table 4 Quality of life outcomes for gefitinib versus carboplatin/paclitaxel from the IPASS study

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>FACT-L QoL improvement rate(^a)</th>
<th>LCS symptom improvement rate(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1151</td>
<td>(48.0% vs 40.8%) p=0.0148</td>
<td>(51.5% vs 48.5%) p=0.3037</td>
</tr>
<tr>
<td>EGFR mutation-positive</td>
<td>259</td>
<td>(70.2% vs 44.5%) p<0.0001</td>
<td>(75.6% vs 53.9%) p=0.0003</td>
</tr>
<tr>
<td>EGFR mutation-negative</td>
<td>169</td>
<td>(14.6% vs 36.3%) p=0.0021</td>
<td>(20.2% vs 47.5%) p=0.0002</td>
</tr>
</tbody>
</table>

Trial outcome index results were supportive of FACT-L and LCS results
\(^a\) Values presented are for IRESSA versus carboplatin/paclitaxel.

In the IPASS trial, IRESSA demonstrated superior PFS, ORR, QoL and symptom relief with no significant difference in overall survival compared to carboplatin/paclitaxel in previously untreated patients, with locally advanced or metastatic NSCLC, whose tumours harboured activating mutations of the EGFR tyrosine kinase.
Pretreated patients
The randomised phase III INTEREST study was conducted in patients with locally advanced or metastatic NSCLC who had previously received platinum-based chemotherapy. In the overall population, no statistically significant difference between gefitinib and docetaxel (75 mg/m2) was observed for overall survival, progression free survival and objective response rates (see Table 5).

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>Objective response rates and 95% CI for difference between treatmentsa</th>
<th>Progression free survivalb</th>
<th>Primary endpoint overall survivalb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1466</td>
<td>9.1% vs 7.6% [-1.5%, 4.5%]</td>
<td>HR 1.04 [0.93, 1.18]</td>
<td>HR 1.020 [0.905, 1.150]c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2 m vs 2.7 m p=0.4658</td>
<td></td>
<td>7.6 m vs 8.0 m p=0.7332</td>
</tr>
<tr>
<td>EGFR mutation-positive</td>
<td>44</td>
<td>42.1% vs 21.1% [-8.2%, 46.0%]</td>
<td>HR 0.16 [0.05, 0.49]</td>
<td>HR 0.83 [0.41, 1.67]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0 m vs 4.1 m p=0.0012</td>
<td></td>
<td>14.2 m vs 16.6 m p=0.6043</td>
</tr>
<tr>
<td>EGFR mutation- negative</td>
<td>253</td>
<td>6.6% vs 9.8% [-10.5%, 4.4%]</td>
<td>HR 1.24 [0.94, 1.64]</td>
<td>HR 1.02 [0.78, 1.33]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7 m vs 2.6 m p=0.1353</td>
<td></td>
<td>6.4 m vs 6.0 m p=0.9131</td>
</tr>
<tr>
<td>Asiansc</td>
<td>323</td>
<td>19.7% vs 8.7% [3.1 %, 19.2%]</td>
<td>HR 0.83 [0.64, 1.08]</td>
<td>HR 1.04 [0.80, 1.35]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.9 m vs 2.8 m p=0.1746</td>
<td></td>
<td>10.4 m vs 12.2 m p=0.7711</td>
</tr>
<tr>
<td>Non-Asians</td>
<td>1143</td>
<td>6.2% vs 7.3% [-4.3%, 2.0%]</td>
<td>HR 1.12 [0.98, 1.28]</td>
<td>HR 1.01 [0.89, 1.14]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 m vs 2.7 m p=0.1041</td>
<td></td>
<td>6.9 m vs 6.9 m p=0.9259</td>
</tr>
</tbody>
</table>

a Values presented are for IRESSA versus docetaxel.
b “m” is medians in months. Numbers in square brackets are 96% confidence interval for overall survival HR in the overall population, or otherwise 95% confidence intervals for HR
c Confidence interval entirely below non-inferiority margin of 1.154
N Number of patients randomised.
HR Hazard ratio (hazard ratios <1 favour IRESSA)
Figures 1 and 2 Efficacy outcomes in subgroups of non-Asian patients in the INTEREST study (N patients = Number of patients randomised)

Overall Survival

<table>
<thead>
<tr>
<th>N patients</th>
<th>Overall</th>
<th>EGFR Mutation+</th>
<th>EGFR Mutation-</th>
<th>Never-smoker</th>
<th>Ever-smoker</th>
<th>Adenocarcinoma</th>
<th>Non-adenocarcinoma</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>1143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6.2 v. 7.3</td>
<td>42.9 v. 20.0</td>
<td>5.5 v. 9.1</td>
<td>23.7 v. 13.3</td>
<td>3.9 v. 6.5</td>
<td>9.4 v. 9.4</td>
<td>2.8 v. 5.0</td>
<td>9.8 v. 13.1</td>
<td>4.4 v. 4.6</td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progression-free Survival

<table>
<thead>
<tr>
<th>N patients</th>
<th>Gefitinib v. Docetaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1143</td>
<td>6.2 v. 7.3 Overall</td>
</tr>
<tr>
<td>27</td>
<td>42.9 v. 20.0 EGFR Mutation+</td>
</tr>
<tr>
<td>222</td>
<td>5.5 v. 9.1 EGFR Mutation</td>
</tr>
<tr>
<td>133</td>
<td>23.7 v. 13.3 Never-smoker</td>
</tr>
<tr>
<td>1010</td>
<td>3.9 v. 6.5 Ever-smoker</td>
</tr>
<tr>
<td>600</td>
<td>9.4 v. 9.4 Adenocarcinoma</td>
</tr>
<tr>
<td>543</td>
<td>2.8 v. 5.0 Non-adenocarcinoma</td>
</tr>
<tr>
<td>369</td>
<td>9.8 v. 13.1 Female</td>
</tr>
<tr>
<td>774</td>
<td>4.4 v. 4.6 Male</td>
</tr>
</tbody>
</table>

The randomised phase III ISEL study was conducted in patients with advanced NSCLC who had received 1 or 2 prior chemotherapy regimens and were refractory or intolerant to their most recent regimen. Gefitinib plus best supportive care was compared to placebo plus best supportive care. IRESSA did not prolong survival in the overall population. Survival outcomes differed by smoking status and ethnicity (see Table 6).
Table 6 Efficacy outcomes for gefitinib versus placebo from the ISEL study

<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>Objective response rates and 95% CI for difference between treatments*</th>
<th>Time to treatment failure\ab</th>
<th>Primary endpoint overall survival\abc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1692</td>
<td>8.0% vs 1.3% [4.7%, 8.8%]</td>
<td>HR 0.82 [0.73, 0.92]</td>
<td>HR 0.89 [0.77, 1.02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 m vs 2.6 m p=0.0006</td>
<td>5.6 m vs 5.1 m p=0.0871</td>
</tr>
<tr>
<td>EGFR mutation- positive</td>
<td>26</td>
<td>37.5% vs 0% [-15.1%, 61.4%]</td>
<td>HR 0.79 [0.20, 3.12]</td>
<td>HR NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.8 m vs 3.8 m p=0.7382</td>
<td>NR vs 4.3 m</td>
</tr>
<tr>
<td>EGFR mutation- negative</td>
<td>189</td>
<td>2.6% vs 0% [-5.6%, 7.3%]</td>
<td>HR 1.10 [0.78, 1.56]</td>
<td>HR 1.16 [0.79, 1.72]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0 m vs 2.6 m p=0.5771</td>
<td>3.7 m vs 5.9 m p=0.4449</td>
</tr>
<tr>
<td>Never smoker</td>
<td>375</td>
<td>18.1% vs 0% [12.3 %, 24.0%]</td>
<td>HR 0.55 [0.42, 0.72]</td>
<td>HR 0.67 [0.49, 0.92]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.6 m vs 2.8 m p<0.0001</td>
<td>8.9 m vs 6.1 m p=0.0124</td>
</tr>
<tr>
<td>Ever smoker</td>
<td>1317</td>
<td>5.3% vs 1.6% [1.4%, 5.7%]</td>
<td>HR 0.89 [0.78, 1.01]</td>
<td>HR 0.92 [0.79, 1.06]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7 m vs 2.6 m p=0.0707</td>
<td>5.0 m vs 4.9 m p=0.2420</td>
</tr>
<tr>
<td>Asians\d</td>
<td>342</td>
<td>12.4% vs 2.1% [4.0%, 15.8%]</td>
<td>HR 0.69 [0.52, 0.91]</td>
<td>HR 0.66 [0.48, 0.91]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.4 m vs 2.2 m p=0.0084</td>
<td>9.5 m vs 5.5 m p=0.0100</td>
</tr>
<tr>
<td>Non-Asians</td>
<td>1350</td>
<td>6.8% vs 1.0% [3.5%, 7.9%]</td>
<td>HR 0.86 [0.76, 0.98]</td>
<td>HR 0.92 [0.80, 1.07]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.9 m vs 2.7 m p=0.0197</td>
<td>5.2 m vs 5.1 m p=0.2942</td>
</tr>
</tbody>
</table>

- a Values presented are for IRESSA versus placebo.
- b “m” is medians in months. Numbers in square brackets are 95% confidence intervals for HR.
- c Stratified log-rank test for overall; otherwise cox proportional hazards model.
- d Asian ethnicity excludes patients of Indian origin and refers to the racial origin of a patient group and not necessarily their place of birth.
- N Number of patients randomised.
- NC Not calculated for overall survival HR as the number of events is too few.
- NR Not reached.
- HR Hazard ratio (hazard ratios <1 favour IRESSA).

The IFUM study was a single-arm, multicentre study conducted in Caucasian patients (n=106) with activating, sensitising EGFR mutation positive NSCLC to confirm that the activity of gefitinib is
similar in Caucasian and Asian populations. The ORR according to investigator review was 70% and the median PFS was 9.7 months. These data are similar to those reported in the IPASS study.

EGFR mutation status and clinical characteristics
Clinical characteristics of never smoker, adenocarcinoma histology, and female gender have been shown to be independent predictors of positive EGFR mutation status in a multivariate analysis of 786 Caucasian patients from gefitinib studies* (see Table 7). Asian patients also have a higher incidence of EGFR mutation-positive tumours.

Table 7 Summary of multivariate logistic regression analysis to identify factors that independently predicted for the presence of EGFR mutations in 786 Caucasian patients*

<table>
<thead>
<tr>
<th>Factors that predicted for presence of EGFR mutation</th>
<th>p-value</th>
<th>Odds of EGFR mutation</th>
<th>Positive predictive value (9.5% of the overall population are EGFR mutation-positive (M+))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking status</td>
<td><0.0001</td>
<td>6.5 times higher in never smokers than ever-smokers</td>
<td>28/70 (40%) of never smokers are M+ 47/716 (7%) of ever smokers are M+</td>
</tr>
<tr>
<td>Histology</td>
<td><0.0001</td>
<td>4.4 times higher in adenocarcinoma than in non-adenocarcinoma</td>
<td>63/396 (16%) of patients with adenocarcinoma histology are M+ 12/390 (3%) of patients with non-adenocarcinoma histology are M+</td>
</tr>
<tr>
<td>Gender</td>
<td>0.0397</td>
<td>1.7 times higher in females than males</td>
<td>40/235 (17%) of females are M+ 35/551 (6%) of males are M+</td>
</tr>
</tbody>
</table>

*from the following studies: INTEREST, ISEL, INTACT 1&2, IDEAL 1&2, INVITE

5.2 Pharmacokinetic properties

Absorption

Following oral administration of gefitinib, absorption is moderately slow and peak plasma concentrations of gefitinib typically occur at 3 to 7 hours after administration. Mean absolute bioavailability is 59% in cancer patients. Exposure to gefitinib is not significantly altered by food. In a trial in healthy volunteers where gastric pH was maintained above pH 5, gefitinib exposure was reduced by 47%, likely due to impaired solubility of gefitinib in the stomach (see sections 4.4 and 4.5).

Distribution

Gefitinib has a mean steady-state volume of distribution of 1400 l indicating extensive distribution into tissue. Plasma protein binding is approximately 90%. Gefitinib binds to serum albumin and alpha 1-acid glycoprotein.

In vitro data indicate that gefitinib is a substrate for the membrane transport protein P-gp.

Biotransformation

In vitro data indicate that CYP3A4 and CYP2D6 are the major P450 isozyme involved in the oxidative metabolism of gefitinib.
In vitro studies have shown that gefitinib has limited potential to inhibit CYP2D6. Gefitinib shows no enzyme induction effects in animal studies and no significant inhibition (in vitro) of any other cytochrome P450 enzyme.

Gefitinib is extensively metabolised in humans. Five metabolites have been fully identified in excreta and 8 metabolites in plasma. The major metabolite identified was O-desmethyl gefitinib, which is 14-fold less potent than gefitinib at inhibiting EGFR stimulated cell growth and has no inhibitory effect on tumour cell growth in mice. It is therefore considered unlikely that it contributes to the clinical activity of gefitinib.

The formation of O-desmethyl gefitinib has been shown, in vitro, to be via CYP2D6. The role of CYP2D6 in the metabolic clearance of gefitinib has been evaluated in a clinical trial in healthy volunteers genotyped for CYP2D6 status. In poor metabolisers no measurable levels of O-desmethyl gefitinib were produced. The levels of exposure to gefitinib achieved in both the extensive and the poor metaboliser groups were wide and overlapping but the mean exposure to gefitinib was 2-fold higher in the poor metaboliser group. The higher average exposures that could be achieved by individuals with no active CYP2D6 may be clinically relevant since adverse effects are related to dose and exposure.

Elimination

Gefitinib is excreted mainly as metabolites via the faeces, with renal elimination of gefitinib and metabolites accounting for less than 4% of the administered dose.

Gefitinib total plasma clearance is approximately 500 ml/min and the mean terminal half-life is 41 hours in cancer patients. Administration of gefitinib once daily results in 2- to 8-fold accumulation, with steady state exposures achieved after 7 to 10 doses. At steady state, circulating plasma concentrations are typically maintained within a 2- to 3-fold range over the 24-hour dosing interval.

Special populations

From analyses of population pharmacokinetic data in cancer patients, no relationships were identified between predicted steady-state trough concentration and patient age, body weight, gender, ethnicity or creatinine clearance (above 20 ml/min).

Hepatic impairment

In a phase I open-label study of single dose gefitinib 250 mg in patients with mild, moderate or severe hepatic impairment due to cirrhosis (according to Child-Pugh classification), there was an increase in exposure in all groups compared with healthy controls. An average 3.1-fold increase in exposure to gefitinib in patients with moderate and severe hepatic impairment was observed. None of the patients had cancer, all had cirrhosis and some had hepatitis. This increase in exposure may be of clinical relevance since adverse experiences are related to dose and exposure to gefitinib.

Gefitinib has been evaluated in a clinical trial conducted in 41 patients with solid tumours and normal hepatic function, or moderate or severe hepatic impairment (classified according to baseline Common Toxicity Criteria grades for AST, alkaline phosphatase and bilirubin) due to liver metastases. It was shown that following daily administration of 250 mg gefitinib, time to steady-state, total plasma clearance (C_{maxSS}) and steady-state exposure (AUC$_{24SS}$) were similar for the groups with normal and
moderately impaired hepatic function. Data from 4 patients with severe hepatic impairment due to liver metastases suggested that steady-state exposures in these patients are also similar to those in patients with normal hepatic function.

5.3 Preclinical safety data

Adverse reactions not observed in clinical studies, but seen in animals at exposure levels similar to the clinical exposure levels and with possible relevance to clinical use were as follows:

– Corneal epithelia atrophy and corneal translucencies
– Renal papillary necrosis
– Hepatocellular necrosis and eosinophilic sinusoidal macrophage infiltration

Data from non-clinical (in vitro) studies indicate that gefitinib has the potential to inhibit the cardiac action potential repolarisation process (e.g. QT interval). Clinical experience has not shown a causal association between QT prolongation and gefitinib.

A reduction in female fertility was observed in the rat at a dose of 20 mg/kg/day.

Published studies have shown that genetically modified mice, lacking expression of EGFR, exhibit developmental defects, related to epithelial immaturity in a variety of organs including the skin, gastrointestinal tract and lung. When gefitinib was administered to rats during organogenesis, there were no effects on embryofoetal development at the highest dose (30 mg/kg/day). However, in the rabbit, there were reduced foetal weights at 20 mg/kg/day and above. There were no compound-induced malformations in either species. When administered to the rat throughout gestation and parturition, there was a reduction in pup survival at a dose of 20 mg/kg/day.

Following oral administration of C-14 labelled gefitinib to lactating rats 14 days post-partum, concentrations of radioactivity in milk were 11-19 fold higher than in blood.

Gefitinib showed no genotoxic potential.

A 2-year carcinogenicity study in rats resulted in a small but statistically significant increased incidence of hepatocellular adenomas in both male and female rats and mesenteric lymph node haemangiosarcomas in female rats at the highest dose (10 mg/kg/day) only. The hepatocellular adenomas were also seen in a 2-year carcinogenicity study in mice, which demonstrated a small increased incidence of this finding in male mice at the mid dose, and in both male and female mice at the highest dose. The effects reached statistical significance for the female mice, but not for the males. At no-effect levels in both mice and rats there was no margin in clinical exposure. The clinical relevance of these findings is unknown.

The results of an in vitro phototoxicity study demonstrated that gefitinib may have phototoxicity potential.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients
Tablet core
Lactose monohydrate
Microcrystalline cellulose (E460)
Crocarmellose sodium
Povidone (K29-32) (E1201)
Sodium laurilsulfate
Magnesium stearate

Tablet coating
Hypermellose (E464)
Macrogol 300
Titanium dioxide (E171)
Yellow iron oxide (E172)
Red iron oxide (E172)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

4 years.

6.4 Special precautions for storage

Store in the original package in order to protect from moisture.

6.5 Nature and contents of container

PVC/Aluminium perforated blister containing 10 tablets or PVC/Aluminium non-perforated blister containing 10 tablets.

Three blisters are combined with an aluminium foil laminate over-wrap in a carton.

Pack size of 30 film-coated tablets. Not all pack sizes may be marketed.

6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85
Södertälje
Sweden
8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/526/001
EU/1/09/526/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 24/06/2009
Date of latest renewal: 23/04/2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

AstraZeneca UK Limited
Macclesfield
Cheshire SK10 2NA
United Kingdom

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (See Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic Safety Update Reports

The marketing authorisation holder shall submit periodic safety update reports for this product in accordance with the requirements set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk Management Plan (RMP)

The MAH shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP shall be submitted:
- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.

If the dates for submission of a PSUR and the update of a RMP coincide, they can be submitted at the same time.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

CARTON

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRESSA 250 mg film-coated tablets</td>
</tr>
<tr>
<td>gefitinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each tablet contains 250 mg gefitinib.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains lactose and sodium, see package leaflet for further information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 film-coated tablets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the package leaflet before use.</td>
</tr>
<tr>
<td>Oral use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
</table>
Store in the original package in order to protect from moisture.

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85
Södertälje
Sweden

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/526/001
EU/1/09/526/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription.

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

iressa

17. UNIQUE IDENTIFIER – 2D BARCODE

<2D barcode carrying the unique identifier included.>

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA
PC: {number}
SN: {number}
NN: {number}
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS
BLISTER/ALUMINIUM FOIL LAMINATE FLOW WRAP

<table>
<thead>
<tr>
<th></th>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRESSA 250 mg tablets</td>
</tr>
<tr>
<td></td>
<td>gefitinib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AstraZeneca</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5. OTHER</th>
</tr>
</thead>
</table>
B. PACKAGE LEAFLET
Package leaflet: Information for the patient

IRESSA 250 mg film-coated tablets
gefitinib

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What IRESSA is and what it is used for
2. What you need to know before you take IRESSA
3. How to take IRESSA
4. Possible side effects
5. How to store IRESSA
6. Contents of the pack and other information

1. What IRESSA is and what it is used for

IRESSA contains the active substance gefitinib which blocks a protein called ‘epidermal growth factor receptor’ (EGFR). This protein is involved in the growth and spread of cancer cells.

IRESSA is used to treat adults with non-small cell lung cancer. This cancer is a disease in which malignant (cancer) cells form in the tissues of the lung.

2. What you need to know before you take IRESSA

Do not take IRESSA
- if you are allergic to gefitinib or any of the other ingredients of this medicine (listed in section 6, ‘What IRESSA contains’).
- if you are breast-feeding.

Warnings and precautions
Talk to your doctor or pharmacist before taking IRESSA
- if you have ever had any other lung problems. Some lung problems may get worse during treatment with IRESSA.
- if you have ever had problems with your liver.
Children and adolescents
IRESSA is not indicated in children and adolescents under 18 years.

Other medicines and IRESSA
Tell your doctor or pharmacist if you are taking, have recently taken, or might take any other medicines.

In particular, tell your doctor or pharmacist if you are taking any of the following medicines:
- Phenytoin or carbamazepine (for epilepsy).
- Rifampicin (for tuberculosis).
- Itraconazole (for fungal infections).
- Barbiturates (a type of medicine used for sleeping problems).
- Herbal remedies containing St John’s wort (*Hypericum perforatum*, used for depression and anxiety).
- Proton-pump inhibitors, H₂-antagonists and antacids (for ulcers, indigestion, heartburn and to reduce acids in the stomach).

These medicines may affect the way IRESSA works.
- Warfarin (a so-called oral anticoagulant, to prevent blood clots). If you are taking a medicine containing this active substance, your doctor may need to do blood tests more often.

If any of the above applies to you, or if you are not sure, check with your doctor or pharmacist before taking IRESSA.

Pregnancy, breast-feeding and fertility
Talk to your doctor before taking this medicine if you are pregnant, may become pregnant or are breast-feeding.

It is recommended that you avoid becoming pregnant during treatment with IRESSA because IRESSA could harm your baby.

Do not take IRESSA if you are breast-feeding for the safety of your baby.

Driving and using machines
If you feel weak whilst taking this medicine, take care driving or using tools or machines.

IRESSA contains lactose
If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.

IRESSA contains sodium
This medicine contains less than 1 mmol (23 mg) of sodium per dose, that is to say it is essentially ‘sodium-free’.

3. How to take IRESSA
Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

- The recommended dose is one 250 mg tablet per day.
- Take the tablet at about the same time each day.
You can take the tablet with or without food. Do not take antacids (to reduce the acid level of your stomach) 2 hours before or 1 hour after taking IRESSA.

If you have trouble swallowing the tablet, dissolve it in half a glass of still (non-fizzy) water. Do not use any other liquids. Do not crush the tablet. Swirl the water until the tablet has dissolved. This may take up to 20 minutes. Drink the liquid straight away. To make sure that you have drunk all of the medicine, rinse the glass very well with half a glass of water and drink it.

If you take more IRESSA than you should
If you have taken more tablets than you should, talk to a doctor or pharmacist straight away.

If you forget to take IRESSA
What to do if you forget to take a tablet depends on how long it is until your next dose.
- If it is 12 hours or more until your next dose: take the missed tablet as soon as you remember. Then take the next dose as usual.
- If it is less than 12 hours until your next dose: skip the missed tablet. Then take the next tablet at the usual time.

Do not take a double dose (two tablets at the same time) to make up for a forgotten dose.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. Possible side effects

Like all medicines this medicine can cause side effects, although not everybody gets them.

Tell your doctor immediately if you notice any of the following side effects - you may need urgent medical treatment:

- Allergic reaction (common), particularly if symptoms include swollen face, lips, tongue or throat, difficulty to swallow, hives, nettle rash and difficulty breathing.
- Serious breathlessness, or sudden worsening breathlessness, possibly with a cough or fever. This may mean that you have an inflammation of the lungs called ‘interstitial lung disease’. This may affect about 1 in 100 patients taking IRESSA and can be life-threatening.
- Severe skin reactions (rare) affecting large areas of your body. The signs may include redness, pain, ulcers, blisters, and shedding of the skin. The lips, nose, eyes and genitals may also be affected.
- Dehydration (common) caused by long term or severe diarrhoea, vomiting (being sick), nausea (feeling sick) or loss of appetite.
- Eye problems (uncommon), such as pain, redness, watery eyes, light sensitivity, changes in vision or ingrowing eyelashes. This may mean that you have an ulcer on the surface of the eye (cornea).
Tell your doctor as soon as possible if you notice any of the following side effects:

Very common: side effects (may affect more than 1 in 10 people)
- Diarrhoea
- Vomiting
- Nausea
- Skin reactions such as an acne-like rash, which is sometimes itchy with dry and/or cracked skin
- Loss of appetite
- Weakness
- Red or sore mouth
- Increase of a liver enzyme known as alanine aminotransferase in a blood test; if too high, your doctor may tell you to stop taking IRESSA

Common: side effects (may affect up to 1 in 10 people)
- Dry mouth
- Dry, red or itchy eyes
- Red and sore eyelids
- Nail problems
- Hair loss
- Fever
- Bleeding (such as nose bleed or blood in your urine)
- Protein in your urine (shown in a urine test)
- Increase of bilirubin and the other liver enzyme known as aspartate aminotransferase in a blood test; if too high, your doctor may tell you to stop taking IRESSA
- Increase of creatinine levels in a blood test (related to kidney function)
- Cystitis (burning sensations during urination and frequent, urgent need to urinate)

Uncommon: side effects (may affect up to 1 in 100 people)
- Inflammation of the pancreas. The signs include very severe pain in the upper part of the stomach area and severe nausea and vomiting.
- Inflammation of the liver. Symptoms may include a general feeling of being unwell, with or without possible jaundice (yellowing of the skin and eyes). This side effect is uncommon; however, some patients have died from this.
- Gastrointestinal perforation

Rare: side effects (may affect up to 1 in 1000 people)
- Inflammation of the blood vessels in the skin. This may give the appearance of bruising or patches of non-blanching rash on the skin.
- Haemorrhagic cystitis (burning sensations during urination and frequent, urgent need to urinate with blood in the urine).

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist, or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.
5. How to store IRESSA

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the carton, blister and overwrap foil after EXP. The expiry date refers to the last day of that month.

Store in the original package in order to protect from moisture.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help to protect the environment.

6. Contents of the pack and other information

What IRESSA contains

- The active substance is gefitinib. Each tablet contains 250 mg of gefitinib.
- The other ingredients (excipients) are lactose monohydrate, microcrystalline cellulose (E460), croscarmellose sodium, povidone (K29-32) (E1201), sodium laurilsulfate, magnesium stearate, hypromellose (E464), macrogol 300, titanium dioxide (E171), yellow iron oxide (E172) and red iron oxide (E172).

What IRESSA looks like and contents of the pack

IRESSA is a round brown tablet marked with ‘IRESSA 250’ on one side and plain on the other.

IRESSA comes in blister packs of 30 tablets. The blister foil may be perforated or non-perforated.

Marketing Authorisation Holder and Manufacturer

AstraZeneca AB
SE-151 85
Södertälje
Sweden

AstraZeneca UK Limited
Macclesfield
Cheshire SK10 2NA
United Kingdom

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien
AstraZeneca S.A./N.V.
Tel: +32 2 370 48 11

Lietuva
UAB AstraZeneca Lietuva
Tel: +370 5 2660550

България

Luxembourg/Luxemburg
AstraZeneca България ЕООД
Тел.: +359 (2) 44 55 000

Česká republika
AstraZeneca Czech Republic s.r.o.
Tel.: +420 222 807 111

Danmark
AstraZeneca A/S
Tlf.: +45 43 66 64 62

Deutschland
AstraZeneca GmbH
Tel.: +49 41 03 7080

Eesti
AstraZeneca
Tel.: +372 65 49 600

Ελλάδα
AstraZeneca Α.Ε.
Τηλ.: +30 2 10 687 1500

España
AstraZeneca Farmacéutica Spain, S.A.
Tel.: +34 91 301 91 00

France
AstraZeneca
Tél: +33 1 41 29 40 00

Hrvatska
AstraZeneca d.o.o.
Tel.: +385 1 46 28 000

Ireland
AstraZeneca Pharmaceuticals (Ireland) Ltd
Tel.: +353 1 609 7100

Ísland
Vistor hf.
Sími: +354 535 7000

Italia
AstraZeneca S.p.A.
Tel.: +39 02 9801 1

Κύπρος

Magyarország
AstraZeneca Kft.
Tel.: +36 1 883 6500

Malta
Associated Drug Co. Ltd
Tel: +356 2277 8000

Nederland
AstraZeneca BV
Tel: +31 79 363 2222

Norge
AstraZeneca AS
Tlf: +47 21 00 64 00

Österreich
AstraZeneca Österreich GmbH
Tel: +43 1 711 31 0

Polska
AstraZeneca Pharma Poland Sp. z o.o.
Tel.: +48 22 245 73 00

Portugal
AstraZeneca Produtos Farmacêuticos, Lda.
Tel: +351 21 434 61 00

România
AstraZeneca Pharma SRL
Tel: +40 21 317 60 41

Slovenija
AstraZeneca UK Limited
Tel: +386 1 51 35 600

Slovenská republika
AstraZeneca AB, o.z.
Tel: +421 2 5737 7777

Suomi/Finland
AstraZeneca Oy
Puh/Tel: +358 10 23 010

Sverige
This leaflet was last revised in {MM/YYYY}

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/

This leaflet is available in all EU/EEA languages on the European Medicines Agency website.