ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

Onglyza 2.5 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 2.5 mg saxagliptin (as hydrochloride).

Excipient(s) with known effect:
Each tablet contains 99 mg lactose (as monohydrate).

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablet (tablet).

Onglyza 2.5 mg tablets are pale yellow to light yellow, biconvex, round, film-coated tablets, with “2.5” printed on one side and “4214” printed on the other side, in blue ink.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Onglyza is indicated in adult patients with type 2 diabetes mellitus as an adjunct to diet and exercise to improve glycaemic control:

- as monotherapy when metformin is inappropriate due to intolerance or contraindications
- in combination with other medicinal products for the treatment of diabetes, including insulin, when these do not provide adequate glycaemic control (see sections 4.4, 4.5 and 5.1 for available data on different combinations).

4.2 Posology and method of administration

Posology

The recommended dose of Onglyza is 5 mg once daily. When Onglyza is used in combination with insulin or a sulphonylurea, a lower dose of the insulin or sulphonylurea may be required to reduce the risk of hypoglycaemia (see section 4.4).

The safety and efficacy of saxagliptin as triple oral therapy in combination with metformin and a thiazolidinedione have not been established.

Special populations
Elderly (≥ 65 years)
No dose adjustment is recommended based solely on age (see also sections 5.1 and 5.2).

Renal impairment
No dose adjustment is recommended for patients with mild renal impairment.

The dose should be reduced to 2.5 mg once daily in patients with moderate or severe renal impairment.
Onglyza is not recommended for patients with end-stage renal disease (ESRD) requiring haemodialysis (see section 4.4).

Because the dose should be limited to 2.5 mg based upon renal function, assessment of renal function is recommended prior to initiation of treatment, and, in keeping with routine care, renal assessment should be done periodically thereafter (see sections 4.4 and 5.2).

Hepatic impairment
No dose adjustment is necessary for patients with mild or moderate hepatic impairment (see section 5.2). Saxagliptin should be used with caution in patients with moderate hepatic impairment, and is not recommended for use in patients with severe hepatic impairment (see section 4.4).

Paediatric population
The safety and efficacy of Onglyza in children aged birth to < 18 years have not yet been established. No data are available.

Method of administration
The tablets can be taken with or without a meal at any time of the day. Tablets must not be split or cut.

If a dose is missed, it should be taken as soon as the patient remembers. A double dose should not be taken on the same day.

4.3 Contraindications

General
Onglyza should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

Onglyza is not a substitute for insulin in insulin-requiring patients.

Acute Pancreatitis
Use of DPP4 inhibitors has been associated with a risk of developing acute pancreatitis. Patients should be informed of the characteristic symptoms of acute pancreatitis; persistent, severe abdominal pain. If pancreatitis is suspected, Onglyza should be discontinued; if acute pancreatitis is confirmed, Onglyza should not be restarted. Caution should be exercised in patients with a history of pancreatitis.

In postmarketing experience of saxagliptin, there have been spontaneously reported adverse reactions of acute pancreatitis.

Renal impairment
A single dosage adjustment is recommended in patients with moderate or severe renal impairment. Saxagliptin is not recommended for use in patients with end-stage renal disease (ESRD) requiring haemodialysis. Assessment of renal function is recommended prior to initiation of Onglyza, and in keeping with routine care, renal assessment should be done periodically thereafter (see sections 4.2 and 5.2).

Hepatic impairment
Saxagliptin should be used with caution in patients with moderate hepatic impairment, and is not recommended for use in patients with severe hepatic impairment (see section 4.2).
Use with medicinal products known to cause hypoglycaemia
Sulphonylureas and insulin are known to cause hypoglycaemia. Therefore, a lower dose of sulphonylurea or insulin may be required to reduce the risk of hypoglycaemia when used in combination with Onglyza.

Hypersensitivity reactions
Onglyza must not be used in patients who have had any serious hypersensitivity reaction to a dipeptidyl peptidase-4 (DPP4) inhibitor (see section 4.3).

During postmarketing experience, including spontaneous reports and clinical trials, the following adverse reactions have been reported with the use of saxagliptin: serious hypersensitivity reactions, including anaphylactic reaction, anaphylactic shock, and angioedema. If a serious hypersensitivity reaction to saxagliptin is suspected, Onglyza should be discontinued, assess for other potential causes for the event, and institute alternative treatment for diabetes (see section 4.8).

Skin disorders
Ulcerative and necrotic skin lesions have been reported in extremities of monkeys in non-clinical toxicology studies (see section 5.3). Skin lesions were not observed at an increased incidence in clinical trials. Postmarketing reports of rash have been described in the DPP4 inhibitor class. Rash is also noted as an adverse reaction for Onglyza (see section 4.8). Therefore, in keeping with routine care of the diabetic patient, monitoring for skin disorders, such as blistering, ulceration or rash, is recommended.

Cardiac failure
Experience in NYHA class III-IV is still limited. In the SAVOR trial a small increase in the rate for hospitalisation for heart failure was observed in the saxagliptin treated patients compared to placebo, although a causal relationship has not been established (see section 5.1). Additional analysis did not indicate a differential effect among NYHA classes. Caution is warranted if Onglyza is used in patients who have known risk factors for hospitalisation for heart failure, such as a history of heart failure or moderate to severe renal impairment. Patients should be advised of the characteristic symptoms of heart failure, and to immediately report such symptoms.

Arthralgia
Joint pain, which may be severe, has been reported in postmarketing reports for DPP4 inhibitors (see section 4.8). Patients experienced relief of symptoms after discontinuation of the medication and some experienced recurrence of symptoms with reintroduction of the same or another DPP4 inhibitor. Onset of symptoms following initiation of drug therapy may be rapid or may occur after longer periods of treatment. If a patient presents with severe joint pain, continuation of drug therapy should be individually assessed.

Immunocompromised patients
Immunocompromised patients, such as patients who have undergone organ transplantation or patients diagnosed with human immunodeficiency syndrome, have not been studied in the Onglyza clinical program. Therefore, the efficacy and safety profile of saxagliptin in these patients has not been established.

Use with potent CYP3A4 inducers
Using CYP3A4 inducers like carbamazepine, dexamethasone, phenobarbital, phenytoin, and rifampicin may reduce the glycaemic lowering effect of Onglyza (see section 4.5).

Lactose
The tablets contain lactose monohydrate. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.
4.5 Interaction with other medicinal products and other forms of interaction

Clinical data described below suggest that the risk for clinically meaningful interactions with co-administered medicinal products is low.

The metabolism of saxagliptin is primarily mediated by cytochrome P450 3A4/5 (CYP3A4/5).

The co-administration of saxagliptin and CYP3A4/5 inducers, other than rifampicin (such as carbamazepine, dexamethasone, phenobarbital and phenytoin) have not been studied and may result in decreased plasma concentration of saxagliptin and increased concentration of its major metabolite. Glycaemic control should be carefully assessed when saxagliptin is used concomitantly with a potent CYP3A4/5 inducer.

Concomitant administration of saxagliptin with the moderate inhibitor of CYP3A4/5 diltiazem, increased the C_{max} and AUC of saxagliptin by 63% and 2.1-fold, respectively, and the corresponding values for the active metabolite were decreased by 44% and 34%, respectively.

Concomitant administration of saxagliptin with the potent inhibitor of CYP3A4/5 ketoconazole, increased the C_{max} and AUC of saxagliptin by 62% and 2.5-fold, respectively, and the corresponding values for the active metabolite were decreased by 95% and 88%, respectively.

Concomitant administration of saxagliptin with the potent CYP3A4/5 inducer rifampicin, reduced C_{max} and AUC of saxagliptin by 53% and 76%, respectively. The exposure of the active metabolite and the plasma DPP4 activity inhibition over a dose interval were not influenced by rifampicin (see section 4.4).

In in vitro studies, saxagliptin and its major metabolite neither inhibited CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, or 3A4, nor induced CYP1A2, 2B6, 2C9, or 3A4. In studies conducted in healthy subjects, neither the pharmacokinetics of saxagliptin nor its major metabolite, were meaningfully altered by metformin, glibenclamide, pioglitazone, digoxin, simvastatin, omeprazole, antacids or famotidine. In addition, saxagliptin did not meaningfully alter the pharmacokinetics of metformin, glibenclamide, pioglitazone, digoxin, simvastatin, the active components of a combined oral contraceptive (ethinyl estradiol and norgestimate), diltiazem or ketoconazole.

The effects of smoking, diet, herbal products, and alcohol use on the pharmacokinetics of saxagliptin have not been specifically studied.

4.6 Fertility, pregnancy and lactation

Pregnancy

The use of saxagliptin has not been studied in pregnant women. Studies in animals have shown reproductive toxicity at high doses (see section 5.3). The potential risk for humans is unknown. Onglyza should not be used during pregnancy unless clearly necessary.

Breast-feeding

It is unknown whether saxagliptin is excreted in human breast milk. Animal studies have shown excretion of saxagliptin and/or metabolite in milk. A risk to the suckling child cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy to the woman.

Fertility

The effect of saxagliptin on fertility in humans has not been studied. Effects on fertility were observed in male and female rats at high doses producing overt signs of toxicity (see section 5.3).

4.7 Effects on ability to drive and use machines

Onglyza may have a negligible influence on the ability to drive and use machines.
When driving or using machines, it should be taken into account that dizziness has been reported in studies with saxagliptin. In addition, patients should be alerted to the risk of hypoglycaemia when Onglyza is used in combination with other antidiabetic medicinal products known to cause hypoglycaemia (e.g. insulin, sulphonylureas).

4.8 Undesirable effects

Summary of the safety profile

The most commonly reported adverse reactions in placebo-controlled trials reported in ≥5% of patients treated with Onglyza 5 mg and more commonly than in patients treated with placebo are upper respiratory tract infection (7.7%), urinary tract infection (6.8%) and headache (6.5%).

There were 4,148 patients with type 2 diabetes, including 3,021 patients treated with Onglyza, randomised in six double-blind, controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control. In randomised, controlled, double-blind clinical trials (including developmental and postmarketing experience), over 17,000 patients with type 2 diabetes have been treated with Onglyza.

In a pooled analysis of 1,681 patients with type 2 diabetes including 882 patients treated with Onglyza 5 mg, randomised in five double-blind, placebo-controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control, the overall incidence of adverse events in patients treated with saxagliptin 5 mg was similar to placebo. Discontinuation of therapy due to adverse events was higher in patients who received saxagliptin 5 mg as compared to placebo (3.3% as compared to 1.8%).

Tabulated list of adverse reactions

Adverse reactions reported in ≥5% of patients treated with saxagliptin 5 mg and more commonly than in patients treated with placebo or that were reported in ≥2% of patients treated with saxagliptin 5 mg and ≥1% more frequently compared to placebo from the pooled analysis of five studies of glycaemic control, plus an additional active-controlled study of initial combination with metformin are shown in Table 1.

The adverse reactions are listed by system organ class and absolute frequency. Frequencies are defined as very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to 1/100), rare (≥1/10,000 to 1/1,000), very rare (<1/10,000), or not known (cannot be estimated from the available data).

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency of adverse reactions by treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saxagliptin monotherapy</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>Common</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Common</td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions
<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency of adverse reactions by treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse reaction</td>
<td>Gastroenteritis</td>
</tr>
<tr>
<td></td>
<td>Sinusitis</td>
</tr>
<tr>
<td></td>
<td>Naso-pharyngitis</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hyper-sensitivity reactions†‡</td>
</tr>
<tr>
<td></td>
<td>Anaphylactic reactions including anaphylactic shock†‡</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Hypoglycaemia</td>
</tr>
<tr>
<td></td>
<td>Dyslipidaemia</td>
</tr>
<tr>
<td></td>
<td>Hypertri-glyceridaemia</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dizziness</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
</tr>
<tr>
<td>Gastro-intestinal disorders</td>
<td>Abdominal pain†</td>
</tr>
<tr>
<td></td>
<td>Diarrhoea⁴</td>
</tr>
<tr>
<td></td>
<td>Dyspepsia</td>
</tr>
<tr>
<td></td>
<td>Flatulence</td>
</tr>
<tr>
<td></td>
<td>Gastritis</td>
</tr>
<tr>
<td></td>
<td>Nausea†</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis†</td>
</tr>
<tr>
<td></td>
<td>Constipation†</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Rash†</td>
</tr>
<tr>
<td></td>
<td>Dermatitis†</td>
</tr>
<tr>
<td></td>
<td>Pruritus†</td>
</tr>
<tr>
<td></td>
<td>Urticaria†</td>
</tr>
<tr>
<td></td>
<td>Angioedema†‡</td>
</tr>
<tr>
<td>Musculo-skeletal and connective tissue disorders</td>
<td>Arthralgia*</td>
</tr>
<tr>
<td></td>
<td>Myalgia²</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Erectile dysfunction</td>
</tr>
<tr>
<td>General disorders</td>
<td></td>
</tr>
<tr>
<td>System organ class and administration site conditions</td>
<td>Frequency of adverse reactions by treatment regimen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Adverse reaction</td>
<td>Fatigue</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td>Oedema peripheral</td>
<td>Common</td>
</tr>
</tbody>
</table>

1 Includes saxagliptin in add-on to metformin and initial combination with metformin.
2 Only in the initial combination therapy.
3 There was no statistically significant difference compared to placebo. The incidence of confirmed hypoglycaemia was uncommon for Onglyza 5 mg (0.8%) and placebo (0.7%).
4 The incidence of diarrhoea was 4.1% (36/882) in the saxagliptin 5 mg group and 6.1% (49/799) in the placebo group.
5 As initial combination with metformin, myalgia is reported as uncommon.
6 Adverse reactions were identified through postmarketing surveillance.
7 See sections 4.3 and 4.4.
8 Also reported during postmarketing surveillance (see section 4.4).

SAVOR trial results

The SAVOR trial included 8240 patients treated with Onglyza 5 mg or 2.5 mg once daily and 8173 patients on placebo. The overall incidence of adverse events in patients treated with Onglyza in this trial was similar to placebo (72.5% versus 72.2%, respectively).

The incidence of adjudicated pancreatitis events was 0.3% in both Onglyza-treated patients and placebo-treated patients in the intent-to-treat population.

The incidence of hypersensitivity reactions was 1.1% in both Onglyza-treated patients and placebo-treated patients.

The overall incidence of reported hypoglycaemia (recorded in daily patient diaries) was 17.1% in subjects treated with Onglyza and 14.8% among patients treated with placebo. The percent of subjects with reported on-treatment events of major hypoglycaemia (defined as an event that required assistance of another person) was higher in the saxagliptin group than in the placebo group (2.1% and 1.6%, respectively). The increased risk of overall hypoglycaemia and major hypoglycaemia observed in the saxagliptin-treated group occurred primarily in subjects treated with SU at baseline and not in subjects on insulin or metformin monotherapy at baseline. The increased risk of overall and major hypoglycaemia was primarily observed in subjects with A1C <7% at baseline.

Decreased lymphocyte counts were reported in 0.5% of Onglyza treated patients and 0.4% of placebo-treated patients.

Hospitalisation for heart failure, occurred at a greater rate in the saxagliptin group (3.5%) compared with the placebo group (2.8%), with nominal statistical significance favouring placebo [HR = 1.27; 95% CI 1.07, 1.51]; P = 0.007]. See also section 5.1.

Description of selected adverse reactions

Hypoglycaemia

Adverse reactions of hypoglycaemia were based on all reports of hypoglycaemia; a concurrent glucose measurement was not required.

When used as add-on combination therapy with metformin plus sulphonylurea, the overall incidence of reported hypoglycaemia was 10.1% for Onglyza 5 mg and 6.3% for placebo.

When used as add-on to insulin (with or without metformin), the overall incidence of reported hypoglycaemia was 18.4% for Onglyza 5 mg and 19.9% for placebo.
Investigations
Across clinical studies, the incidence of laboratory adverse events was similar in patients treated with saxagliptin 5 mg compared to patients treated with placebo. A small decrease in absolute lymphocyte count was observed. From a baseline mean absolute lymphocyte count of approximately 2,200 cells/μl, a mean decrease of approximately 100 cells/μl relative to placebo was observed in the placebo-controlled-pooled analysis. Mean absolute lymphocyte counts remained stable with daily dosing up to 102 weeks in duration. The decreases in lymphocyte count were not associated with clinically relevant adverse reactions. The clinical significance of this decrease in lymphocyte count relative to placebo is not known.

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose
Onglyza had no clinically meaningful effect on QTc interval or heart rate at oral doses up to 400 mg daily for 2 weeks (80 times the recommended dose). In the event of an overdose, appropriate supportive treatment should be initiated as dictated by the patient’s clinical status. Saxagliptin and its major metabolite can be removed by haemodialysis (23% of dose over 4 hours).

5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Drugs used in diabetes. Dipeptidyl peptidase 4 (DPP4) inhibitors, ATC code: A10BH03

Mechanism of action and pharmacodynamic effects
Saxagliptin is a highly potent (Ki: 1.3 nM), selective, reversible, competitive, DPP4 inhibitor. In patients with type 2 diabetes, administration of saxagliptin led to inhibition of DPP4 enzyme activity for a 24-hour period. After an oral glucose load, this DPP4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), decreased glucagon concentrations and increased glucose-dependent beta-cell responsiveness, which resulted in higher insulin and C-peptide concentrations. The rise in insulin from pancreatic beta-cells and the decrease in glucagon from pancreatic alpha-cells were associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. Saxagliptin improves glycaemic control by reducing fasting and postprandial glucose concentrations in patients with type 2 diabetes.

Clinical efficacy and safety
In randomised, controlled, double-blind clinical trials (including developmental and postmarketing experience), over 17,000 patients with type 2 diabetes have been treated with saxagliptin.

Glycaemic control
A total of 4,148 patients with type 2 diabetes, including 3,021 patients treated with, saxagliptin were randomised in 6 double-blind, controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control. Treatment with saxagliptin 5 mg once daily produced clinically relevant and statistically significant improvements in haemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and postprandial glucose (PPG) compared to placebo in monotherapy, in combination with metformin (initial or add-on therapy), in combination with a sulphonylurea, and in combination with a thiazolidinedione (see Table 2). There was also no apparent change in body weight associated with saxagliptin. Reductions in HbA1c were seen across subgroups including gender, age,
race, and baseline body mass index (BMI) and higher baseline HbA1c was associated with a greater adjusted mean change from baseline with saxagliptin.

Saxagliptin as monotherapy

Two double-blind, placebo-controlled studies of 24-week duration were conducted to evaluate the efficacy and safety of saxagliptin monotherapy in patients with type 2 diabetes. In both studies, once-daily treatment with saxagliptin provided significant improvements in HbA1c (see Table 2). The findings of these studies were confirmed with two subsequent 24-week regional (Asian) monotherapy studies comparing saxagliptin 5 mg with placebo.

Saxagliptin add-on to metformin therapy

An add-on to metformin placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with metformin in patients with inadequate glycaemic control (HbA1c 7-10%) on metformin alone. Saxagliptin (n=186) provided significant improvements in HbA1c, FPG, and PPG compared to placebo (n=175). Improvements in HbA1c, PPG, and FPG following treatment with saxagliptin 5 mg plus metformin were sustained up to Week 102. The HbA1c change for saxagliptin 5 mg plus metformin (n=31) compared to placebo plus metformin (n=15) was -0.8% at Week 102.

Saxagliptin add-on to metformin compared with SU add-on to metformin

A 52-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin (428 patients) compared with a sulphonylurea (glipizide, 5 mg titrated as needed to 20 mg, mean dose of 15 mg) in combination with metformin (430 patients) in 858 patients with inadequate glycaemic control (HbA1c 6.5%-10%) on metformin alone. The mean metformin dose was approximately 1900 mg in each treatment group. After 52 weeks, the saxagliptin and glipizide groups had similar mean reductions from baseline in HbA1c in the per-protocol analysis (-0.7% vs. -0.8%, respectively, mean baseline HbA1c of 7.5% for both groups). The intent-to-treat analysis showed consistent results. The reduction in FPG was slightly less in the saxagliptin-group and there were more discontinuations (3.5% vs. 1.2%) due to lack of efficacy based on FPG criteria during the first 24 weeks of the study. Saxagliptin also resulted in a significantly lower proportion of patients with hypoglycaemia, 3% (19 events in 13 subjects) vs. 36.3% (750 events in 156 patients) for glipizide. Patients treated with saxagliptin exhibited a significant decrease from baseline in body weight compared to a weight gain in patients administered glipizide (-1.1 vs. +1.1 kg).

Saxagliptin add-on to metformin compared with sitagliptin add-on to metformin

An 18-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin (403 patients) compared with sitagliptin 100 mg in combination with metformin (398 patients) in 801 patients with inadequate glycaemic control on metformin alone. After 18 weeks, saxagliptin was non-inferior to sitagliptin in mean reduction from baseline in HbA1c in both the per-protocol and the full analysis sets. The reductions from baseline in HbA1c respectively for saxagliptin and sitagliptin in the primary per-protocol analysis were -0.5% (mean and median) and -0.6% (mean and median). In the confirmatory full analysis set, mean reductions were -0.4% and -0.6% respectively for saxagliptin and sitagliptin, with median reductions of -0.5% for both groups.

Saxagliptin in combination with metformin as initial therapy

A 24-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin as initial combination therapy in treatment-naive patients with inadequate glycaemic control (HbA1c 8-12%). Initial therapy with the combination of saxagliptin 5 mg plus metformin (n=306) provided significant improvements in HbA1c, FPG, and PPG compared to either saxagliptin (n=317) or metformin alone (n=313) as initial therapy. Reductions in HbA1c from baseline to Week 24 were observed in all evaluated subgroups defined by baseline HbA1c, with greater reductions observed in patients with a baseline HbA1c ≥ 10% (see Table 2). Improvements in HbA1c, PPG and FPG following initial therapy with saxagliptin 5 mg plus metformin were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg plus metformin (n=177) compared to metformin plus placebo (n=147) was -0.5% at Week 76.
Saxagliptin add-on to glibenclamide therapy

An add-on placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with glibenclamide in patients with inadequate glycemic control at enrollment (HbA1c 7.5-10%) on a sub-maximal dose of glibenclamide alone. Saxagliptin in combination with a fixed, intermediate dose of a sulphonylurea (glibenclamide 7.5 mg) was compared to titration to a higher dose of glibenclamide (approximately 92% of patients in the placebo plus glibenclamide group were uptitrated to a final total daily dose of 15 mg). Saxagliptin (n=250) provided significant improvements in HbA1c, FPG, and PPG compared to titration to a higher dose of glibenclamide (n=264). Improvements in HbA1c and PPG following treatment with saxagliptin 5 mg were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg (n=56) compared to uptitrated glibenclamide plus placebo (n=27) was -0.7% at Week 76.

Saxagliptin add-on combination therapy with insulin (with or without metformin)

A total of 455 patients with type 2 diabetes participated in a 24-week randomised, double-blind, placebo-controlled study to evaluate the efficacy and safety of saxagliptin in combination with a stable dose of insulin (baseline mean: 54.2 Units) in patients with inadequate glycemic control (HbA1c ≥ 7.5% and ≤ 11%) on insulin alone (n=141) or on insulin in combination with a stable dose of metformin (n=314). Saxagliptin 5 mg add-on to insulin with or without metformin provided significant improvements after 24 weeks in HbA1c and PPG compared with placebo add-on to insulin with or without metformin. Similar HbA1c reductions versus placebo were achieved for patients receiving saxagliptin 5 mg add-on to insulin regardless of metformin use (~0.4% for both subgroups). Improvements from baseline HbA1c were sustained in the saxagliptin add-on to insulin group compared to the placebo add-on to insulin group with or without metformin at Week 52. The HbA1c change for the saxagliptin group (n=244) compared to placebo (n=124) was -0.4% at Week 52.

Saxagliptin add-on to thiazolidinedione therapy

A placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with a thiazolidinedione (TZD) in patients with inadequate glycemic control (HbA1c 7-10.5%) on TZD alone. Saxagliptin (n=183) provided significant improvements in HbA1c, FPG, and PPG compared to placebo (n=180). Improvements in HbA1c, PPG and FPG following treatment with saxagliptin 5 mg were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg (n=82) compared to TZD plus placebo (n=53) was -0.9% at Week 76.

Saxagliptin add-on combination therapy with metformin and sulphonylurea

A total of 257 patients with type 2 diabetes participated in a 24-week randomised, double-blind, placebo-controlled study to evaluate the efficacy and safety of saxagliptin (5 mg once daily) in combination with metformin plus sulphonylurea (SU) in patients with inadequate glycemic control (HbA1c ≥ 7% and ≤ 10%). Saxagliptin (n=127) provided significant improvements in HbA1c and PPG compared with the placebo (n=128). The HbA1c change for saxagliptin compared to placebo was -0.7% at Week 24.

Saxagliptin add-on to dapagliflozin plus metformin therapy

A 24-week randomised, double-blind, placebo-controlled study conducted in patients with type 2 diabetes mellitus compared saxagliptin 5 mg with placebo as add-on therapy in individuals with HbA1c 7-10.5% treated with dapagliflozin (a SGLT2-inhibitor) and metformin. Patients who completed the initial 24-week study period were eligible to enter a controlled 28-week long-term study extension (52 weeks).

Individuals treated with saxagliptin added to dapagliflozin and metformin (n=153) achieved statistically significantly (p-value < 0.0001) greater reductions in HbA1c versus the group with placebo added to dapagliflozin plus metformin (n=162) at 24 weeks (see Table 2). The effect on HbA1c observed at Week 24 was sustained at Week 52. The safety profile of saxagliptin added to dapagliflozin plus metformin in the long-term treatment period was consistent with that observed in the 24-week treatment period in this study and in the trial in which saxagliptin and dapagliflozin were given concomitantly as add-on therapy to patients treated with metformin (described below).
Proportion of patients achieving HbA1c < 7%
The proportion of patients achieving HbA1c < 7% at Week 24 was higher in the saxagliptin 5 mg plus dapagliflozin plus metformin group 35.3% (95% CI [28.2, 42.4]) compared to the placebo plus dapagliflozin plus metformin group 23.1% (95% CI [16.9, 29.3]). The effect in HbA1c observed at Week 24 was sustained at Week 52.

Table 2 Key efficacy results of Onglyza 5 mg per day in placebo-controlled monotherapy trials and in add-on combination therapy trials

<table>
<thead>
<tr>
<th>MONOTHERAPY STUDIES</th>
<th>Mean baseline HbA1c (%)</th>
<th>Mean change(^{3}) from baseline HbA1c (%) at Week 24</th>
<th>Placebo-corrected mean change in HbA1c (%) at Week 24 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study CV181011 (n=103)</td>
<td>8.0</td>
<td>-0.5</td>
<td>-0.6 (-0.9, -0.4)(^{3})</td>
</tr>
<tr>
<td>Study CV181038 (n=69)</td>
<td>7.9</td>
<td>-0.7 (morning)</td>
<td>-0.4 (-0.7, -0.1)(^{4})</td>
</tr>
<tr>
<td>Study D1680L00006: add-on to metformin plus SU (n=70)</td>
<td>7.9</td>
<td>-0.6 (evening)</td>
<td>-0.4 (-0.6, -0.1)(^{5})</td>
</tr>
</tbody>
</table>

ADD-ON/COMBINATION STUDIES

Study CV181014: add-on to metformin (n=186)	8.1	-0.7	-0.8 (-1.0, -0.6)\(^{3}\)	
Study CV181040: add-on to SU\(^{1}\) (n=250)	8.5	-0.6	-0.7 (-0.9, -0.6)\(^{3}\)	
Study D1680L00006: add-on to metformin plus SU (n=257)	8.4	-0.7	-0.7 (-0.9, -0.5)\(^{3}\)	
Study CV181013: add-on to TZD (n=183)	8.4	-0.9	-0.6 (-0.8, -0.4)\(^{3}\)	
Study CV181039: initial combination with metformin\(^{6}\)	Overall population (n=306)	9.4	-2.5	-0.5 (-0.7, -0.4)\(^{7}\)
Baseline HbA1c ≥ 10% stratum (n=107)	10.8	-3.3	-0.6 (-0.9, -0.3)\(^{8}\)	
Study CV181168: sequential add-on to dapagliflozin + metformin (n=315)	7.9	-0.5	-0.4 (-0.5, -0.2)\(^{9}\)	
Study CV181057: add-on to insulin (+/-metformin)	Overall population (n=300)	8.7	-0.7	-0.4 (-0.6, -0.2)\(^{3}\)

n=Randomised patients (primary efficacy-intention-to-treat analysis) with data available.
\(^{1}\)Placebo group had uptitration of glibenclamide from 7.5 to 15 mg total daily dose.
\(^{2}\)Adjusted mean change from baseline adjusted for baseline value (ANCOVA).
\(^{3}\)p<0.001 compared to placebo.
\(^{4}\)p=0.0059 compared to placebo.
\(^{5}\)p=0.0157 compared to placebo.
\(^{6}\)Metformin was uptitrated from 500 to 2000 mg per day as tolerated.
\(^{7}\)Mean HbA1c change is the difference between the saxagliptin+metformin and metformin alone groups (p<0.0001).
\(^{8}\)Mean HbA1c change is the difference between the saxagliptin+metformin and metformin alone groups.
\(^{9}\)Mean HbA1c change is the difference between the saxagliptin+dapagliflozin+metformin and dapagliflozin+metformin groups (p<0.0001).

Saxagliptin and dapagliflozin add-on to metformin therapy
A total of 534 adult patients with type 2 diabetes mellitus and inadequate glycaemic control on metformin alone (HbA1c 8%-12%), participated in this 24-week randomised, double-blind, active comparator-controlled trial to compare the combination of saxagliptin and dapagliflozin added concurrently to metformin, versus saxagliptin or dapagliflozin added to metformin. Patients were randomised to one of three double-blind treatment groups to receive saxagliptin 5 mg and dapagliflozin 10 mg added to metformin, saxagliptin 5 mg and placebo added to metformin, or dapagliflozin 10 mg and placebo added to metformin.
The saxagliptin and dapagliflozin group achieved significantly greater reductions in HbA1c versus either the saxagliptin group or dapagliflozin group at 24 weeks (see Table 3).

Table 3 HbA1c at Week 24 in active-controlled study comparing the combination of saxagliptin and dapagliflozin added concurrently to metformin with either saxagliptin or dapagliflozin added to metformin

<table>
<thead>
<tr>
<th>Efficacy parameter</th>
<th>Saxagliptin 5 mg + dapagliflozin 10 mg + metformin N=179<sup>2</sup></th>
<th>Saxagliptin 5 mg + metformin N=176<sup>2</sup></th>
<th>Dapagliflozin 10 mg + metformin N=179<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%) at week 24<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.93</td>
<td>9.03</td>
<td>8.87</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean<sup>3</sup> (95% CI))</td>
<td>-1.47 (−1.62, −1.31)</td>
<td>-0.88 (−1.03, −0.72)</td>
<td>-1.20 (−1.35, −1.04)</td>
</tr>
<tr>
<td>Difference from saxagliptin + metformin (adjusted mean<sup>3</sup> (95% CI))</td>
<td>-0.59<sup>4</sup> (−0.81, −0.37)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Difference from dapagliflozin + metformin (adjusted mean<sup>3</sup> (95% CI))</td>
<td>-0.27<sup>5</sup> (−0.48, −0.05)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹LRM = Longitudinal repeated measures (using values prior to rescue).
²Randomised and treated patients with baseline and at least 1 post baseline efficacy measurement.
³Least squares mean adjusted for baseline value.
⁴p-value < 0.0001.
⁵p-value = 0.0166.

Proportion of patients achieving HbA1c < 7%
In the saxagliptin and dapagliflozin combination group, 41.4% (95% CI [34.5, 48.2]) of patients achieved HbA1c levels of less than 7% compared to 18.3% (95% CI [13.0, 23.5]) of patients in the saxagliptin group and 22.2% (95% CI [16.1, 28.3]) of patients in the dapagliflozin group.

Patients with renal impairment
A 12-week, multi-centre, randomised, double-blind, placebo-controlled study was conducted to evaluate the treatment effect of saxagliptin 2.5 mg once daily compared with placebo in 170 patients (85 patients on saxagliptin and 85 on placebo) with type 2 diabetes (HbA1c 7.0-11%) and renal impairment (moderate [n=90]; severe [n=41]; or ESRD [n=39]). In this study, 98.2% of the patients received other antihyperglycaemic treatments (75.3% on insulin and 31.2% on oral antihyperglycaemics; some received both). Saxagliptin significantly decreased HbA1c compared with placebo; the HbA1c change for saxagliptin was -0.9% at Week 12 (HbA1c change of -0.4% for placebo). Improvements in HbA1c following treatment with saxagliptin 2.5 mg were sustained up to Week 52, however, the number of patients who completed 52 weeks without modification of other antihyperglycaemic treatment was low (26 subjects in the saxagliptin group versus 34 subjects in the placebo group). The incidence of confirmed hypoglycaemic events was somewhat higher in the saxagliptin group (9.4%) versus placebo group (4.7%) although the number of subjects with any hypoglycaemic event did not differ between the treatment groups. There was no adverse effect on renal function as determined by estimated glomerular filtration rate or CrCL at Week 12 and Week 52.

Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus - Thrombolysis in Myocardial Infarction (SAVOR) Study
SAVOR was a CV outcome trial in 16,492 patients with HbA1c ≥6.5% and <12% (12959 with established CV disease; 3533 with multiple risk factors only) who were randomised to saxagliptin (n=8280) or placebo (n=8212) added to regional standards of care for HbA1c and CV risk factors. The
study population included those ≥65 years (n=8561) and ≥ 75 years (n=2330), with normal or mild renal impairment (n=13,916) as well as moderate (n=2240) or severe (n=336) renal impairment.

The primary safety (noninferiority) and efficacy (superiority) endpoint was a composite endpoint consisting of the time-to-first occurrence of any of the following major adverse CV events (MACE): CV death, nonfatal myocardial infarction, or nonfatal ischaemic stroke.

After a mean follow up of 2 years, the trial met its primary safety endpoint demonstrating saxagliptin does not increase the cardiovascular risk in patients with type 2 diabetes compared to placebo when added to current background therapy.

No benefit was observed for MACE or all-cause mortality.

Table 4 Primary and Secondary Clinical Endpoints by Treatment Group in the SAVOR Study*

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Saxagliptin (N=8280)</th>
<th>Placebo (N=8212)</th>
<th>Hazard Ratio (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subjects with events n (%)</td>
<td>Event rate per 100 patient-yrs</td>
<td>Subjects with events n (%)</td>
</tr>
<tr>
<td>Primary composite endpoint: MACE</td>
<td>613 (7.4)</td>
<td>3.76</td>
<td>609 (7.4)</td>
</tr>
<tr>
<td>Secondary composite endpoint: MACE plus</td>
<td>1059 (12.8)</td>
<td>6.72</td>
<td>1034 (12.6)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>420 (5.1)</td>
<td>2.50</td>
<td>378 (4.6)</td>
</tr>
</tbody>
</table>

* Intent-to-treat population
† Hazard ratio adjusted for baseline renal function category and baseline CVD risk category.
‡ p-value <0.001 for noninferiority (based on HR <1.3) compared to placebo.
§ p-value = 0.99 for superiority (based on HR <1.0) compared to placebo.
Events accumulated consistently over time, and the event rates for Onglyza and placebo did not diverge notably over time.
¶ Significance not tested.

One component of the secondary composite endpoint, hospitalisation for heart failure, occurred at a greater rate in the saxagliptin group (3.5%) compared with the placebo group (2.8%), with nominal statistical significance favouring placebo [HR = 1.27; (95% CI 1.07, 1.51); P = 0.007]. Clinically relevant factors predictive of increased relative risk with saxagliptin treatment could not be definitively identified. Subjects at higher risk for hospitalisation for heart failure, irrespective of treatment assignment, could be identified by known risk factors for heart failure such as baseline history of heart failure or impaired renal function. However, subjects on saxagliptin with a history of heart failure or impaired renal function at baseline were not at an increased risk relative to placebo for the primary or secondary composite endpoints or all-cause mortality.

Another secondary endpoint, all-cause mortality, occurred at a rate of 5.1% in the saxagliptin group and 4.6% in the placebo group (see Table 4). CV deaths were balanced across the treatment groups. There was a numerical imbalance in non-CV death, with more events on saxagliptin (1.8%) than placebo (1.4%) [HR = 1.27; (95% CI 1.00, 1.62); P = 0.051].

A1C was lower with saxagliptin compared to placebo in an exploratory analysis.

Paediatric population
The European Medicines Agency has deferred the obligation to submit the results of studies with Onglyza in one or more subsets of the paediatric population in the treatment of type 2 diabetes mellitus (see section 4.2 for information on paediatric use).
Elderly population
In the SAVOR study subgroups over 65 and over 75 years of age, efficacy and safety were consistent with the overall study population.

GENERATION was a 52-week glycaemic control study in 720 elderly patients, the mean age was 72.6 years; 433 subjects (60.1%) were < 75 years of age, and 287 subjects (39.9%) were ≥ 75 years of age. Primary endpoint was the proportion of patients reaching HbA1c < 7% without confirmed or severe hypoglycaemia. There appeared to be no difference in percentage responders: 37.9% (saxagliptin) and 38.2% (glimepiride) achieved the primary endpoint. A lower proportion of patients in the saxagliptin group (44.7%) compared to the glimepiride group (54.7%) achieved an HbA1c target of 7.0%. A lower proportion of patients in the saxagliptin group (1.1%) compared to the glimepiride group (15.3%) experienced a confirmed or severe hypoglycaemic event.

5.2 Pharmacokinetic properties

The pharmacokinetics of saxagliptin and its major metabolite were similar in healthy subjects and in patients with type 2 diabetes.

Absorption
Saxagliptin was rapidly absorbed after oral administration in the fasted state, with maximum plasma concentrations (C_max) of saxagliptin and its major metabolite attained within 2 and 4 hours (T_max), respectively. The C_max and AUC values of saxagliptin and its major metabolite increased proportionally with the increment in the saxagliptin dose, and this dose-proportionality was observed in doses up to 400 mg. Following a 5 mg single oral dose of saxagliptin to healthy subjects, the mean plasma AUC values for saxagliptin and its major metabolite were 78 ng·h/ml and 214 ng·h/ml, respectively. The corresponding plasma C_max values were 24 ng/ml and 47 ng/ml, respectively. The intra-subject coefficients of variation for saxagliptin C_max and AUC were less than 12%.

The inhibition of plasma DPP4 activity by saxagliptin for at least 24 hours after oral administration of saxagliptin is due to high potency, high affinity, and extended binding to the active site.

Interaction with food
Food had relatively modest effects on the pharmacokinetics of saxagliptin in healthy subjects. Administration with food (a high-fat meal) resulted in no change in saxagliptin C_max and a 27% increase in AUC compared with the fasted state. The time for saxagliptin to reach C_max (T_max) was increased by approximately 0.5 hours with food compared with the fasted state. These changes were not considered to be clinically meaningful.

Distribution
The in vitro protein binding of saxagliptin and its major metabolite in human serum is negligible. Thus, changes in blood protein levels in various disease states (e.g. renal or hepatic impairment) are not expected to alter the disposition of saxagliptin.

Biotransformation
The biotransformation of saxagliptin is primarily mediated by cytochrome P450 3A4/5 (CYP3A4/5). The major metabolite of saxagliptin is also a selective, reversible, competitive DPP4 inhibitor, half as potent as saxagliptin.

Elimination
The mean plasma terminal half-life (t_1/2) values for saxagliptin and its major metabolite are 2.5 hours and 3.1 hours respectively, and the mean t_1/2 value for plasma DPP4 inhibition was 26.9 hours. Saxagliptin is eliminated by both renal and hepatic pathways. Following a single 50 mg dose of ^14C-saxagliptin, 24%, 36%, and 75% of the dose was excreted in the urine as saxagliptin, its major metabolite, and total radioactivity respectively. The average renal clearance of saxagliptin (~230 ml/min) was greater than the average estimated glomerular filtration rate (~120 ml/min), suggesting some active renal excretion. For the major metabolite, renal clearance values were comparable to estimated glomerular filtration rate. A total of 22% of the administered radioactivity
was recovered in faeces representing the fraction of the saxagliptin dose excreted in bile and/or unabsorbed medicinal product from the gastrointestinal tract.

Linearity
The C_{max} and AUC of saxagliptin and its major metabolite increased proportionally to the saxagliptin dose. No appreciable accumulation of either saxagliptin or its major metabolite was observed with repeated once-daily dosing at any dose level. No dose- and time-dependence was observed in the clearance of saxagliptin and its major metabolite over 14 days of once-daily dosing with saxagliptin at doses ranging from 2.5 mg to 400 mg.

Special populations

Renal impairment
A single-dose, open-label study was conducted to evaluate the pharmacokinetics of a 10 mg oral dose of saxagliptin in subjects with varying degrees of chronic renal impairment compared to subjects with normal renal function. The study included patients with renal impairment classified on the basis of creatinine clearance (based on the Cockcroft-Gault formula) as mild (> 50 to ≤ 80 ml/min), moderate (≥ 30 to ≤ 50 ml/min), or severe (< 30 ml/min), as well as patients with ESRD on haemodialysis.

The degree of renal impairment did not affect the C_{max} of saxagliptin or its major metabolite. In subjects with mild renal impairment, the mean AUC values of saxagliptin and its major metabolite were 1.2- and 1.7- fold higher, respectively, than mean AUC values in subjects with normal renal function. Because increases of this magnitude are not clinically relevant, dose adjustment in patients with mild renal impairment is not recommended. In subjects with moderate or severe renal impairment or in subjects with ESRD on haemodialysis, the AUC values of saxagliptin and its major metabolite were up to 2.1- and 4.5-fold higher, respectively, than AUC values in subjects with normal renal function. The dose of Onglyza should be reduced to 2.5 mg once daily in patients with moderate or severe renal impairment (see sections 4.2 and 4.4).

Hepatic impairment
In subjects with mild (Child-Pugh Class A), moderate (Child-Pugh Class B), or severe (Child-Pugh Class C) hepatic impairment the exposures to saxagliptin were 1.1-, 1.4- and 1.8-fold higher, respectively, and the exposures to BMS-510849 were 22%, 7%, and 33% lower, respectively, than those observed in healthy subjects.

Elderly (≥ 65 years)
Elderly patients (65-80 years) had about 60% higher saxagliptin AUC than young patients (18-40 years). This is not considered clinically meaningful, therefore, no dose adjustment for Onglyza is recommended on the basis of age alone.

5.3 Preclinical safety data
In cynomolgus monkeys saxagliptin produced reversible skin lesions (scabs, ulcerations and necrosis) in extremities (tail, digits, scrotum and/or nose) at doses ≥ 3 mg/kg/day. The no effect level (NOEL) for the lesions is 1 and 2 times the human exposure of saxagliptin and the major metabolite respectively, at the recommended human dose of 5 mg/day (RHD).

The clinical relevance of the skin lesions is not known, however, clinical correlates to skin lesions in monkeys have not been observed in human clinical trials of saxagliptin.

Immune related findings of minimal, nonprogressive, lymphoid hyperplasia in spleen, lymph nodes and bone marrow with no adverse sequelae have been reported in all species tested at exposures starting from 7 times the RHD.

Saxagliptin produced gastrointestinal toxicity in dogs, including bloody/mucoid faeces and enteropathy at higher doses with a NOEL 4 and 2 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD.
Saxagliptin was not genotoxic in a conventional battery of genotoxicity studies in vitro and in vivo. No carcinogenic potential was observed in two-year carcinogenicity assays with mice and rats.

Effects on fertility were observed in male and female rats at high doses producing overt signs of toxicity. Saxagliptin was not teratogenic at any doses evaluated in rats or rabbits. At high doses in rats, saxagliptin caused reduced ossification (a developmental delay) of the foetal pelvis and decreased foetal body weight (in the presence of maternal toxicity), with a NOEL 303 and 30 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD. In rabbits, the effects of saxagliptin were limited to minor skeletal variations observed only at maternally toxic doses (NOEL 158 and 224 times the human exposure for saxagliptin and the major metabolite, respectively at RHD). In a pre- and postnatal developmental study in rats, saxagliptin caused decreased pup weight at maternally toxic doses, with NOEL 488 and 45 times the human exposure for saxagliptin and the major metabolite, respectively at RHD. The effect on offspring body weights were noted until postnatal day 92 and 120 in females and males, respectively.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core
- Lactose monohydrate
- Cellulose, microcrystalline (E460i)
- Croscarmellose sodium (E468)
- Magnesium stearate

Film-coating
- Polyvinyl alcohol
- Macrogol 3350
- Titanium dioxide (E171)
- Talc (E553b)
- Iron oxide yellow (E172)
- Printing ink
- Shellac
- Indigo carmine aluminium lake (E132)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

-Alu/Alu blister.
-Pack sizes of 14, 28, and 98 film-coated tablets in non-perforated calendar blisters.
-Pack sizes of 30x1 and 90x1 film-coated tablets in perforated unit dose blisters.
-Not all pack sizes may be marketed.
6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85 Södertälje
Sweden

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/545/011-015

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 01 October 2009
Date of latest renewal: 18 July 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
1. NAME OF THE MEDICINAL PRODUCT
Onglyza 5 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each tablet contains 5 mg saxagliptin (as hydrochloride).

Excipient(s) with known effect:
Each tablet contains 99 mg lactose (as monohydrate).

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM
Film-coated tablet (tablet).

Onglyza 5 mg tablets are pink, biconvex, round, film-coated tablets, with “5” printed on one side and “4215” printed on the other side, in blue ink.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications
Onglyza is indicated in adult patients with type 2 diabetes mellitus as an adjunct to diet and exercise to improve glycaemic control:

- as monotherapy when metformin is inappropriate due to intolerance or contraindications
- in combination with other medicinal products for the treatment of diabetes, including insulin, when these do not provide adequate glycaemic control (see sections 4.4, 4.5 and 5.1 for available data on different combinations).

4.2 Posology and method of administration
Posology

The recommended dose of Onglyza is 5 mg once daily. When Onglyza is used in combination with insulin or a sulphonylurea, a lower dose of the insulin or sulphonylurea may be required to reduce the risk of hypoglycaemia (see section 4.4).

The safety and efficacy of saxagliptin as triple oral therapy in combination with metformin and a thiazolidinedione have not been established.

Special populations
Elderly (≥ 65 years)
No dose adjustment is recommended based solely on age (see also sections 5.1 and 5.2).

Renal impairment
No dose adjustment is recommended for patients with mild renal impairment.

The dose should be reduced to 2.5 mg once daily in patients with moderate or severe renal impairment.
Onglyza is not recommended for patients with end-stage renal disease (ESRD) requiring haemodialysis (see section 4.4).

Because the dose should be limited to 2.5 mg based upon renal function, assessment of renal function is recommended prior to initiation of treatment, and, in keeping with routine care, renal assessment should be done periodically thereafter (see sections 4.4 and 5.2).

Hepatic impairment
No dose adjustment is necessary for patients with mild or moderate hepatic impairment (see section 5.2). Saxagliptin should be used with caution in patients with moderate hepatic impairment, and is not recommended for use in patients with severe hepatic impairment (see section 4.4).

Paediatric population
The safety and efficacy of Onglyza in children aged birth to < 18 years have not yet been established. No data are available.

Method of administration
The tablets can be taken with or without a meal at any time of the day. Tablets must not be split or cut.

If a dose is missed, it should be taken as soon as the patient remembers. A double dose should not be taken on the same day.

4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1, or history of a serious hypersensitivity reaction, including anaphylactic reaction, anaphylactic shock, and angioedema, to any dipeptidyl peptidase-4 (DPP4) inhibitor (see sections 4.4 and 4.8).

4.4 Special warnings and precautions for use
General
Onglyza should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

Onglyza is not a substitute for insulin in insulin-requiring patients.

Acute Pancreatitis
Use of DPP4 inhibitors has been associated with a risk of developing acute pancreatitis. Patients should be informed of the characteristic symptoms of acute pancreatitis; persistent, severe abdominal pain. If pancreatitis is suspected, Onglyza should be discontinued; if acute pancreatitis is confirmed, Onglyza should not be restarted. Caution should be exercised in patients with a history of pancreatitis.

In postmarketing experience of saxagliptin, there have been spontaneously reported adverse reactions of acute pancreatitis.

Renal impairment
A single dosage adjustment is recommended in patients with moderate or severe renal impairment. Saxagliptin is not recommended for use in patients with end-stage renal disease (ESRD) requiring haemodialysis. Assessment of renal function is recommended prior to initiation of Onglyza, and in keeping with routine care, renal assessment should be done periodically thereafter (see sections 4.2 and 5.2).

Hepatic impairment
Saxagliptin should be used with caution in patients with moderate hepatic impairment, and is not recommended for use in patients with severe hepatic impairment (see section 4.2).
Use with medicinal products known to cause hypoglycaemia
Sulphonylureas and insulin are known to cause hypoglycaemia. Therefore, a lower dose of sulphonylurea or insulin may be required to reduce the risk of hypoglycaemia when used in combination with Onglyza.

Hypersensitivity reactions
Onglyza must not be used in patients who have had any serious hypersensitivity reaction to a dipeptidyl peptidase-4 (DPP4) inhibitor (see section 4.3).

During postmarketing experience, including spontaneous reports and clinical trials, the following adverse reactions have been reported with the use of saxagliptin: serious hypersensitivity reactions, including anaphylactic reaction, anaphylactic shock, and angioedema. If a serious hypersensitivity reaction to saxagliptin is suspected, Onglyza should be discontinued, assess for other potential causes for the event, and institute alternative treatment for diabetes (see section 4.8).

Skin disorders
Ulcerative and necrotic skin lesions have been reported in extremities of monkeys in non-clinical toxicology studies (see section 5.3). Skin lesions were not observed at an increased incidence in clinical trials. Postmarketing reports of rash have been described in the DPP4 inhibitor class. Rash is also noted as an adverse reaction for Onglyza (see section 4.8). Therefore, in keeping with routine care of the diabetic patient, monitoring for skin disorders, such as blistering, ulceration or rash, is recommended.

Cardiac failure
Experience in NYHA class III-IV is still limited. In the SAVOR trial a small increase in the rate for hospitalisation for heart failure was observed in the saxagliptin treated patients compared to placebo, although a causal relationship has not been established (see section 5.1). Additional analysis did not indicate a differential effect among NYHA classes. Caution is warranted if Onglyza is used in patients who have known risk factors for hospitalisation for heart failure, such as a history of heart failure or moderate to severe renal impairment. Patients should be advised of the characteristic symptoms of heart failure, and to immediately report such symptoms.

Arthralgia
Joint pain, which may be severe, has been reported in postmarketing reports for DPP4 inhibitors (see section 4.8). Patients experienced relief of symptoms after discontinuation of the medication and some experienced recurrence of symptoms with reintroduction of the same or another DPP4 inhibitor. Onset of symptoms following initiation of drug therapy may be rapid or may occur after longer periods of treatment. If a patient presents with severe joint pain, continuation of drug therapy should be individually assessed.

Immunocompromised patients
Immunocompromised patients, such as patients who have undergone organ transplantation or patients diagnosed with human immunodeficiency syndrome, have not been studied in the Onglyza clinical program. Therefore, the efficacy and safety profile of saxagliptin in these patients has not been established.

Use with potent CYP3A4 inducers
Using CYP3A4 inducers like carbamazepine, dexamethasone, phenobarbital, phenytoin, and rifampicin may reduce the glycaemic lowering effect of Onglyza (see section 4.5).

Lactose
The tablets contain lactose monohydrate. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.
4.5 Interaction with other medicinal products and other forms of interaction

Clinical data described below suggest that the risk for clinically meaningful interactions with co-administered medicinal products is low.

The metabolism of saxagliptin is primarily mediated by cytochrome P450 3A4/5 (CYP3A4/5).

The co-administration of saxagliptin and CYP3A4/5 inducers, other than rifampicin (such as carbamazepine, dexamethasone, phenobarbital and phenytoin) have not been studied and may result in decreased plasma concentration of saxagliptin and increased concentration of its major metabolite. Glycaemic control should be carefully assessed when saxagliptin is used concomitantly with a potent CYP3A4/5 inducer.

Concomitant administration of saxagliptin with the moderate inhibitor of CYP3A4/5 diltiazem, increased the C_{max} and AUC of saxagliptin by 63% and 2.1-fold, respectively, and the corresponding values for the active metabolite were decreased by 44% and 34%, respectively.

Concomitant administration of saxagliptin with the potent inhibitor of CYP3A4/5 ketoconazole, increased the C_{max} and AUC of saxagliptin by 62% and 2.5-fold, respectively, and the corresponding values for the active metabolite were decreased by 95% and 88%, respectively.

Concomitant administration of saxagliptin with the potent CYP3A4/5 inducer rifampicin, reduced C_{max} and AUC of saxagliptin by 53% and 76%, respectively. The exposure of the active metabolite and the plasma DPP4 activity inhibition over a dose interval were not influenced by rifampicin (see section 4.4).

In in vitro studies, saxagliptin and its major metabolite neither inhibited CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, or 3A4, nor induced CYP1A2, 2B6, 2C9, or 3A4. In studies conducted in healthy subjects, neither the pharmacokinetics of saxagliptin nor its major metabolite, were meaningfully altered by metformin, glibenclamide, pioglitazone, digoxin, simvastatin, omeprazole, antacids or famotidine. In addition, saxagliptin did not meaningfully alter the pharmacokinetics of metformin, glibenclamide, pioglitazone, digoxin, simvastatin, the active components of a combined oral contraceptive (ethinyl estradiol and norgestimate), diltiazem or ketoconazole.

The effects of smoking, diet, herbal products, and alcohol use on the pharmacokinetics of saxagliptin have not been specifically studied.

4.6 Fertility, pregnancy and lactation

Pregnancy
The use of saxagliptin has not been studied in pregnant women. Studies in animals have shown reproductive toxicity at high doses (see section 5.3). The potential risk for humans is unknown. Onglyza should not be used during pregnancy unless clearly necessary.

Breast-feeding
It is unknown whether saxagliptin is excreted in human breast milk. Animal studies have shown excretion of saxagliptin and/or metabolite in milk. A risk to the suckling child cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy to the woman.

Fertility
The effect of saxagliptin on fertility in humans has not been studied. Effects on fertility were observed in male and female rats at high doses producing overt signs of toxicity (see section 5.3).

4.7 Effects on ability to drive and use machines

Onglyza may have a negligible influence on the ability to drive and use machines.
When driving or using machines, it should be taken into account that dizziness has been reported in studies with saxagliptin. In addition, patients should be alerted to the risk of hypoglycaemia when Onglyza is used in combination with other antidiabetic medicinal products known to cause hypoglycaemia (e.g. insulin, sulphonylureas).

4.8 Undesirable effects

Summary of the safety profile

The most commonly reported adverse reactions in placebo-controlled trials reported in ≥5% of patients treated with Onglyza 5 mg and more commonly than in patients treated with placebo are upper respiratory tract infection (7.7%), urinary tract infection (6.8%) and headache (6.5%).

There were 4,148 patients with type 2 diabetes, including 3,021 patients treated with Onglyza, randomised in six double-blind, controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control. In randomised, controlled, double-blind clinical trials (including developmental and postmarketing experience), over 17,000 patients with type 2 diabetes have been treated with Onglyza.

In a pooled analysis of 1,681 patients with type 2 diabetes including 882 patients treated with Onglyza 5 mg, randomised in five double-blind, placebo-controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control, the overall incidence of adverse events in patients treated with saxagliptin 5 mg was similar to placebo. Discontinuation of therapy due to adverse events was higher in patients who received saxagliptin 5 mg as compared to placebo (3.3% as compared to 1.8%).

Tabulated list of adverse reactions

Adverse reactions reported in ≥ 5% of patients treated with saxagliptin 5 mg and more commonly than in patients treated with placebo or that were reported in ≥ 2% of patients treated with saxagliptin 5 mg and ≥ 1% more frequently compared to placebo from the pooled analysis of five studies of glycaemic control, plus an additional active-controlled study of initial combination with metformin are shown in Table 1.

The adverse reactions are listed by system organ class and absolute frequency. Frequencies are defined as very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to 1/100), rare (≥ 1/10,000 to 1/1,000), very rare (< 1/10,000), or not known (cannot be estimated from the available data).

Table 1 Frequency of adverse reactions by system organ class from clinical trials and postmarketing experience

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency of adverse reactions by treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saxagliptin monotherapy</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>Common</td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>Common</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Common</td>
</tr>
<tr>
<td>System organ class</td>
<td>Frequency of adverse reactions by treatment regimen</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Adverse reaction</td>
<td></td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>Common</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
</tr>
<tr>
<td>Hyper-sensitivity reactions</td>
<td>Uncommon Uncommon Uncommon Uncommon</td>
</tr>
<tr>
<td>Anaphylactic reactions including anaphylactic shock</td>
<td>Rare Rare Rare Rare</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td>Very common</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Hypertriglyceridaemia</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>Common</td>
</tr>
<tr>
<td>Headache</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain†</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Diarrhoea‡</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>Common</td>
</tr>
<tr>
<td>Flatulence</td>
<td>Common</td>
</tr>
<tr>
<td>Gastritis</td>
<td>Common</td>
</tr>
<tr>
<td>Nausea†</td>
<td>Common Common Common Common Common</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Common Common Common</td>
</tr>
<tr>
<td>Pancreatitis†</td>
<td>Uncommon Uncommon Uncommon Uncommon</td>
</tr>
<tr>
<td>Constipation†</td>
<td>Not known Not known Not known Not known Not known Not known</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Rash†</td>
<td>Common Common Common Common</td>
</tr>
<tr>
<td>Dermatitis‡</td>
<td>Uncommon Uncommon Uncommon Uncommon</td>
</tr>
<tr>
<td>Pruritus†</td>
<td>Uncommon Uncommon Uncommon Uncommon</td>
</tr>
<tr>
<td>Urticaria†</td>
<td>Uncommon Uncommon Uncommon Uncommon</td>
</tr>
<tr>
<td>Angioedema†</td>
<td>Rare Rare Rare Rare</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Arthralgia†</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Myalgia‡</td>
<td>Common</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>Uncommon</td>
</tr>
<tr>
<td>General disorders</td>
<td></td>
</tr>
</tbody>
</table>
System organ class

<table>
<thead>
<tr>
<th>Adverse reaction and administration site conditions</th>
<th>Frequency of adverse reactions by treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>Common, Uncommon, Common</td>
</tr>
<tr>
<td>Oedema peripheral</td>
<td>Common</td>
</tr>
</tbody>
</table>

1 Includes saxagliptin in add-on to metformin and initial combination with metformin.
2 Only in the initial combination therapy.
3 There was no statistically significant difference compared to placebo. The incidence of confirmed hypoglycaemia was uncommon for Onglyza 5 mg (0.8%) and placebo (0.7%).
4 The incidence of diarrhoea was 4.1% (36/882) in the saxagliptin 5 mg group and 6.1% (49/799) in the placebo group.
5 As initial combination with metformin, myalgia is reported as uncommon.
6 Adverse reactions were identified through postmarketing surveillance.
7 See sections 4.3 and 4.4.
8 Also reported during postmarketing surveillance (see section 4.4).

SAVOR trial results

The SAVOR trial included 8240 patients treated with Onglyza 5 mg or 2.5 mg once daily and 8173 patients on placebo. The overall incidence of adverse events in patients treated with Onglyza in this trial was similar to placebo (72.5% versus 72.2%, respectively).

The incidence of adjudicated pancreatitis events was 0.3% in both Onglyza-treated patients and placebo-treated patients in the intent-to-treat population.

The incidence of hypersensitivity reactions was 1.1% in both Onglyza-treated patients and placebo-treated patients.

The overall incidence of reported hypoglycaemia (recorded in daily patient diaries) was 17.1% in subjects treated with Onglyza and 14.8% among patients treated with placebo. The percent of subjects with reported on-treatment events of major hypoglycaemia (defined as an event that required assistance of another person) was higher in the saxagliptin group than in the placebo group (2.1% and 1.6%, respectively). The increased risk of overall hypoglycaemia and major hypoglycaemia observed in the saxagliptin-treated group occurred primarily in subjects treated with SU at baseline and not in subjects on insulin or metformin monotherapy at baseline. The increased risk of overall and major hypoglycaemia was primarily observed in subjects with A1C <7% at baseline.

Decreased lymphocyte counts were reported in 0.5% of Onglyza treated patients and 0.4% of placebo-treated patients.

Hospitalisation for heart failure, occurred at a greater rate in the saxagliptin group (3.5%) compared with the placebo group (2.8%), with nominal statistical significance favouring placebo [HR = 1.27; 95% CI 1.07, 1.51]; P = 0.007]. See also section 5.1.

Description of selected adverse reactions

Hypoglycaemia

Adverse reactions of hypoglycaemia were based on all reports of hypoglycaemia; a concurrent glucose measurement was not required.

When used as add-on combination therapy with metformin plus sulphonylurea, the overall incidence of reported hypoglycaemia was 10.1% for Onglyza 5 mg and 6.3% for placebo.

When used as add-on to insulin (with or without metformin), the overall incidence of reported hypoglycaemia was 18.4% for Onglyza 5 mg and 19.9% for placebo.
Investigations
Across clinical studies, the incidence of laboratory adverse events was similar in patients treated with saxagliptin 5 mg compared to patients treated with placebo. A small decrease in absolute lymphocyte count was observed. From a baseline mean absolute lymphocyte count of approximately 2,200 cells/μl, a mean decrease of approximately 100 cells/μl relative to placebo was observed in the placebo-controlled-pooled analysis. Mean absolute lymphocyte counts remained stable with daily dosing up to 102 weeks in duration. The decreases in lymphocyte count were not associated with clinically relevant adverse reactions. The clinical significance of this decrease in lymphocyte count relative to placebo is not known.

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose
Onglyza had no clinically meaningful effect on QTc interval or heart rate at oral doses up to 400 mg daily for 2 weeks (80 times the recommended dose). In the event of an overdose, appropriate supportive treatment should be initiated as dictated by the patient’s clinical status. Saxagliptin and its major metabolite can be removed by haemodialysis (23% of dose over 4 hours).

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Drugs used in diabetes. Dipeptidyl peptidase 4 (DPP4) inhibitors, ATC code: A10BH03

Mechanism of action and pharmacodynamic effects
Saxagliptin is a highly potent (Ki: 1.3 nM), selective, reversible, competitive, DPP4 inhibitor. In patients with type 2 diabetes, administration of saxagliptin led to inhibition of DPP4 enzyme activity for a 24-hour period. After an oral glucose load, this DPP4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), decreased glucagon concentrations and increased glucose-dependent beta-cell responsiveness, which resulted in higher insulin and C-peptide concentrations. The rise in insulin from pancreatic beta-cells and the decrease in glucagon from pancreatic alpha-cells were associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. Saxagliptin improves glycaemic control by reducing fasting and postprandial glucose concentrations in patients with type 2 diabetes.

Clinical efficacy and safety
In randomised, controlled, double-blind clinical trials (including developmental and postmarketing experience), over 17,000 patients with type 2 diabetes have been treated with saxagliptin.

Glycaemic control
A total of 4,148 patients with type 2 diabetes, including 3,021 patients treated with saxagliptin were randomised in 6 double-blind, controlled clinical safety and efficacy studies conducted to evaluate the effects of saxagliptin on glycaemic control. Treatment with saxagliptin 5 mg once daily produced clinically relevant and statistically significant improvements in haemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and postprandial glucose (PPG) compared to placebo in monotherapy, in combination with metformin (initial or add-on therapy), in combination with a sulphonylurea, and in combination with a thiazolidinedione (see Table 2). There was also no apparent change in body weight associated with saxagliptin. Reductions in HbA1c were seen across subgroups including gender, age,
race, and baseline body mass index (BMI) and higher baseline HbA1c was associated with a greater adjusted mean change from baseline with saxagliptin.

Saxagliptin as monotherapy

Two double-blind, placebo-controlled studies of 24-week duration were conducted to evaluate the efficacy and safety of saxagliptin monotherapy in patients with type 2 diabetes. In both studies, once-daily treatment with saxagliptin provided significant improvements in HbA1c (see Table 2). The findings of these studies were confirmed with two subsequent 24-week regional (Asian) monotherapy studies comparing saxagliptin 5 mg with placebo.

Saxagliptin add-on to metformin therapy

An add-on to metformin placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with metformin in patients with inadequate glycaemic control (HbA1c 7-10%) on metformin alone. Saxagliptin (n=186) provided significant improvements in HbA1c, FPG, and PPG compared to placebo (n=175). Improvements in HbA1c, PPG, and FPG following treatment with saxagliptin 5 mg plus metformin were sustained up to Week 102. The HbA1c change for saxagliptin 5 mg plus metformin (n=31) compared to placebo plus metformin (n=15) was -0.8% at Week 102.

Saxagliptin add-on to metformin compared with SU add-on to metformin

A 52-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin (428 patients) compared with a sulphonylurea (glipizide, 5 mg titrated as needed to 20 mg, mean dose of 15 mg) in combination with metformin (430 patients) in 858 patients with inadequate glycaemic control (HbA1c 6.5%-10%) on metformin alone. The mean metformin dose was approximately 1900 mg in each treatment group. After 52 weeks, the saxagliptin and glipizide groups had similar mean reductions from baseline in HbA1c in the per-protocol analysis (-0.7% vs. -0.8%, respectively, mean baseline HbA1c of 7.5% for both groups). The intent-to-treat analysis showed consistent results. The reduction in FPG was slightly less in the saxagliptin-group and there were more discontinuations (3.5% vs. 1.2%) due to lack of efficacy based on FPG criteria during the first 24 weeks of the study. Saxagliptin also resulted in a significantly lower proportion of patients with hypoglycaemia, 3% (19 events in 13 subjects) vs. 36.3% (750 events in 156 patients) for glipizide. Patients treated with saxagliptin exhibited a significant decrease from baseline in body weight compared to a weight gain in patients administered glipizide (-1.1 vs. +1.1 kg).

Saxagliptin add-on to metformin compared with sitagliptin add-on to metformin

An 18-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin (403 patients), compared with sitagliptin 100 mg in combination with metformin (398 patients) in 801 patients with inadequate glycaemic control on metformin alone. After 18 weeks, saxagliptin was non-inferior to sitagliptin in mean reduction from baseline in HbA1c in both the per-protocol and the full analysis sets. The reductions from baseline in HbA1c respectively for saxagliptin and sitagliptin in the primary per-protocol analysis were -0.5% (mean and median) and -0.6% (mean and median). In the confirmatory full analysis set, mean reductions were -0.4% and -0.6% respectively for saxagliptin and sitagliptin, with median reductions of -0.5% for both groups.

Saxagliptin in combination with metformin as initial therapy

A 24-week study was conducted to evaluate the efficacy and safety of saxagliptin 5 mg in combination with metformin as initial combination therapy in treatment-naïve patients with inadequate glycaemic control (HbA1c 8-12%). Initial therapy with the combination of saxagliptin 5 mg plus metformin (n=306) provided significant improvements in HbA1c, FPG, and PPG compared to either saxagliptin (n=317) or metformin alone (n=313) as initial therapy. Reductions in HbA1c from baseline to Week 24 were observed in all evaluated subgroups defined by baseline HbA1c, with greater reductions observed in patients with a baseline HbA1c ≥ 10% (see Table 2). Improvements in HbA1c, PPG and FPG following initial therapy with saxagliptin 5 mg plus metformin were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg plus metformin (n=177) compared to metformin plus placebo (n=147) was -0.5% at Week 76.
Saxagliptin add-on to glibenclamide therapy
An add-on placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with glibenclamide in patients with inadequate glycaemic control at enrollment (HbA1c 7.5-10%) on a sub-maximal dose of glibenclamide alone. Saxagliptin in combination with a fixed, intermediate dose of a sulphonylurea (glibenclamide 7.5 mg) was compared to titration to a higher dose of glibenclamide (approximately 92% of patients in the placebo plus glibenclamide group were uptitrated to a final total daily dose of 15 mg). Saxagliptin (n=250) provided significant improvements in HbA1c, FPG, and PPG compared to titration to a higher dose of glibenclamide (n=264). Improvements in HbA1c and PPG following treatment with saxagliptin 5 mg were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg (n=56) compared to uptitrated glibenclamide plus placebo (n=27) was -0.7% at Week 76.

Saxagliptin add-on combination therapy with insulin (with or without metformin)
A total of 455 patients with type 2 diabetes participated in a 24-week randomised, double-blind, placebo-controlled study to evaluate the efficacy and safety of saxagliptin in combination with a stable dose of insulin (baseline mean: 54.2 Units) in patients with inadequate glycaemic control (HbA1c ≥ 7.5% and ≤ 11%) on insulin alone (n=141) or on insulin in combination with a stable dose of metformin (n=314). Saxagliptin 5 mg add-on to insulin with or without metformin provided significant improvements after 24 weeks in HbA1c and PPG compared with placebo add-on to insulin with or without metformin. Similar HbA1c reductions versus placebo were achieved for patients receiving saxagliptin 5 mg add-on to insulin regardless of metformin use (~0.4% for both subgroups). Improvements from baseline HbA1c were sustained in the saxagliptin add-on to insulin group compared to the placebo add-on to insulin group with or without metformin at Week 52. The HbA1c change for the saxagliptin group (n=244) compared to placebo (n=124) was -0.4% at Week 52.

Saxagliptin add-on to thiazolidinedione therapy
A placebo-controlled study of 24-week duration was conducted to evaluate the efficacy and safety of saxagliptin in combination with a thiazolidinedione (TZD) in patients with inadequate glycaemic control (HbA1c 7-10.5%) on TZD alone. Saxagliptin (n=183) provided significant improvements in HbA1c, FPG, and PPG compared to placebo (n=180). Improvements in HbA1c, PPG and FPG following treatment with saxagliptin 5 mg were sustained up to Week 76. The HbA1c change for saxagliptin 5 mg (n=82) compared to TZD plus placebo (n=53) was -0.9% at Week 76.

Saxagliptin add-on combination therapy with metformin and sulphonylurea
A total of 257 patients with type 2 diabetes mellitus compared saxagliptin 5 mg with placebo as add-on therapy in individuals with HbA1c 7-10.5% treated with dapagliflozin (a SGLT2-inhibitor) and metformin. Patients who completed the initial 24-week study period were eligible to enter a controlled 28-week long-term study extension (52 weeks).

Individuals treated with saxagliptin added to dapagliflozin and metformin (n=153) achieved statistically significantly (p-value < 0.0001) greater reductions in HbA1c versus the group with placebo added to dapagliflozin plus metformin (n=162) at 24 weeks (see Table 2). The effect on HbA1c observed at Week 24 was sustained at Week 52. The safety profile of saxagliptin added to dapagliflozin plus metformin in the long-term treatment period was consistent with that observed in the 24-week treatment period in this study and in the trial in which saxagliptin and dapagliflozin were given concomitantly as add-on therapy to patients treated with metformin (described below).
The proportion of patients achieving HbA1c < 7% at Week 24 was higher in the saxagliptin 5 mg plus dapagliflozin plus metformin group 35.3% (95% CI [28.2, 42.4]) compared to the placebo plus dapagliflozin plus metformin group 23.1% (95% CI [16.9, 29.3]). The effect in HbA1c observed at Week 24 was sustained at Week 52.

Table 2 Key efficacy results of Onglyza 5 mg per day in placebo-controlled monotherapy trials and in add-on combination therapy trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Mean baseline HbA1c (%)</th>
<th>Mean change from baseline HbA1c (%) at Week 24</th>
<th>Placebo-corrected mean change in HbA1c (%) at Week 24 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONOTHERAPY STUDIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Study CV181011 (n=103)</td>
<td>8.0</td>
<td>-0.5</td>
<td>-0.6 (-0.9, -0.4)</td>
</tr>
<tr>
<td>• Study CV181038 (n=69)</td>
<td>7.9</td>
<td>-0.7 (morning)</td>
<td>-0.4 (-0.7, -0.1)</td>
</tr>
<tr>
<td>• Study CV181040: add-on to SU1 (n=250)</td>
<td>8.5</td>
<td>-0.6</td>
<td>-0.7 (-0.9, -0.6)</td>
</tr>
<tr>
<td>• Study D1680L00006: add-on to metformin plus SU (n=257)</td>
<td>8.4</td>
<td>-0.7</td>
<td>-0.7 (-0.9, -0.5)</td>
</tr>
<tr>
<td>• Study CV181013: add-on to TZD (n=183)</td>
<td>8.4</td>
<td>-0.9</td>
<td>-0.6 (-0.8, -0.4)</td>
</tr>
<tr>
<td>• Study CV181039: initial combination with metformin6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall population (n=306)</td>
<td>9.4</td>
<td>-2.5</td>
<td>-0.5 (-0.7, -0.4)</td>
</tr>
<tr>
<td>Baseline HbA1c ≥ 10% stratum (n=107)</td>
<td>10.8</td>
<td>-3.3</td>
<td>-0.6 (-0.9, -0.3)</td>
</tr>
<tr>
<td>• Study CV181168: sequential add-on to dapagliflozin + metformin (n=315)</td>
<td>7.9</td>
<td>-0.5</td>
<td>-0.4 (-0.5, -0.2)</td>
</tr>
<tr>
<td>• Study CV181057: add-on to insulin (+/-metformin)</td>
<td>8.7</td>
<td>-0.7</td>
<td>-0.4 (-0.6, -0.2)</td>
</tr>
</tbody>
</table>

n=Randomised patients (primary efficacy-intention-to-treat analysis) with data available.

1 Placebo group had uptitration of glibenclamide from 7.5 to 15 mg total daily dose.
2 Adjusted mean change from baseline adjusted for baseline value (ANCOVA).
3 p<0.0001 compared to placebo.
4 p=0.0059 compared to placebo.
5 p=0.0157 compared to placebo.
6 Metformin was uptitrated from 500 to 2000 mg per day as tolerated.
7 Mean HbA1c change is the difference between the saxagliptin+metformin and metformin alone groups (p<0.0001).
8 Mean HbA1c change is the difference between the saxagliptin+metformin and metformin alone groups.
9 Mean HbA1c change is the difference between the saxagliptin+dapagliflozin+metformin and dapagliflozin+metformin groups (p<0.0001).

Saxagliptin and dapagliflozin add-on to metformin therapy
A total of 534 adult patients with type 2 diabetes mellitus and inadequate glycaemic control on metformin alone (HbA1c 8%-12%), participated in this 24-week randomised, double-blind, active comparator-controlled trial to compare the combination of saxagliptin and dapagliflozin added concurrently to metformin, versus saxagliptin or dapagliflozin added to metformin. Patients were randomised to one of three double-blind treatment groups to receive saxagliptin 5 mg and dapagliflozin 10 mg added to metformin, saxagliptin 5 mg and placebo added to metformin, or dapagliflozin 10 mg and placebo added to metformin.
The saxagliptin and dapagliflozin group achieved significantly greater reductions in HbA1c versus either the saxagliptin group or dapagliflozin group at 24 weeks (see Table 3).

Table 3 HbA1c at Week 24 in active-controlled study comparing the combination of saxagliptin and dapagliflozin added concurrently to metformin with either saxagliptin or dapagliflozin added to metformin

<table>
<thead>
<tr>
<th>Efficacy parameter</th>
<th>Saxagliptin 5 mg + dapagliflozin 10 mg + metformin N=179²</th>
<th>Saxagliptin 5 mg + metformin N=176²</th>
<th>Dapagliflozin 10 mg + metformin N=179²</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%) at week 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.93</td>
<td>9.03</td>
<td>8.87</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean) (95% CI)</td>
<td>-1.47 (−1.62, −1.31)</td>
<td>-0.88 (−1.03, −0.72)</td>
<td>-1.20 (−1.35, −1.04)</td>
</tr>
<tr>
<td>Difference from saxagliptin + metformin (adjusted mean) (95% CI)</td>
<td>-0.59 (−0.81, −0.37)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Difference from dapagliflozin + metformin (adjusted mean) (95% CI)</td>
<td>-0.27 (−0.48, −0.05)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ LRM = Longitudinal repeated measures (using values prior to rescue).
² Randomised and treated patients with baseline and at least 1 post baseline efficacy measurement.
³ Least squares mean adjusted for baseline value.
⁴ p-value < 0.0001.
⁵ p-value=0.0166.

Proportion of patients achieving HbA1c < 7%

In the saxagliptin and dapagliflozin combination group, 41.4% (95% CI [34.5, 48.2]) of patients achieved HbA1c levels of less than 7% compared to 18.3% (95% CI [13.0, 23.5]) of patients in the saxagliptin group and 22.2% (95% CI [16.1, 28.3]) of patients in the dapagliflozin group.

Patients with renal impairment

A 12-week, multi-centre, randomised, double-blind, placebo-controlled study was conducted to evaluate the treatment effect of saxagliptin 2.5 mg once daily compared with placebo in 170 patients (85 patients on saxagliptin and 85 on placebo) with type 2 diabetes (HbA1c 7.0-11%) and renal impairment (moderate [n=90]; severe [n=41]; or ESRD [n=39]). In this study, 98.2% of the patients received other antihyperglycaemic treatments (75.3% on insulin and 31.2% on oral antihyperglycaemics; some received both). Saxagliptin significantly decreased HbA1c compared with placebo; the HbA1c change for saxagliptin was -0.9% at Week 12 (HbA1c change of -0.4% for placebo). Improvements in HbA1c following treatment with saxagliptin 2.5 mg were sustained up to Week 52, however, the number of patients who completed 52 weeks without modification of other antihyperglycaemic treatment was low (26 subjects in the saxagliptin group versus 34 subjects in the placebo group). The incidence of confirmed hypoglycaemic events was somewhat higher in the saxagliptin group (9.4%) versus placebo group (4.7%) although the number of subjects with any hypoglycaemic event did not differ between the treatment groups. There was no adverse effect on renal function as determined by estimated glomerular filtration rate or CrCL at Week 12 and Week 52.

Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus - Thrombolysis in Myocardial Infarction (SAVOR) Study

SAVOR was a CV outcome trial in 16,492 patients with HbA1c ≥6.5% and <12% (12959 with established CV disease; 3533 with multiple risk factors only) who were randomised to saxagliptin (n=8280) or placebo (n=8212) added to regional standards of care for HbA1c and CV risk factors. The
study population included those ≥65 years (n=8561) and ≥ 75 years (n=2330), with normal or mild renal impairment (n=13,916) as well as moderate (n=2240) or severe (n=336) renal impairment.

The primary safety (noninferiority) and efficacy (superiority) endpoint was a composite endpoint consisting of the time-to-first occurrence of any of the following major adverse CV events (MACE): CV death, nonfatal myocardial infarction, or nonfatal ischaemic stroke.

After a mean follow up of 2 years, the trial met its primary safety endpoint demonstrating saxagliptin does not increase the cardiovascular risk in patients with type 2 diabetes compared to placebo when added to current background therapy.

No benefit was observed for MACE or all-cause mortality.

Table 4 Primary and Secondary Clinical Endpoints by Treatment Group in the SAVOR Study

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Saxagliptin (N=8280)</th>
<th>Placebo (N=8212)</th>
<th>Hazard Ratio (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subjects with events n (%)</td>
<td>Event rate per 100 patient-yrs</td>
<td>Subjects with events n (%)</td>
</tr>
<tr>
<td>Primary composite endpoint: MACE</td>
<td>613 (7.4)</td>
<td>3.76</td>
<td>609 (7.4)</td>
</tr>
<tr>
<td>Secondary composite endpoint: MACE plus</td>
<td>1059 (12.8)</td>
<td>6.72</td>
<td>1034 (12.6)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>420 (5.1)</td>
<td>2.50</td>
<td>378 (4.6)</td>
</tr>
</tbody>
</table>

* Intent-to-treat population
† Hazard ratio adjusted for baseline renal function category and baseline CVD risk category.
‡ p-value <0.001 for noninferiority (based on HR <1.3) compared to placebo.
§ p-value = 0.99 for superiority (based on HR <1.0) compared to placebo.
‖ Events accumulated consistently over time, and the event rates for Onglyza and placebo did not diverge notably over time.
¶ Significance not tested.

One component of the secondary composite endpoint, hospitalisation for heart failure, occurred at a greater rate in the saxagliptin group (3.5%) compared with the placebo group (2.8%), with nominal statistical significance favouring placebo [HR = 1.27; (95% CI 1.07, 1.51); P = 0.007]. Clinically relevant factors predictive of increased relative risk with saxagliptin treatment could not be definitively identified. Subjects at higher risk for hospitalisation for heart failure, irrespective of treatment assignment, could be identified by known risk factors for heart failure such as baseline history of heart failure or impaired renal function. However, subjects on saxagliptin with a history of heart failure or impaired renal function at baseline were not at an increased risk relative to placebo for the primary or secondary composite endpoints or all-cause mortality.

Another secondary endpoint, all-cause mortality, occurred at a rate of 5.1% in the saxagliptin group and 4.6% in the placebo group (see Table 4). CV deaths were balanced across the treatment groups. There was a numerical imbalance in non-CV death, with more events on saxagliptin (1.8%) than placebo (1.4%) [HR = 1.27; (95% CI 1.00, 1.62); P = 0.051].

A1C was lower with saxagliptin compared to placebo in an exploratory analysis.

Paediatric population
The European Medicines Agency has deferred the obligation to submit the results of studies with Onglyza in one or more subsets of the paediatric population in the treatment of type 2 diabetes mellitus (see section 4.2 for information on paediatric use).
Elderly population
In the SAVOR study subgroups over 65 and over 75 years of age, efficacy and safety were consistent with the overall study population.

GENERATION was a 52-week glycaemic control study in 720 elderly patients, the mean age was 72.6 years; 433 subjects (60.1%) were < 75 years of age, and 287 subjects (39.9%) were ≥ 75 years of age. Primary endpoint was the proportion of patients reaching HbA1c < 7% without confirmed or severe hypoglycaemia. There appeared to be no difference in percentage responders: 37.9% (saxagliptin) and 38.2% (glimepiride) achieved the primary endpoint. A lower proportion of patients in the saxagliptin group (44.7%) compared to the glimepiride group (54.7%) achieved an HbA1c target of 7.0%. A lower proportion of patients in the saxagliptin group (1.1%) compared to the glimepiride group (15.3%) experienced a confirmed or severe hypoglycaemic event.

5.2 Pharmacokinetic properties

The pharmacokinetics of saxagliptin and its major metabolite were similar in healthy subjects and in patients with type 2 diabetes.

Absorption
Saxagliptin was rapidly absorbed after oral administration in the fasted state, with maximum plasma concentrations (C\text{max}) of saxagliptin and its major metabolite attained within 2 and 4 hours (T\text{max}), respectively. The C\text{max} and AUC values of saxagliptin and its major metabolite increased proportionally with the increment in the saxagliptin dose, and this dose-proportionality was observed in doses up to 400 mg. Following a 5 mg single oral dose of saxagliptin to healthy subjects, the mean plasma AUC values for saxagliptin and its major metabolite were 78 ng·h/ml and 214 ng·h/ml, respectively. The corresponding plasma C\text{max} values were 24 ng/ml and 47 ng/ml, respectively. The intra-subject coefficients of variation for saxagliptin C\text{max} and AUC were less than 12%.

The inhibition of plasma DPP4 activity by saxagliptin for at least 24 hours after oral administration of saxagliptin is due to high potency, high affinity, and extended binding to the active site.

Interaction with food
Food had relatively modest effects on the pharmacokinetics of saxagliptin in healthy subjects. Administration with food (a high-fat meal) resulted in no change in saxagliptin C\text{max} and a 27% increase in AUC compared with the fasted state. The time for saxagliptin to reach C\text{max} (T\text{max}) was increased by approximately 0.5 hours with food compared with the fasted state. These changes were not considered to be clinically meaningful.

Distribution
The in vitro protein binding of saxagliptin and its major metabolite in human serum is negligible. Thus, changes in blood protein levels in various disease states (e.g. renal or hepatic impairment) are not expected to alter the disposition of saxagliptin.

Biotransformation
The biotransformation of saxagliptin is primarily mediated by cytochrome P450 3A4/5 (CYP3A4/5). The major metabolite of saxagliptin is also a selective, reversible, competitive DPP4 inhibitor, half as potent as saxagliptin.

Elimination
The mean plasma terminal half-life (t\text{1/2}) values for saxagliptin and its major metabolite are 2.5 hours and 3.1 hours respectively, and the mean t\text{1/2} value for plasma DPP4 inhibition was 26.9 hours. Saxagliptin is eliminated by both renal and hepatic pathways. Following a single 50 mg dose of \text{14}C-saxagliptin, 24%, 36%, and 75% of the dose was excreted in the urine as saxagliptin, its major metabolite, and total radioactivity respectively. The average renal clearance of saxagliptin (~230 ml/min) was greater than the average estimated glomerular filtration rate (~120 ml/min), suggesting some active renal excretion. For the major metabolite, renal clearance values were comparable to estimated glomerular filtration rate. A total of 22% of the administered radioactivity
was recovered in faeces representing the fraction of the saxagliptin dose excreted in bile and/or unabsorbed medicinal product from the gastrointestinal tract.

Linearity
The C_{max} and AUC of saxagliptin and its major metabolite increased proportionally to the saxagliptin dose. No appreciable accumulation of either saxagliptin or its major metabolite was observed with repeated once-daily dosing at any dose level. No dose- and time-dependence was observed in the clearance of saxagliptin and its major metabolite over 14 days of once-daily dosing with saxagliptin at doses ranging from 2.5 mg to 400 mg.

Special populations

Renal impairment
A single-dose, open-label study was conducted to evaluate the pharmacokinetics of a 10 mg oral dose of saxagliptin in subjects with varying degrees of chronic renal impairment compared to subjects with normal renal function. The study included patients with renal impairment classified on the basis of creatinine clearance (based on the Cockcroft-Gault formula) as mild (>50 to ≤ 80 ml/min), moderate (≥ 30 to ≤ 50 ml/min), or severe (<30 ml/min), as well as patients with ESRD on haemodialysis.

The degree of renal impairment did not affect the C_{max} of saxagliptin or its major metabolite. In subjects with mild renal impairment, the mean AUC values of saxagliptin and its major metabolite were 1.2- and 1.7-fold higher, respectively, than mean AUC values in subjects with normal renal function. Because increases of this magnitude are not clinically relevant, dose adjustment in patients with mild renal impairment is not recommended. In subjects with moderate or severe renal impairment or in subjects with ESRD on haemodialysis, the AUC values of saxagliptin and its major metabolite were up to 2.1- and 4.5-fold higher, respectively, than AUC values in subjects with normal renal function. The dose of Onglyza should be reduced to 2.5 mg once daily in patients with moderate or severe renal impairment (see sections 4.2 and 4.4).

Hepatic impairment
In subjects with mild (Child-Pugh Class A), moderate (Child-Pugh Class B), or severe (Child-Pugh Class C) hepatic impairment the exposures to saxagliptin were 1.1-, 1.4- and 1.8-fold higher, respectively, and the exposures to BMS-510849 were 22%, 7%, and 33% lower, respectively, than those observed in healthy subjects.

Elderly (≥65 years)
Elderly patients (65-80 years) had about 60% higher saxagliptin AUC than young patients (18-40 years). This is not considered clinically meaningful, therefore, no dose adjustment for Onglyza is recommended on the basis of age alone.

5.3 Preclinical safety data

In cynomolgus monkeys saxagliptin produced reversible skin lesions (scabs, ulcerations and necrosis) in extremities (tail, digits, scrotum and/or nose) at doses ≥ 3 mg/kg/day. The no effect level (NOEL) for the lesions is 1 and 2 times the human exposure of saxagliptin and the major metabolite respectively, at the recommended human dose of 5 mg/day (RHD).

The clinical relevance of the skin lesions is not known, however, clinical correlates to skin lesions in monkeys have not been observed in human clinical trials of saxagliptin.

Immune related findings of minimal, nonprogressive, lymphoid hyperplasia in spleen, lymph nodes and bone marrow with no adverse sequelae have been reported in all species tested at exposures starting from 7 times the RHD.

Saxagliptin produced gastrointestinal toxicity in dogs, including bloody/mucoid faeces and enteropathy at higher doses with a NOEL 4 and 2 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD.
Saxagliptin was not genotoxic in a conventional battery of genotoxicity studies in vitro and in vivo. No carcinogenic potential was observed in two-year carcinogenicity assays with mice and rats.

Effects on fertility were observed in male and female rats at high doses producing overt signs of toxicity. Saxagliptin was not teratogenic at any doses evaluated in rats or rabbits. At high doses in rats, saxagliptin caused reduced ossification (a developmental delay) of the foetal pelvis and decreased foetal body weight (in the presence of maternal toxicity), with a NOEL 303 and 30 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD. In rabbits, the effects of saxagliptin were limited to minor skeletal variations observed only at maternally toxic doses (NOEL 158 and 224 times the human exposure for saxagliptin and the major metabolite, respectively at RHD). In a pre- and postnatal developmental study in rats, saxagliptin caused decreased pup weight at maternally toxic doses, with NOEL 488 and 45 times the human exposure for saxagliptin and the major metabolite, respectively at RHD. The effect on offspring body weights were noted until postnatal day 92 and 120 in females and males, respectively.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core
Lactose monohydrate
Cellulose, microcrystalline (E460i)
Crocarmellose sodium (E468)
Magnesium stearate

Film-coating
Polyvinyl alcohol
Macrogol 3350
Titanium dioxide (E171)
Talc (E553b)
Iron oxide red (E172)

Printing ink
Shellac
Indigo carmine aluminium lake (E132)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Alu/Alu blister.
Pack sizes of 14, 28, 56 and 98 film-coated tablets in non-perforated blisters.
Pack sizes of 14, 28, 56 and 98 film-coated tablets in non-perforated calendar blisters.
Pack sizes of 30x1 and 90x1 film-coated tablets in perforated unit dose blisters.
Not all pack sizes may be marketed.
6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85 Södertälje
Sweden

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/545/001-010

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 01 October 2009
Date of latest renewal: 18 July 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer(s) responsible for batch release

AstraZeneca GmbH
Tinsdaler Weg 183
22880 Wedel
Germany

AstraZeneca UK Limited
Silk Road Business Park
Macclesfield
Cheshire
SK10 2NA
United Kingdom

Bristol-Myers Squibb Company
Contrada Fontana del Ceraso
IT-03012 Anagni (FR)
Italy

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to medical prescription.

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic Safety Update Reports

The requirements for submission of periodic safety update reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk Management Plan (RMP)

The MAH shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON Onglyza 2.5 mg film-coated tablets

1. NAME OF THE MEDICINAL PRODUCT

Onglyza 2.5 mg film-coated tablets
saxagliptin

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each film-coated tablet contains 2.5 mg saxagliptin (as hydrochloride).

3. LIST OF EXCIPIENTS

Contains lactose. See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

14 film-coated tablets
28 film-coated tablets
30x1 film-coated tablets
90x1 film-coated tablets
98 film-coated tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85 Södertälje
Sweden

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/545/011
EU/1/09/545/012
EU/1/09/545/013
EU/1/09/545/014
EU/1/09/545/015

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription.

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

onglyza 2.5 mg

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC:
SN:
NN:
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON Onglyza 5 mg film-coated tablets

1. **NAME OF THE MEDICINAL PRODUCT**

Onglyza 5 mg film-coated tablets
saxagliptin

2. **STATEMENT OF ACTIVE SUBSTANCE(S)**

Each film-coated tablet contains 5 mg saxagliptin (as hydrochloride).

3. **LIST OF EXCPIENTS**

Contains lactose. See leaflet for further information.

4. **PHARMACEUTICAL FORM AND CONTENTS**

<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>film-coated tablets</td>
</tr>
<tr>
<td>28</td>
<td>film-coated tablets</td>
</tr>
<tr>
<td>30x1</td>
<td>film-coated tablets</td>
</tr>
<tr>
<td>56</td>
<td>film-coated tablets</td>
</tr>
<tr>
<td>90x1</td>
<td>film-coated tablets</td>
</tr>
<tr>
<td>98</td>
<td>film-coated tablets</td>
</tr>
</tbody>
</table>

5. **METHOD AND ROUTE(S) OF ADMINISTRATION**

Read the package leaflet before use.
Oral use

6. **SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN**

Keep out of the sight and reach of children.

7. **OTHER SPECIAL WARNING(S), IF NECESSARY**

8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

AstraZeneca AB
SE-151 85 Södertälje
Sweden

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/545/001
EU/1/09/545/002
EU/1/09/545/003
EU/1/09/545/004
EU/1/09/545/005
EU/1/09/545/006
EU/1/09/545/007
EU/1/09/545/008
EU/1/09/545/009
EU/1/09/545/010

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription.

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

onglyza 5 mg

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC:
SN:
NN:
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLISTERS (PERFORATED/NON-PERFORATED) for Onglyza 2.5 mg tablets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onglyza 2.5 mg tablets</td>
</tr>
<tr>
<td>saxagliptin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORITYHISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca AB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. OTHER</th>
</tr>
</thead>
</table>

44
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTERS (PERFORATED/NON-PERFORATED) for Onglyza 5 mg tablets

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onglyza 5 mg tablets</td>
</tr>
<tr>
<td>saxagliptin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca AB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

| 5. OTHER |
1. NAME OF THE MEDICINAL PRODUCT

Onglyza 2.5 mg tablets
saxagliptin

2. NAME OF THE MARKETING AUTHORITYHOLDER

AstraZeneca AB

3. EXPIRY DATE

EXP

4. BATCH NUMBER

Lot

5. OTHER

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

CALENDAR BLISTERS (NON-PERFORATED) for Onglyza 5 mg tablets

1. NAME OF THE MEDICINAL PRODUCT

Onglyza 5 mg tablets
saxagliptin

2. NAME OF THE MARKETING AUTHORISATION HOLDER

AstraZeneca AB

3. EXPIRY DATE

EXP

4. BATCH NUMBER

Lot

5. OTHER

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
B. PACKAGE LEAFLET
Onglyza contains the active substance saxagliptin, which belongs to a group of medicines called ‘oral anti-diabetics’. They work by helping to control the level of sugar in your blood.

Onglyza is used for adult patients aged 18 years and older with ‘type 2 diabetes’, if the disease cannot be adequately controlled with one oral anti-diabetic medicine, diet and exercise. Onglyza is used alone or together with insulin or other oral anti-diabetic medicines.

It is important to keep following the advice about diet and exercise that you have been given by your doctor or nurse.

2. What you need to know before you take Onglyza

Do not take Onglyza

- if you are allergic to saxagliptin or any of the other ingredients of this medicine (listed in section 6).
- if you have had a serious allergic reaction to any other similar medicines that you take to control your blood sugar. See section 4.

Warnings and precautions:

Talk to your doctor or pharmacist before taking Onglyza:

- if you are taking insulin. Onglyza should not be used in place of insulin;
- if you have type 1 diabetes (your body does not produce any insulin) or diabetic ketoacidosis (a complication of diabetes with high blood sugar, rapid weight loss, nausea or vomiting). Onglyza should not be used to treat these conditions;
- if you have or have had a disease of the pancreas;
• if you are taking insulin or an anti-diabetic medicine known as ‘sulphonylurea’, your doctor may want to reduce your dose of insulin or the sulphonylurea when you take either of them together with Onglyza in order to avoid low blood sugar;
• if you have a condition that reduces your defence against infections, such as a disease like AIDS, or from medicines that you might take after an organ transplant;
• if you suffer from heart failure or you have other risk factors for developing heart failure such as problems with your kidneys. Your doctor will advise you of the signs and symptoms of heart failure. You should call your doctor, pharmacist or nurse immediately if you experience any of these symptoms. Symptoms can include, but are not limited to, increasing shortness of breath, rapid increase in weight and swelling of the feet (pedal oedema);
• if you have moderate to severe kidney problems, you will need to take a lower dose of Onglyza. If you are having haemodialysis then Onglyza is not recommended for you;
• if you have moderate or severe liver problems. If you have severe liver problems, then Onglyza is not recommended for you.

Diabetic skin lesions are a common complication of diabetes. Rash has been seen with Onglyza (see section 4) and with certain anti-diabetic medicines in the same class as Onglyza. You are advised to follow the recommendations for skin and foot care that you are given by your doctor or nurse.

Children and adolescents
Onglyza is not recommended for children and adolescents under 18 years. It is not known if this medicine is safe and effective when used in children and adolescents under 18 years of age.

Other medicines and Onglyza
Please tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines.

In particular, you should tell your doctor if you are using medicines containing any of the following active substances:
• Carbamazepine, phenobarbital or phenytoin. These may be used to control fits (seizures) or chronic pain.
• Dexamethasone – a steroid medicine. This may be used to treat inflammation in different body parts and organs.
• Rifampicin. This is an antibiotic used to treat infections such as tuberculosis.
• Ketoconazole. This may be used to treat fungal infections.
• Diltiazem. This is a medicine used to lower blood pressure.

Pregnancy and breast-feeding
Talk to your doctor before you take Onglyza if you are pregnant or plan to become pregnant. You should not use Onglyza if you are pregnant.

Talk to your doctor if you want to breast-feed while taking this medicine. It is not known if Onglyza passes into human breast milk. You should not take this medicine if you are breast-feeding or plan to breast-feed.

Driving and using machines
If you feel dizzy while taking Onglyza, do not drive or use any tools or machines. Hypoglycaemia may affect your ability to drive and use machines or work with safe foothold and there is a risk of hypoglycaemia when taking this medicine in combination with medicines known to cause hypoglycaemia such as insulin and sulphonylureas.

Onglyza contains lactose
The tablets contain lactose (milk sugar). If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.
3. **How to take Onglyza**

Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

The recommended dose of Onglyza is one 5 mg tablet once a day.

If you have kidney problems, your doctor may prescribe a lower dose. This is one 2.5 mg tablet once a day. For this dose, a different tablet strength is available.

Your doctor may prescribe Onglyza alone or together with insulin or other oral anti-diabetic medicines. If applicable, remember to take these other medicines as directed by your doctor to achieve the best results for your health.

How to take Onglyza
The tablets must not be split or cut. Swallow the tablet whole with some water. You can take the tablet with or without food. The tablet can be taken at any time of the day, however, try to take your tablet at the same time each day. This will help you to remember to take it.

If you take more Onglyza than you should
If you take more tablets than you should, talk to a doctor straight away.

If you forget to take Onglyza
- If you forget to take a dose of Onglyza, take it as soon as you remember it. However, if it is nearly time for the next dose, skip the missed dose.
- Do not take a double dose to make up for a forgotten dose. Never take two doses on the same day.

If you stop taking Onglyza
Keep taking Onglyza until your doctor tells you to stop. This is to help keep your blood sugar under control.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Some symptoms need immediate medical attention:
You should stop taking Onglyza and see your doctor immediately if you experience the following symptoms of low blood sugar: trembling, sweating, anxiety, blurred vision, tingling lips, paleness, mood change, vagueness or confusion (hypoglycaemia): Seen very commonly (may affect more than 1 in 10 people).

Symptoms of a serious allergic reaction (seen rarely, may affect up to 1 in 1,000 people) may include:
- Rash
- Raised red patches on your skin (hives)
- Swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing.

If you have these symptoms, stop taking Onglyza and call your doctor or nurse right away. Your doctor may prescribe a medicine to treat your allergic reaction and a different medicine for your diabetes.

You should stop taking Onglyza and contact a doctor immediately if you notice any of the following serious side effects:
severe and persistent pain in the abdomen (stomach area) which might reach through to your back, as well as nausea and vomiting, as it could be a sign of an inflamed pancreas (pancreatitis).

You should call your doctor if you experience the following side effect:
- Severe joint pain.

Some patients have had the following side effects while taking Onglyza and metformin:
- Common (may affect 1 to 10 users in 100): infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), inflamed nose or throat (nasopharyngitis) (signs of this may include a cold or a sore throat), headache, muscle pain (myalgia), vomiting, inflammation of the stomach (gastritis), stomach ache and indigestion (dyspepsia).
- Uncommon (may affect 1 to 10 users in 1,000): joint pain (arthralgia) and difficulties in getting or maintaining an erection (erectile dysfunction).

Some patients have had the following side effects while taking Onglyza and a sulphonylurea:
- Very common: low blood sugar (hypoglycaemia)
- Common: infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), headache, stomach ache and vomiting.
- Uncommon: tiredness, abnormal lipid (fatty acids) levels (dyslipidaemia, hypertriglyceridaemia).

Some patients have had the following side effects while taking Onglyza and a thiazolidinedione:
- Common: infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), headache, vomiting, stomach ache and swelling of the hands, ankles or feet (peripheral oedema).

Some patients have had the following side effects while taking Onglyza and metformin and a sulphonylurea:
- Common: dizziness, tiredness, stomach ache and flatulence.

Some patients have had the following additional side effects while taking Onglyza alone:
- Common: dizziness, diarrhoea and stomach ache.

Some patients have experienced constipation at an unknown frequency (cannot be determined from the available data) when Onglyza was used alone or in combination.

Some patients have had a small reduction in the number of one type of white blood cells (lymphocytes) shown in a blood test when Onglyza was used alone or in combination.

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Onglyza**

Keep this medicine out of the sight and reach of children.
Do not use this medicine after the expiry date which is stated on the blister and the carton after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not use this medicine if the package is damaged or shows signs of tampering.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help to protect the environment.

6. Contents of the pack and other information

What Onglyza contains
- The active substance is saxagliptin. Each film-coated tablet contains 2.5 mg saxagliptin (as hydrochloride).
- The other ingredients are:
 - Tablet core: lactose monohydrate; cellulose, microcrystalline (E460i); croscarmellose sodium (E468); magnesium stearate.
 - Film-coating: polyvinyl alcohol; macrogol 3350; titanium dioxide (E171); talc (E553b) and iron oxide yellow (E172).
 - Printing ink: shellac; indigo carmine aluminium lake (E132).

What Onglyza looks like and contents of the pack
- 2.5 mg film-coated tablets are pale yellow to light yellow, biconvex, round. They have “2.5” printed on one side and “4214” printed on the other side, in blue ink.
- Tablets available in aluminium foil blisters.
- 2.5 mg tablets are available in pack sizes of 14, 28, or 98 film-coated tablets in non-perforated calendar blisters and 30x1 or 90x1 film-coated tablets in perforated unit dose blisters.

Not all pack sizes may be marketed in your country.

Marketing Authorisation Holder
AstraZeneca AB
SE-151 85 Södertälje
Sweden

Manufacturer:
AstraZeneca GmbH
Tinsdaler Weg 183
22880 Wedel
Germany

AstraZeneca UK Limited
Silk Road Business Park
Macclesfield
Cheshire
SK10 2NA
United Kingdom

Bristol-Myers Squibb Company
Contrada Fontana del Ceraso
IT-03012 Anagni (FR)
Italy

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:
<table>
<thead>
<tr>
<th>Country</th>
<th>Company Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>België/Belgique/Belgien</td>
<td>AstraZeneca S.A./N.V.</td>
<td>+32 2 370 48 11</td>
</tr>
<tr>
<td>Lietuva</td>
<td>UAB AstraZeneca Lietuva</td>
<td>+370 5 2660550</td>
</tr>
<tr>
<td>България</td>
<td>АстраЖенека България ЕООД</td>
<td>+359 (2) 44 55 000</td>
</tr>
<tr>
<td>Luxemburg/Luxemburg</td>
<td>AstraZeneca S.A./N.V.</td>
<td>+32 2 370 48 11</td>
</tr>
<tr>
<td>Česká republika</td>
<td>AstraZeneca Czech Republic s.r.o.</td>
<td>+420 222 807 111</td>
</tr>
<tr>
<td>Magyarország</td>
<td>AstraZeneca Kft.</td>
<td>+36 1 883 6500</td>
</tr>
<tr>
<td>Danmark</td>
<td>AstraZeneca A/S</td>
<td>+45 43 66 64 62</td>
</tr>
<tr>
<td>Malta</td>
<td>Associated Drug Co. Ltd</td>
<td>+356 2277 8000</td>
</tr>
<tr>
<td>Lituva</td>
<td>UAB AstraZeneca Lietuva</td>
<td>+370 5 2660550</td>
</tr>
<tr>
<td>Deutschalnd</td>
<td>AstraZeneca GmbH</td>
<td>+49 41 03 7080</td>
</tr>
<tr>
<td>Nederland</td>
<td>AstraZeneca NV</td>
<td>+31 79 363 2222</td>
</tr>
<tr>
<td>Česká republika</td>
<td>AstraZeneca Czech Republic s.r.o.</td>
<td>+420 222 807 111</td>
</tr>
<tr>
<td>Norge</td>
<td>AstraZeneca AS</td>
<td>+47 21 00 64 00</td>
</tr>
<tr>
<td>España</td>
<td>AstraZeneca Farmacéutica Spain, S.A.</td>
<td>+34 91 301 91 00</td>
</tr>
<tr>
<td>Norwegen</td>
<td>AstraZeneca AS</td>
<td>+31 79 363 2222</td>
</tr>
<tr>
<td>Eesti</td>
<td>AstraZeneca</td>
<td>+372 6549 600</td>
</tr>
<tr>
<td>Österreich</td>
<td>AstraZeneca Österreich GmbH</td>
<td>+43 1 711 31 0</td>
</tr>
<tr>
<td>España</td>
<td>AstraZeneca Farmacéutica Spain, S.A.</td>
<td>+34 91 301 91 00</td>
</tr>
<tr>
<td>Polska</td>
<td>AstraZeneca Pharma Poland Sp. z o.o.</td>
<td>+48 22 245 73 00</td>
</tr>
<tr>
<td>Hrvatska</td>
<td>AstraZeneca d.o.o.</td>
<td>+385 1 4628 000</td>
</tr>
<tr>
<td>Portugal</td>
<td>AstraZeneca Produtos Farmacêuticos, Lda.</td>
<td>+351 21 434 61 00</td>
</tr>
<tr>
<td>Hrvatska</td>
<td>AstraZeneca d.o.o.</td>
<td>+385 1 4628 000</td>
</tr>
<tr>
<td>Románia</td>
<td>AstraZeneca Pharma SRL</td>
<td>+40 21 317 60 41</td>
</tr>
<tr>
<td>Ísland</td>
<td>Vistor hf.</td>
<td>+354 535 7000</td>
</tr>
<tr>
<td>Slovenija</td>
<td>AstraZeneca UK Limited</td>
<td>+386 1 51 35 600</td>
</tr>
<tr>
<td>Itálie</td>
<td>AstraZeneca S.p.A.</td>
<td>+39 02 9801 1</td>
</tr>
<tr>
<td>Slovenská republika</td>
<td>AstraZeneca, o.z.</td>
<td>+421 2 5737 7777</td>
</tr>
<tr>
<td>Italia</td>
<td>AstraZeneca S.p.A.</td>
<td>+39 02 9801 1</td>
</tr>
<tr>
<td>Sverige</td>
<td>AstraZeneca AB</td>
<td>+46 8 553 26 000</td>
</tr>
<tr>
<td>Latvija</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>SIA AstraZeneca Latvija</td>
<td>AstraZeneca UK Ltd</td>
<td></td>
</tr>
<tr>
<td>Tel: +371 67377100</td>
<td>Tel: +44 1582 836 836</td>
<td></td>
</tr>
</tbody>
</table>

This leaflet was last revised in

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet

1. What Onglyza is and what it is used for
2. What you need to know before you take Onglyza
3. How to take Onglyza
4. Possible side effects
5. How to store Onglyza
6. Contents of the pack and other information

1. What Onglyza is and what it is used for

Onglyza contains the active substance saxagliptin, which belongs to a group of medicines called ‘oral anti-diabetics’. They work by helping to control the level of sugar in your blood.

Onglyza is used for adult patients aged 18 years and older with ‘type 2 diabetes’, if the disease cannot be adequately controlled with one oral anti-diabetic medicine, diet and exercise. Onglyza is used alone or together with insulin or other oral anti-diabetic medicines.

It is important to keep following the advice about diet and exercise that you have been given by your doctor or nurse.

2. What you need to know before you take Onglyza

Do not take Onglyza
- if you are allergic to saxagliptin or any of the other ingredients of this medicine (listed in section 6).
- if you have had a serious allergic reaction to any other similar medicines that you take to control your blood sugar. See section 4.

Warnings and precautions:

Talk to your doctor or pharmacist before taking Onglyza:
- if you are taking insulin. Onglyza should not be used in place of insulin;
- if you have type 1 diabetes (your body does not produce any insulin) or diabetic ketoacidosis (a complication of diabetes with high blood sugar, rapid weight loss, nausea or vomiting). Onglyza should not be used to treat these conditions;
- if you have or have had a disease of the pancreas;
• if you are taking insulin or an anti-diabetic medicine known as ‘sulphonylurea’, your doctor may want to reduce your dose of insulin or the sulphonylurea when you take either of them together with Onglyza in order to avoid low blood sugar;
• if you have a condition that reduces your defence against infections, such as a disease like AIDS, or from medicines that you might take after an organ transplant;
• if you suffer from heart failure or you have other risk factors for developing heart failure such as problems with your kidneys. Your doctor will advise you of the signs and symptoms of heart failure. You should call your doctor, pharmacist or nurse immediately if you experience any of these symptoms. Symptoms can include, but are not limited to, increasing shortness of breath, rapid increase in weight and swelling of the feet (pedal oedema);
• if you have moderate to severe kidney problems, you will need to take a lower dose of Onglyza. If you are having haemodialysis then Onglyza is not recommended for you;
• if you have moderate or severe liver problems. If you have severe liver problems, then Onglyza is not recommended for you.

Diabetic skin lesions are a common complication of diabetes. Rash has been seen with Onglyza (see section 4) and with certain anti-diabetic medicines in the same class as Onglyza. You are advised to follow the recommendations for skin and foot care that you are given by your doctor or nurse.

Children and adolescents

Onglyza is not recommended for children and adolescents under 18 years. It is not known if this medicine is safe and effective when used in children and adolescents under 18 years of age.

Other medicines and Onglyza

Please tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines.

In particular, you should tell your doctor if you are using medicines containing any of the following active substances:

• Carbamazepine, phenobarbital or phenytoin. These may be used to control fits (seizures) or chronic pain.
• Dexamethasone – a steroid medicine. This may be used to treat inflammation in different body parts and organs.
• Rifampicin. This is an antibiotic used to treat infections such as tuberculosis.
• Ketoconazole. This may be used to treat fungal infections.
• Diltiazem. This is a medicine used to lower blood pressure.

Pregnancy and breast-feeding

Talk to your doctor before you take Onglyza if you are pregnant or plan to become pregnant. You should not use Onglyza if you are pregnant.

Talk to your doctor if you want to breast-feed while taking this medicine. It is not known if Onglyza passes into human breast milk. You should not take this medicine if you are breast-feeding or plan to breast-feed.

Driving and using machines

If you feel dizzy while taking Onglyza, do not drive or use any tools or machines. Hypoglycaemia may affect your ability to drive and use machines or work with safe foothold and there is a risk of hypoglycaemia when taking this medicine in combination with medicines known to cause hypoglycaemia such as insulin and sulphonylureas.

Onglyza contains lactose

The tablets contain lactose (milk sugar). If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.
3. **How to take Onglyza**

Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

The recommended dose of Onglyza is one 5 mg tablet once a day.

If you have kidney problems, your doctor may prescribe a lower dose. This is one 2.5 mg tablet once a day. For this dose, a different tablet strength is available.

Your doctor may prescribe Onglyza alone or together with insulin or other oral anti-diabetic medicines. If applicable, remember to take these other medicines as directed by your doctor to achieve the best results for your health.

How to take Onglyza

The tablets must not be split or cut. Swallow the tablet whole with some water. You can take the tablet with or without food. The tablet can be taken at any time of the day, however, try to take your tablet at the same time each day. This will help you to remember to take it.

If you take more Onglyza than you should

If you take more tablets than you should, talk to a doctor straight away.

If you forget to take Onglyza

- If you forget to take a dose of Onglyza, take it as soon as you remember it. However, if it is nearly time for the next dose, skip the missed dose.
- Do not take a double dose to make up for a forgotten dose. Never take two doses on the same day.

If you stop taking Onglyza

Keep taking Onglyza until your doctor tells you to stop. This is to help keep your blood sugar under control.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Some symptoms need immediate medical attention:

You should stop taking Onglyza and see your doctor immediately if you experience the following symptoms of low blood sugar: trembling, sweating, anxiety, blurred vision, tingling lips, paleness, mood change, vagueness or confusion (hypoglycaemia); Seen very commonly (may affect more than 1 in 10 people).

Symptoms of a serious allergic reaction (seen rarely, may affect up to 1 in 1,000 people) may include:

- Rash
- Raised red patches on your skin (hives)
- Swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing.

If you have these symptoms, stop taking Onglyza and call your doctor or nurse right away. Your doctor may prescribe a medicine to treat your allergic reaction and a different medicine for your diabetes.

You should stop taking Onglyza and contact a doctor immediately if you notice any of the following serious side effects:
• severe and persistent pain in the abdomen (stomach area) which might reach through to your back, as well as nausea and vomiting, as it could be a sign of an inflamed pancreas (pancreatitis).

You should call your doctor if you experience the following side effect:
• Severe joint pain.

Some patients have had the following side effects while taking Onglyza and metformin:
• Common, (may affect 1 to 10 users in 100): infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), inflamed nose or throat (nasopharyngitis) (signs of this may include a cold or a sore throat), headache, muscle pain (myalgia), vomiting, inflammation of the stomach (gastritis), stomach ache and indigestion (dyspepsia).
• Uncommon (may affect 1 to 10 users in 1,000): joint pain (arthralgia) and difficulties in getting or maintaining an erection (erectile dysfunction).

Some patients have had the following side effects while taking Onglyza and a sulphonylurea:
• Very common: low blood sugar (hypoglycaemia)
• Common: infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), headache, stomach ache and vomiting.
• Uncommon: tiredness, abnormal lipid (fatty acids) levels (dyslipidaemia, hypertriglyceridaemia).

Some patients have had the following side effects while taking Onglyza and a thiazolidinedione:
• Common: infection of the upper chest or lungs, infection of the urinary tract, inflamed stomach or gut usually caused by an infection (gastroenteritis), infection of the sinuses with a feeling of pain and fullness behind your cheeks and eyes (sinusitis), headache, vomiting, stomach ache and swelling of the hands, ankles or feet (peripheral oedema).

Some patients have had the following side effects while taking Onglyza and metformin and a sulphonylurea:
• Common: dizziness, tiredness, stomach ache and flatulence.

Some patients have had the following additional side effects while taking Onglyza alone:
• Common: dizziness, diarrhoea and stomach ache.

Some patients have experienced constipation at an unknown frequency (cannot be determined from the available data) when Onglyza was used alone or in combination.

Some patients have had a small reduction in the number of one type of white blood cells (lymphocytes) shown in a blood test when Onglyza was used alone or in combination.

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Onglyza**

Keep this medicine out of the sight and reach of children.
Do not use this medicine after the expiry date which is stated on the blister and the carton after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not use this medicine if the package is damaged or shows signs of tampering.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help to protect the environment.

6. Contents of the pack and other information

What Onglyza contains
- The active substance is saxagliptin. Each film-coated tablet contains 5 mg saxagliptin (as hydrochloride).
- The other ingredients are:
 - Tablet core: lactose monohydrate; cellulose, microcrystalline (E460i); croscarmellose sodium (E468); magnesium stearate.
 - Film-coating: polyvinyl alcohol; macrogol 3350; titanium dioxide (E171); talc (E553b) and iron oxide red (E172).
 - Printing ink: shellac; indigo carmine aluminium lake (E132).

What Onglyza looks like and contents of the pack
- 5 mg film-coated tablets are pink, biconvex, round. They have “5” printed on one side and “4215” printed on the other side, in blue ink.
- Tablets available in aluminium foil blisters.
- 5 mg tablets are available in pack sizes of 14, 28, 56, or 98 film-coated tablets in non-perforated blisters, 14, 28, 56, or 98 film-coated tablets in non-perforated calendar blisters and 30x1 or 90x1 film-coated tablets in perforated unit dose blisters.

Not all pack sizes may be marketed in your country.

Marketing Authorisation Holder

AstraZeneca AB
SE-151 85 Södertälje
Sweden

Manufacturer:

AstraZeneca GmbH
Tinsdaler Weg 183
22880 Wedel
Germany

AstraZeneca UK Limited
Silk Road Business Park
Macclesfield
Cheshire
SK10 2NA
United Kingdom

Bristol-Myers Squibb Company
For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

<table>
<thead>
<tr>
<th>Country</th>
<th>Local Representative</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>België/Belgique/Belgien</td>
<td>AstraZeneca S.A./N.V.</td>
<td>+32 2 370 48 11</td>
</tr>
<tr>
<td>България</td>
<td>АстраЗенека България ЕООД</td>
<td>+359 (2) 44 55 000</td>
</tr>
<tr>
<td>Česká republika</td>
<td>AstraZeneca Czech Republic s.r.o.</td>
<td>+420 222 807 111</td>
</tr>
<tr>
<td>Danmark</td>
<td>AstraZeneca A/S</td>
<td>+45 43 66 64 62</td>
</tr>
<tr>
<td>Deutschland</td>
<td>AstraZeneca GmbH</td>
<td>+49 41 03 7080</td>
</tr>
<tr>
<td>Eesti</td>
<td>AstraZeneca</td>
<td>+372 6549 600</td>
</tr>
<tr>
<td>Ελλάδα</td>
<td>AstraZeneca A.E.</td>
<td>+30 2 106871500</td>
</tr>
<tr>
<td>España</td>
<td>AstraZeneca Farmacéutica Spain, S.A.</td>
<td>+34 91 301 91 00</td>
</tr>
<tr>
<td>France</td>
<td>AstraZeneca</td>
<td>+33 1 41 29 40 00</td>
</tr>
<tr>
<td>Hrvatska</td>
<td>AstraZeneca d.o.o.</td>
<td>+385 1 4628 000</td>
</tr>
<tr>
<td>Ireland</td>
<td>AstraZeneca Pharmaceuticals (Ireland) DAC</td>
<td>+353 1609 7100</td>
</tr>
<tr>
<td>Ísland</td>
<td>Vistor hf.</td>
<td>+354 535 7000</td>
</tr>
<tr>
<td>Italia</td>
<td>AstraZeneca S.p.A.</td>
<td></td>
</tr>
<tr>
<td>Litouva</td>
<td>UAB AstraZeneca Lietuva</td>
<td>+370 5 2660550</td>
</tr>
<tr>
<td>Luxemburg/Luxemburg</td>
<td>AstraZeneca S.A./N.V.</td>
<td>+32 2 370 48 11</td>
</tr>
<tr>
<td>Magyarország</td>
<td>AstraZeneca Kft.</td>
<td>+36 1 883 6500</td>
</tr>
<tr>
<td>Malta</td>
<td>Associated Drug Co. Ltd</td>
<td>+356 2277 8000</td>
</tr>
<tr>
<td>Nederland</td>
<td>AstraZeneca BV</td>
<td>+31 79 363 2222</td>
</tr>
<tr>
<td>Norge</td>
<td>AstraZeneca AS</td>
<td>+47 21 00 64 00</td>
</tr>
<tr>
<td>Österreich</td>
<td>AstraZeneca Österreich GmbH</td>
<td>+43 1 711 31 0</td>
</tr>
<tr>
<td>Polska</td>
<td>AstraZeneca Pharma Poland Sp. z o.o.</td>
<td>+48 22 245 73 00</td>
</tr>
<tr>
<td>Portugal</td>
<td>AstraZeneca Produtos Farmacêuticos, Lda.</td>
<td>+351 21 434 61 00</td>
</tr>
<tr>
<td>România</td>
<td>AstraZeneca Pharma SRL</td>
<td>+40 21 317 60 41</td>
</tr>
<tr>
<td>Slovenija</td>
<td>AstraZeneca UK Limited</td>
<td>+386 1 51 35 600</td>
</tr>
<tr>
<td>Slovenská republika</td>
<td>AstraZeneca AB, o.z.</td>
<td>+421 2 5737 7777</td>
</tr>
<tr>
<td>Suomi/Finland</td>
<td>AstraZeneca Oy</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Company</td>
<td>Phone</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Κύπρος</td>
<td>Αλέκτωρ Φαρµακευτική Λτδ</td>
<td>+357 22490305</td>
</tr>
<tr>
<td>Sverige</td>
<td>AstraZeneca AB</td>
<td>+46 8 553 26 000</td>
</tr>
<tr>
<td>Latvija</td>
<td>SIA AstraZeneca Latvija</td>
<td>+371 67377100</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>AstraZeneca UK Ltd</td>
<td>+44 1582 836 836</td>
</tr>
</tbody>
</table>

This leaflet was last revised in