1. Bacitracin is an antibiotic from the group of peptide antibacterial compounds. In veterinary medicine, bacitracin is used in combination with tetracycline, neomycin and prednisolone for intramammary treatment of mastitis in lactating cows. The recommended dosage is 2000 IU bacitracin (standard potency 74 IU/mg, i.e. 1 IU/13.5 µg) per infected quarter, to be repeated after 12 or 24 hours if necessary. Bacitracin is also used for intramammary administration in dry cow therapy and as a wound powder, but these uses were not defended. Bacitracin is authorised as a feed additive for poultry, pigs, calves, lambs and kids. In human medicine, (zinc) bacitracin is used in the topical treatment of local infections, often in conjunction with other antibiotics.

2. Bacitracin is produced by *Bacillus licheniformis* and *Bacillus subtilis*, and is a mixture of several closely related polypeptides, mainly consisting of bacitracin A, B1, B2 and a small portion of bacitracin F. The zinc salt adds stability particularly during storage of the product. Bacitracin is mainly active against Gram positive microorganisms. The activities of bacitracins B1 and B2 constitute about 90% of the antibacterial activity of bacitracin A. Bacitracin F is almost inactive.

3. After oral application to rats, chickens and pigs, bacitracin is hardly absorbed from the gastrointestinal tract, and the distribution to organs and tissues is negligible. In rats, chickens and pigs, approximately 95% of an oral dose is excreted via faeces, and only 3% or less via urine. Bacitracin is metabolized to amino acids and smaller peptides via the main metabolite desamidobacitracin, which is microbiologically inactive. Main metabolites in faeces are bacitracin A, B1, B2, F, desamidobacitracin and catabolic peptides. In urine and bile only hydrolytic cleavage products (di- and tripeptides) are present.

4. The oral acute toxicity of (zinc)bacitracin is low, with LD$_{50}$ values greater than 1200 mg/kg bw for rabbits, greater than 3750 mg/kg bw for mice and greater than 9500 mg/kg bw for dogs.

5. In two adequately performed studies, rats received feed-grade and/or pure zinc bacitracin by gavage at doses of 0, 36, 72, 144, 250, 500, and 1000 mg/kg bw/day for 28 days (range-finding study), or 0, 11, 34, 150, 250, and 500 mg/kg bw/day for 13 weeks. In these studies the most relevant effects were post-dosing salivation, loose faeces, decreased food utilisation, and (13-week study only) minor pathological changes in the stomach. No overall NOEL could be established, as in the 13-week study post-dosing salivation (with brown facial staining) was observed at all dose levels, as well as over-excitation in females from all treated groups. Therefore, the dose of 11 mg zinc bacitracin/kg bw/day is regarded as LOEL.
6. In a 1-year study (non-GLP), rats received feed-grade zinc bacitracin in their diet at doses equivalent to 0, 1, 10, and 50 mg/kg bw/day. At the end, the rats that were not sacrificed received control feed and their fertility and reproduction was examined. No toxic effects were observed up to the highest dose tested, although clinical signs were not recorded. There were no signs of nephrotoxicity, which is known to occur after systemic administration of bacitracin. Compared to controls, there was no increase in neoplasms, and the ability to reproduce was not adversely affected.

7. Apart from the limited reproduction data in the 1-year rat study, no data on reproductive toxicity have been provided. This is not considered necessary, as bacitracin is not structurally related to compounds known to have an effect on reproduction, and bacitracin is hardly absorbed after oral administration.

8. In a teratogenicity study, rats received feed-grade and/or pure zinc bacitracin by gavage at dose levels of 0, 11, 34, 150, 250 and 500 mg/kg bw on day 7 to 17 of pregnancy. Zinc bacitracin had no adverse effects on embryo-fetal development, and did not produce irreversible structural malformations up to the highest dose tested. In dams, post-dosing salivation, soft faeces, increased water intake, and slightly decreased body weight gain were noted, resulting in a LOEL of 11 mg/kg bw/day.

9. Zinc bacitracin was negative in in vitro tests for gene mutations in Salmonella typhimurium, gene mutations in mouse lymphoma cells, chromosomal aberrations in human peripheral lymphocytes and in vivo tests for chromosomal aberrations in rat bone marrow cells, unscheduled DNA synthesis (UDS) in rat spleen cells. It was concluded that zinc bacitracin is non-genotoxic.

10. No carcinogenicity studies were provided. This is not considered necessary, as bacitracin is not genotoxic, has no structural alerts, and there is no indication for carcinogenic potential from repeated dose studies. Besides, bacitracin is hardly absorbed after oral administration.

11. In an in vitro test the MIC-values for bacitracin were determined in a range of bacterial species isolated from the human gut (Gram positive and Gram negative anaerobes and aerobes/facultative anaerobes). It was demonstrated that Gram negative bacteria were not susceptible to bacitracin. The MIC50-values for the Gram positive strains tested ranged from 0.5 µg/ml (Bifidobacterium spp.) to 64 µg/ml (Clostridium spp.), with a geometric mean MIC50 of 5.7 µg/ml.

12. In the yoghurt inhibition test, the no effect level for bacitracin on the growth (detected by acid production) of Streptococcus thermophilus and Lactobacillus bulgaricus was 540 µg/l.

13. The use of zinc bacitracin as feed additive is under evaluation by the EU Scientific Committee for Animal Nutrition (SCAN). In line with the evaluation by SCAN, the basis for the toxicological ADI is the overall toxicological LOEL of 11 mg/kg bw/day in the 13-week rat study and the rat teratogenicity study. Based on this LOEL and a safety factor of 200, a toxicological ADI of 0.055 mg/kg bw can be established for bacitracin (equivalent to 3.3 g for a 60 kg person).

14. The microbiological ADI for bacitracin can be calculated using the recommended CVMP formula:

\[
\text{ADI} = \frac{\text{Geometric mean MIC}_{50} \times \text{CF}_2}{\text{CF}_1} \times \text{daily faecal bolus (150 ml)} \times \text{human bodyweight (60 kg)}
\]

\[
\text{ADI} = \frac{\text{Fraction of an oral dose available for micro-organisms}}{\text{CF}_1}
\]

2/5
©EMEA 2001
Based on this formula and on the *in vitro* susceptibility data with human enteric microorganisms, the following microbiological ADI can be retained for bacitracin:

\[
\text{ADI} = \frac{1.57 \times 150}{1 \times 60} = 3.9 \, \mu g/kg \text{ bw (i.e. } 234 \, \mu g \text{ for a 60 kg person)}
\]

The following assumptions were made:

- CF2 = 1, as no information on effects of pH and inoculum sizes on the MIC determinations was provided
- geometric mean MIC50/CF1 = 1.57, as resistance against bacitracin hardly occurs and the variability in MIC50-values for the most sensitive strains tested is calculated as the one-tailed 10% lower confidence limit of the geometric mean MIC50
- a value of 1 for the fraction available to gut microorganisms, as bacitracin is not absorbed from the gastro-intestinal tract

As this microbiological ADI is lower than the toxicological ADI, the former is most relevant for the safety assessment of bacitracin.

15. After intramammary treatment of lactating cows with the commercial formulation in two quarters per cow at 4 consecutive milking, no bacitracin was detected in plasma during and after treatment (limit of detection 40.5 µg/l). Hence, bacitracin is not absorbed from the udder into plasma.

16. After intramammary treatment of lactating cows with the commercial formulation in two quarters per cow at 4 consecutive milking, residues of bacitracin were determined in muscle, liver, kidney, fat and udder after withdrawal periods of 14, 28, 42, 56, and 84 days after last treatment (2 animals/time point). Bacitracin was not detectable in any tissue at any time point (limit of detection 40.5 to 135 µg/kg). Although no information on tissue residues was provided at shorter withdrawal periods, it is not likely that residues of bacitracin in bovine tissues will occur at earlier time points than 14 days because pharmacokinetic data with the commercial formulation demonstrated that during and after intramammary treatment bacitracin is not absorbed from the udder into the systemic circulation.

17. Residues of bacitracin in milk were studied in twelve cows (daily milk yields 10 to 32 kg) after intramammary treatment with the commercial formulation in two quarters per cow at 4 consecutive milking. Bacitracin was not detectable in milk from untreated quarters (limit of detection 73 µg/l). In milk from treated quarters, however, bacitracin was detected during treatment (1620 to 76950 µg/l), declining to approximately 540 µg/l at the 6th milking after last treatment and to 135 µg/l at the 8th milking after last treatment.

18. Considering that, if metabolized at all, bacitracin is metabolised in microbiologically inactive compounds only, the choice of the parent compound as marker residue is justified.

19. No pharmacokinetic and residue data were available on the intramammary use of bacitracin in dry cows and on the topical use of bacitracin as wound powder.

20. A microbiological method including solid phase extraction was proposed as routine analytical method for the determination of bacitracin in milk. However, due to the general lack of specificity of microbiological methods, this is no validated routine analytical method in accordance with the requirements of Volume VI of the Rules Governing Medicinal Products in the European Community.
Conclusions and recommendation

Considering that:

- the microbiological ADI for bacitracin is 3.9 µg/kg bw (i.e. 234 µg for a 60 kg person),
- bacitracin was the only microbiologically active compound and therefore retained as marker residue,
- bacitracin is hardly absorbed after oral administration,
- the intramammary use of bacitracin in lactating cows resulted in undetectable bacitracin residues in plasma and tissues,
- after intramammary use in lactating cows, the marker residue bacitracin is detectable in milk,
- a microbiological analytical method was available; however, a fully validated routine analytical method for the determination of bacitracin in milk in accordance with the requirements of volume VI is not available;

the Committee recommends the inclusion of bacitracin in milk in Annex III to Council Regulation (EEC) No 2377/90 in accordance with the following table:

<table>
<thead>
<tr>
<th>Pharmacologically active substance(s)</th>
<th>Marker residue</th>
<th>Animal species</th>
<th>MRLs</th>
<th>Target tissue</th>
<th>Other provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacitracin</td>
<td>Bacitracin</td>
<td>Bovine</td>
<td>150 µg/kg</td>
<td>Milk</td>
<td>Provisional MRL expires on 1.7.2001</td>
</tr>
</tbody>
</table>

and for other tissues except milk, the inclusion of bacitracin in Annex II to Council Regulation (EEC) No 2377/90 in accordance with the following table:

<table>
<thead>
<tr>
<th>Pharmacologically active substance(s)</th>
<th>Animal species</th>
<th>Other provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacitracin</td>
<td>Bovine</td>
<td>For intramammary use in lactating cows only and for all tissues except milk</td>
</tr>
</tbody>
</table>

Before the Committee can consider the inclusion of bacitracin in milk in Annex I to Council Regulation (EEC) No 2377/90, the points included in the list of questions should be addressed.
LIST OF QUESTIONS

The applicant should provide a routine analytical method for the determination of bacitracin in milk, validated in accordance with the requirements of Volume VI of The Rules Governing Medicinal Products in the European Community and presented in an internationally recognised format (e.g. ISO 78/2).