COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

PERMETHRIN

SUMMARY REPORT (1)

1. Permethrin is a type I synthetic pyrethroid. It is an ester of the dichloro analogue of chrysanthemic acid, and 3-phenoxybenzyl alcohol. Permethrin used in veterinary medicines is a mixture of four stereoisomers of the configuration ([1R,trans], [1R,cis], [1S,trans] and [1S,cis]). The optical ratio of 1R:1S is 1:1 (racemic).

2. Permethrin used in veterinary medicinal products is in the form of sprays (including udder sprays), powders, pour-ons or ear-tags for external application to cattle, horses, donkeys, pigs, sheep, goats and poultry, for the control of ectoparasites. The isomer ratios in these products are cis:trans 80:20, 40:60 or 25:75.

3. Permethrin binds to sodium channels causing a slowing of their rate of closure resulting in repetitive firing of nerves, depolarisation and nerve block. This property underlies the insecticidal action and the mammalian toxicity of pyrethroids. The action of pyrethroids on sodium channels shows a negative temperature coefficient, favouring effects in cold blooded insects over warm-blooded mammals. The type I pyrethroids produce a distinct poisoning syndrome characterised by progressive fine whole body tremor, exaggerated startle response, uncoordinated muscle twitching and hyperexcitability. The effects are generated largely by effects in the central nervous system. The type I response is associated with kinetically distinct effects on sodium channels as compared with type II compounds. Permethrin also induces hepatic microsomal enzymes.

4. Studies in rats have shown slow and partial absorption of permethrin (cis:trans 25:75) administered orally in corn oil to rats (t½ absorption 0.9 hours, oral bioavailability 61%). Peak concentrations and area-under-curve values were higher in brain and sciatic nerve than in plasma.

Following a distribution phase (t½ 4.9 hours) permethrin was eliminated with a t½ of 12.3 hours. In mammals, almost all of an oral dose is excreted as metabolites in the urine and faeces within a few days. In rat, goat, cow and hen, the major routes of metabolism are similar and involve hydrolysis of the ester bond and oxidation followed by conjugation. Excretion of the trans isomer is more rapid than that of the cis isomer and this is related to the lower susceptibility of the cis isomer to enzymatic hydrolysis of the ester linkage.

5. The acute oral toxicity of permethrin in rats, mice, rabbits and guinea-pigs is relatively low. The rat appeared to be the most sensitive species with an oral LD50 of 400 mg/kg bw for cis:trans 40:60 permethrin administered in corn oil. Permethrin was approximately 10-fold more toxic to rodents when administered in corn oil as compared to water. The studies in mice indicated that intravenous or oral cis-permethrin is more than 10-fold more toxic than the trans isomer and 2-5-fold more toxic than the 40:60 cis:trans isomer mix used in the majority of toxicity studies. Neonatal rats are more sensitive than adults to the acute toxic effects of permethrin. This is believed to be related to differences in permethrin metabolism.
6. The overall pattern of toxicity in repeated dose studies is similar in mouse, rat, dog and guinea-pig regardless of route of administration or vehicle. Increased liver weight associated with hepatic microsomal enzyme induction and neurotoxic effects appear to be the most sensitive indicators of toxicity. From the repeated oral dose studies, with dosing regimes ranging from 5 to 2000 mg/kg bw/day, a NOEL of 5 mg/kg bw/day for an isomer ratio of cis:trans 40:60 would be assigned from the effects on liver weight in 2 year and 26 weeks studies in rats and a 3-month study in dogs. NOELs for purified cis and trans isomers and for cis:trans 80:20 mixes are not available. The toxicity of permethrin with a cis:trans ratio of 25:75 is lower than that of permethrin with a cis:trans ratio of 40:60.

7. The reproductive toxicity of permethrin has been tested in 3-generation studies in rats. No effects were found at doses up to 2500 mg/kg feed. Embryotoxicity and teratogenicity has been studied in rats, mice and rabbits using permethrin cis:trans 40:60 and 25:75 at doses ranging from 10 to 1800 mg/kg bw in a variety of vehicles, including corn oil. Although the study protocols do not conform with current requirements, they provide adequate assurance that permethrin is not embryotoxic or teratogenic.

8. The mutagenic activity of permethrin has been assessed in tests for mutation in a range of Salmonella typhimurium strains in the presence and absence of metabolic activation, in Echerichia coli WP2 and Saccharomyces cerevisiae, and in Salmonella typhimurium in a host-mediated assay in mouse, for chromosome loss in Drosophila melanogaster mus-302 and for sex-linked recessive lethal mutations in Drosophila melanogaster; for mutations in Chinese hamster V79 and mouse lymphoma L5178Y cells in vitro, for chromosomal aberrations in the mouse in vivo bone marrow test and in the mouse dominant lethal test and an in vitro test for chromosomal damage in human blood cells in cultured in the presence of inhibitors of cytokinesis and DNA excision repair. All the tests gave negative results except the latter, which is not considered relevant for the assessment of the potential human health risk. Permethrin is not considered to be mutagenic.

9. A total of 5 (3 in mice and 2 in rats) long-term chronic toxicity/carcinogenicity studies in rodents for up to 2 years were evaluated by the International Programme on Chemical Safety (IPCS). All dosing was via the diet and the isomer ratio is assumed to be cis:trans 40:60. The rat studies gave no indication of carcinogenic potential at up to 250 mg/kg bw/day or 2500 mg/kg feed. The mouse studies did give some indication of an increased incidence of lung tumours in permethrin-treated CD-1 female mice as compared to the concurrent controls. However the incidence of tumours was within the historical control range. Doses in the mouse studies were up to 5000 mg/kg feed. The IPCS classification of permethrin as a possible weak rodent carcinogen is accepted. The carcinogenic potential of permethrin is not a cause for concern.

10. Studies on skin sensitisation were not performed according to currently approved protocols but provide adequate assurance that permethrin does not induce skin sensitisation in the guinea-pig. Although certain synthetic pyrethroids are known to have adverse effects on the immune system, there was no evidence of this type of toxicity in a large number of long term studies in rodents treated with permethrin.

11. Information related to humans is restricted to dermal exposure. Reversible paraesthesia, probably related to local action on sensory nerves in the skin, and mild irritation have been reported to occur at the site of contact 30 minutes to 24 hours after dermal exposure.

12. Neurotoxicity has been studied in rats and hens. Structural damage to nerves is only observed following very high doses (400 mg/kg bw/day for 7 days) of permethrin. The neurotoxic effects diminish with continued exposure and are reversible within a few days. A NOEL for the acute neurotoxic effect has been established for the acoustic startle response in adult rats. The NOEL for oral cis:trans (40:60)-permethrin in corn oil was 90 mg/kg bw. Cis-permethrin was effective at a dose of 30 mg/kg bw in this test and a NOEL was not established.
13. Recent studies have indicated that early postnatal exposure to certain pyrethroids (bioallethrin and deltamethrin) can have irreversible effects on brain function in mice. No studies to investigate the potential of permethrin to cause this type of effect have been presented.

14. Permethrin has been assessed by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) and the International Programme in Chemical Safety (IPCS). The 1987 meeting of the JMPR confirmed a permanent ADI for cis:trans 40:60 permethrin of 0-0.05 mg/kg bw based on a NOEL of 5.0 mg/kg bw/day obtained in a 2-year rat study and applying a standard 100-fold safety factor. This is in accordance with the NOEL of 5 mg/kg bw obtained in a 26-week study in rats used by the IPCS as a safety guideline and that obtained in a 3-month study in the dog. The limiting effects were adaptive liver responses. In the 2-year rat study from which the JMPR NOEL was obtained, liver weight was increased at all dose levels, although the effect was not statistically significant at 5 mg/kg bw/day. The NOELs were all obtained for a cis:trans 40:60 isomer mix. Minimal information is available on the toxicity of the 80:20 isomer mix or the individual isomers. Limited acute toxicity studies indicate that the cis-isomer may be 10 times more toxic than the trans isomer. The JMPR and IPCS recommendations were restricted to agricultural and horticultural uses of permethrin. They are not entirely appropriate for use as a basis for establishing an ADI for residues in animal tissues resulting from veterinary medicinal use of products containing isomer ratios up to cis:trans 80:20, particularly since the cis:trans ratio in tissue residues is expected to be higher than in the medication applied to the target species. Furthermore, the NOEL for acute neurotoxic effects has not been established using a sensitive test system. A provisional ADI of 0.01 mg/kg bw was established based on the NOEL of 5 mg/kg bw/day using a safety factor of 500 to allow for the probable higher proportion of cis isomer in tissue residues and to provide an additional margin of safety for the reservations about the reliability of the NOEL obtained from the rat studies and the absence of a well-documented NOEL for acute neurotoxic effects.

For a 60 kg bw adult this gives an ADI of 0.6 mg.

15. Several studies were carried out in which cattle were dosed orally (1.25 mg) or topically (40 mg) with permethrin 14C-labelled in either the acid- or alcohol- moiety. Highest residues were found in fat and liver. After topical application, blood permethrin concentrations were undetectable. Residues were highest in fat (up to 528 µg/kg residue-equivalents) and skin (up to 25035 µg/kg residue-equivalent) with significant residues remaining at the site of application. Residues in liver, kidney and muscle remote from the application site were very low (up to 7, 5, and less than 3 µg/kg respectively). Seven and fourteen days after topical treatment, more than 80% of the radio-labelled material in fat and 98% of the radio-labelled material in skin were extractable and consisted of unmetabolised permethrin. Extractability of radio-labelled material from liver depended on the position of the 14C-label with around 30% extracted after labelling in the acid- moiety and around 60% after labelling in the alcohol- moiety. Approximately 50% of the extractable residues in liver consisted of unmetabolised permethrin. The remainder consisted chiefly of the cleavage products 3-2(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate and 3-phenoxybenzyl alcohol. From this study it can be concluded that approximately 80% of the total residues in bovine fat 7 and 14 days after topical treatment was unmetabolised permethrin but that only 15-30% of the total residues in liver was unmetabolised permethrin. No conclusions can be drawn regarding the ratio of marker to total residues for muscle and kidney.

16. Peak 14C-labelled residues in the range 4 to 11 µg/kg were found in cows’ milk 3 to 5 milkings after treatment. The residues were concentrated in the fat phase. 70 to 90% of the radio-labelled material in cows’ milk was extractable and more than 80% of the extractable residues consisted of unmetabolised permethrin.
17. Goats were dosed orally with 0.2 to 0.3 mg/kg bw permethrin 14C-labelled in the acid- or alcohol-moieties. Residues were generally higher in tissues from goats given the cis-isomer than from goats given the trans-isomer. Concentrations of radioactivity in the fat of goats given the cis-isomer (218-252 µg/kg) were 10 times higher than those found in goats given the trans-isomer (13 to 25 µg/kg). All of the radioactivity in fat was extractable. Unmetabolised permethrin accounted for 38 to 59% of the radioactivity in fat from goats given the cis-isomer and 75 to 80% from goats given the trans-isomer. Concentrations in liver in goats given the cis-isomer (121 to 132 µg/kg) were also higher than those found in goats given the trans-isomer (10 to 40 µg/kg). 36 to 59% of the radioactivity was extractable from liver; at least 5 components were present but were not characterised due to the small amounts present. Total residues in kidney were 30 to 50 µg/kg; there was no information concerning the extractability or identity of these residues.

Residues were higher in milk from goats given the cis-isomer. 80 to 100% of the radioactivity in goats’ milk was extractable. Unmetabolised permethrin accounted for 43 to 68% of the residues in milk from goats given the cis-isomer but only 21 to 45% of the residues in milk from goats given the trans-isomer.

18. Following oral administration of 14C-labelled permethrin (10 mg/kg bw/day for 3 days) to laying hens, around 50% of the residues in eggs consisted of unmetabolised permethrin. Total residues in yolk and albumin peaked at 3000 µg/kg and 600 µg/kg, 5 days after the first dose. Cis-permethrin resulted in significantly higher residues in egg yolk and fat than the trans-isomer. Ten days after the first dose, highest total residues were found in fat (up to 1360 µg/kg) and skin (up to 470 µg/kg) and consisted mostly of unmetabolised permethrin. In liver, total residues of up to 270 µg/kg were found and 96% of the radiolabelled material was extractable. No residues of permethrin were found in liver which consisted of a mixture of unidentified metabolites. Total residues of up to 340 µg/kg were found in kidney and consisted of a mixture of metabolites. From the way the results were presented, it was not possible to deduce the ratios of residues of permethrin to total residues in this study.

In another study using topical application of 3.77 or 11.94 mg/bird permethrin 14C-labelled only in the alcohol moiety, concentrations of radio-labelled material were up to 80 and 110 µg/kg, from the low and high dose treatment respectively in fat, up to 414 and 6690 µg/kg in skin and up to 49 and 121 µg/kg in egg yolk. Peak total residues in kidney, muscle and liver were 153/718, 30/46 and 40/178 µg/kg, respectively. The distribution of residues was similar to that observed in the oral study. However, the nature of the residues in tissues was not investigated.

19. In pigs, 1% of a topically-applied dose of 18 mg 14C-labelled permethrin/pig remained at the site of application for at least 14 days after treatment and more than 95% of this was permethrin. Seven days after treatment, residues in fat were 50 µg/kg and consisted almost entirely of permethrin. Residues in fat samples taken 14 days after treatment were undetectable (less than 12 µg/kg). In a second study, a residue of 10 µg/kg permethrin-equivalents was found in muscle beneath the site of application, 7 days after treatment. Residues in distant muscle, liver and kidney were below the limit of quantification (LOQ) (1 µg/kg) 7 and 14 days after treatment. No other details were provided and no conclusions could be drawn regarding the ratios of residues of permethrin to total residues.

20. Residues depletion studies were carried out in cattle using a number of proprietary products at the recommended dose rates. Residues in tissues were very low. In many studies residues in all tissues were below the limit of detection (LOD) of the analytical method. Residues in tissues resulting from the use of ear-tag formulations were detectable only in occasional samples of fat taken 1-91 days after treatment and were in the range 10 to 20 µg/kg. In a study using a pour-on formulation, residues in muscle and in peri-renal fat were less than 5 µg/kg in all samples; residues in liver declined from 70 to 280 µg/kg 24 hours after treatment, to less than 5 to 25 µg/kg 72 hours after treatment; over the same time period residues in kidney declined from 30 to 110 µg/kg to 5 to 15 µg/kg.

21. Residues in whole cows’ milk following application of a number of permethrin-based products at the recommended dose rates were always below the limit of detection of the analytical method employed.
For these assays, the limits of detection ranged from 1 to 10 µg/kg and milk samples were taken from 7 hours up to 72 hours post-treatment. Following the use of a spray formulation, residues of 79 µg/kg were found in rendered butterfat made from milk taken 7 hours after treatment; the residues declined to around 25 µg/kg in butterfat made from milk taken 46 hours after treatment.

22. No pharmacokinetic or residues depletion data were provided for horses or sheep.

23. Pigs were slaughtered one day after the 6th application of a mist treatment. Residues of 20 µg/kg were found in both subcutaneous and intestinal fat but residues in all other tissues were below 10µg/kg.

24. Following treatment of hens with a spray formulation at an intended dose of 30 mg of active ingredient per bird, residues in skin showed only a small decline from 169 to 224 µg/kg 6 hours after treatment to 50 to 102 µg/kg, 21 days after treatment. The mean residues in eggs reached a maximum of 10.4 µg/kg 5 days after treatment and declined to 3.2 µg/kg 21 days after treatment. Residues in both tissues and eggs were less persistent in another study in which a spray formulation was directed to the vent area at an intended dose of 20 mg of active ingredient per bird.

25. It was agreed that the HPLC method in which the residues of the cis and trans isomers were eluted separately from the GLC column and quantified using ECD was suitable as an analytical method. However, the method was not validated in accordance with Volume VI of the Rules Governing Medicinal Products in the Community. The limit of quantification for tissues appeared to be 50µg/kg (sum of isomers) in an experiment in which the isomers were not separated. The limit of quantification for egg yolk and white appeared to be 5 µg/kg. The limit of quantification for milk appeared to be 20 µg/kg.

26. It was agreed that the GC/MS method was suitable as a confirmatory method. The limits of quantification were 5 µg/kg and 5 µg/l (sum of isomers) for bovine tissues and milk respectively. However, the method was not fully validated in accordance with Volume VI.
Conclusions and recommendation

Having considered that:

- a provisional toxicological ADI has been set at 0.01 mg/kg bw,
- a physico-chemical analytical method is available but not fully validated,

the Committee recommends the inclusion of permethrin in Annex III of Council Regulation (EEC) No 2377/90 in accordance with the following table:

<table>
<thead>
<tr>
<th>Pharmacologically active substance(s)</th>
<th>Marker residue</th>
<th>Animal species</th>
<th>MRLs</th>
<th>Target tissues</th>
<th>Other provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrin</td>
<td>Permethrin</td>
<td>Bovine, caprine</td>
<td>100 µg/kg</td>
<td>Muscle</td>
<td>Provisional MRLs expire on 01.01.2001</td>
</tr>
<tr>
<td></td>
<td>(sum of isomers)</td>
<td></td>
<td>500 µg/kg</td>
<td>Fat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 µg/kg</td>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 µg/kg</td>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicken, porcine</td>
<td>100 µg/kg</td>
<td>Muscle</td>
<td>Provisional MRLs expire on 01.01.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 µg/kg</td>
<td>Fat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 µg/kg</td>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 µg/kg</td>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine, caprine</td>
<td>50 µg/kg</td>
<td>Milk</td>
<td>Further provisions in Council Directive 94/29/EEC are to be observed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Provisional MRLs expire on 01.01.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicken</td>
<td>50 µg/kg</td>
<td>Eggs</td>
<td>Provisional MRLs expire on 01.01.2001</td>
</tr>
</tbody>
</table>

Based on these MRLs, it was calculated that consumer intake of residues from the consumption of 0.5 kg meat tissues, 0.1 kg eggs and 1.5 litres milk would be 143 µg/day. This represents 24% of the ADI calculated above. It was calculated that the theoretical maximum daily intake from the authorised pesticidal uses on fruit and vegetables amounted to 1045 µg/day which exceeded the ADI. A more realistic calculation based on the food intake of an extreme (97.5th percentile) consumer of fruit and vegetables amounted to 486 µg/day (97.5th percentile). This corresponded to 81% of the ADI. Taken together, the theoretical total consumer intake of permethrin from both the veterinary and pesticide uses corresponds to 105% of the ADI. Although the ADI could theoretically be exceeded, it was considered that there would be no undue risks to human health for the following reasons:

- the ADI was exceeded by a relatively small amount,
- the intake from the pesticidal uses represented an extreme (97.5th percentile) consumer of fruit and vegetables.
LIST OF QUESTIONS

Safety file

1. The provisional ADI has been based on a NOEL for hepatic effects in repeated dose studies using permethrin with a cis:trans isomer ratio of 40:60. To allow for the possible higher concentration of cis-permethrin in animal tissues and possible lower NOEL for cis-permethrin, the applicant should provide a basis on which an NOEL for the effects of individual isomers of permethrin on the liver in chronic toxicity studies in rats can be established.

2. The applicant should provide a basis on which an NOEL for the acute neurotoxic effects of individual isomers of permethrin can be established. The applicant should provide adequate justification of the suitability of the vehicle chosen and the test system used.

4. The applicant should put forward a justified proposal for an ADI based on the outcomes of 1-3 above.

Residues file

5. The Applicant should clarify the relationship between the ratios of permethrin (sum of isomers) to total residues and should clarify the percentage of extractable residues for all edible tissues of the target species.

6. To elaborate MRLs for horses, data should be provided for horses taking into account the CVMP Note for Guidance on the Establishment of Maximum Residue Limits for Minor Species (Doc. EMEA/CVMP/153a/97-FINAL).

7. There were some data on total 14C-residues in goat tissues but no pharmacokinetic or residues depletion data. Data for goats should be provided taking into account the CVMP Note for Guidance on the Establishment of Maximum Residue Limits for Minor Species (Doc. EMEA/CVMP/153a/97-FINAL).

8. To elaborate MRLs for sheep, residues depletion data should be provided for sheep.

9. Information concerning residues depletion in goat and sheep milk would be required to support Annex I entries for these commodities taking into account the CVMP Note for Guidance on the Establishment of Maximum Residue Limits for Minor Species (Doc. EMEA/CVMP/153a/97-FINAL).

10. The routine analytical method based on HPLC and involving separation of the cis- and trans- isomers should be fully validated in accordance with Volume VI of the Rules Governing Medicinal Products in the Community and submitted in an internationally recognised format (e.g. ISO 78/2). In particular, the following should be provided:

 • Limits of quantification for the cis- isomers and the trans- isomers (separately) should be determined in accordance with Volume VI for all edible tissues, milk and eggs and taking into account the CVMP Position Paper on Requirements for LOQ/MRL ratio (Doc. EMEA/CVMP/274/96-FINAL);
 • The limit of detection should be properly determined for all edible tissues, milk and eggs;
 • Information should be provided concerning possible interference from residues of other pyrethroids;
• The stability of permethrin in extracts, standard solutions and as residues in stored edible tissues, milk and eggs should be documented.

11. The confirmatory method based on GC/MS should also be fully validated in accordance with Volume VI for all edible tissues, milk and eggs and should be re-presented in an internationally recognised format (e.g. ISO 78/2). In particular the following should be provided:

• Justification for using only one molecular ion;
• the method should be improved to get better recovery of the internal standard from bovine liver samples and better recovery of permethrin from bovine fat samples
• the limit of detection should be determined;
• Information concerning possible interference from residues of other pyrethroids should be provided;
• The stability of permethrin in extracts, standard solutions and as residues in stored edible tissues, milk and eggs should be documented.