Voriconazole Paediatric Dose: an Example

Peter A Milligan¹ Irja Lutsar¹,² Mats O Karlsson³

¹Pfizer Central Research, Sandwich, UK
²University of Tartu, Tartu, Estonia
³Uppsala University, Uppsala, Sweden
Outline of Presentation

• Current voriconazole (Vfend®) adult dosing

• Derivation of paediatric doses
 – data gathered
 – analyses performed
 – interpretations drawn
 – mechanistic implications

• Current voriconazole (Vfend®) paediatric dosing within EU
Vfend® Adult Labelling

- **Adult dosing for invasive aspergillosis**
 - 6 mg/kg IV q12h for first 24h as loading dose
 - 4 mg/kg IV q12h as maintenance dose
 - 200 mg PO q12h as maintenance dose

- **Adult dosing for candidemia**
 - 6 mg/kg IV q12h for first 24h as loading dose
 - 3-4 mg/kg IV q12h as maintenance dose
 - 200 mg PO q12h as maintenance dose

- PO maintenance dosage adjustment possible to 300 or 100 mg q12h

- Voriconazole (Vfend®) is a valuable but complex and challenging compound, from a PK perspective
Pfizer Paediatric Model Derived Dosing Approach

Adult data analysis
- N=11 P1 studies
- N=236 subjects
- N=2313 samples
- Completed in 2000

Non linear PK
- Intrinsic PK for label
 - CYP2C19 (most influential), gender and age important
 - High Bioavailability
- Japan bridging

Ped. data analysis
- N=2 studies
- N=35 subjects
- N=355 samples
- Completed in 2001

Linear PK
- Intrinsic PK for label
 - Comparable dose to adult 3 mg/kg
 - CYP2C19 (most influential), liver enz. weight important
(Predicted) PK Exposures in Paediatrics and Adults

<table>
<thead>
<tr>
<th>Medians</th>
<th>3mg/kg</th>
<th>4mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Paed.</td>
<td>**Adults</td>
</tr>
<tr>
<td>C_{ave} (ng/ml)</td>
<td>889</td>
<td>1155</td>
</tr>
<tr>
<td>AUC_{τ} (ng·h /ml)</td>
<td>10, 670</td>
<td>13, 855</td>
</tr>
</tbody>
</table>

* model based analysis of 35 subjects from SD and MD PK studies
** model based analysis of 236 healthy volunteers from SD and MD PK studies

1.33 fold dose inc.

1.33 fold

2.78 fold
Some Pharmacokinetic Principles

- Intravenous

\[CL = \frac{Dose}{AUC} \]

CL = clearance, F = bioavailability, AUC = area under the curve
Dosing Strategy for Subsequent Paediatric Study

Cohort I
(n=18)
6(iv)- 4(iv)- 6(iv)- 4(po)

Interim analysis
(minimum 12 subjects)

- **AUC < 40,000 no safety concerns**
 - **Cohort II A**
 (n = 18)
 6(iv)- 6(iv)- 8(iv)- 6(po)

- **AUC > 40,000 or safety concerns**
 - **Cohort II B**
 (n = 18)
 6(iv)- 5(iv)- 4(po)- 5(po)
Pfizer Paediatric Model Derived Dosing Approach

<table>
<thead>
<tr>
<th>Adult data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=11 P1 studies</td>
<td>N=2 studies</td>
<td>N=3 studies</td>
</tr>
<tr>
<td>N=236 subjects</td>
<td>N=35 subjects</td>
<td>N=47 subjects</td>
</tr>
<tr>
<td>N=2313 samples</td>
<td>N=355 samples</td>
<td>N=879 samples</td>
</tr>
<tr>
<td>Completed in 2000</td>
<td>Completed in 2001</td>
<td>Completed in 2003</td>
</tr>
</tbody>
</table>

Adult data analysis
- Non linear PK
- Intrinsic PK for label CYP2C19 (most influential), gender and age important
- High Bioavailability
- Japan bridging

Ped. data analysis
- Linear PK
- Intrinsic PK for label CYP2C19 (most influential), liver enz. weight important
- Comparable dose to adult 3 mg/kg

Ped. data analysis
- Non linear PK
- Cohort 2 1037
- KM different
- CYP2C19 (most influential), liver enz. weight important
- Less Bioavailability
Model predicted voriconazole AUC\(\text{tau}\) given nominal dosing schedules (n=47)

<table>
<thead>
<tr>
<th>Median AUC(\text{tau}) (ng(\cdot)h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort I</td>
</tr>
<tr>
<td>(6, 4, 6, 4)*</td>
</tr>
<tr>
<td>13410</td>
</tr>
<tr>
<td>24710</td>
</tr>
<tr>
<td>5710</td>
</tr>
<tr>
<td>Cohort IIA</td>
</tr>
<tr>
<td>(6, 6, 8, 6)*</td>
</tr>
<tr>
<td>24730</td>
</tr>
<tr>
<td>Cohort IIB</td>
</tr>
<tr>
<td>(6, 5, 4, 5)*</td>
</tr>
<tr>
<td>18060</td>
</tr>
<tr>
<td>5710</td>
</tr>
<tr>
<td>7350</td>
</tr>
</tbody>
</table>

*Denotes the mg/kg q12h doses Day 1 (iv), days 2-4 (iv), days 5-8 (iv/po) and days 8-12 (po)
Pfizer Paediatric Model Derived Dosing Approach

<table>
<thead>
<tr>
<th>Adult data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=11 P1 studies</td>
<td>N=2 studies</td>
<td>N=3 studies</td>
<td>N=3 studies</td>
</tr>
<tr>
<td>N=236 subjects</td>
<td>N=35 subjects</td>
<td>N=47 subjects</td>
<td>N=82 subjects</td>
</tr>
<tr>
<td>N=2313 samples</td>
<td>N=355 samples</td>
<td>N=879 samples</td>
<td>N=1274 samples</td>
</tr>
</tbody>
</table>

- **Non linear PK**
 - Intrinsic PK for label CYP2C19 (most influential), gender and age important
 - High Bioavailability
 - Japan bridging

- **Linear PK**
 - Intrinsic PK for label CYP2C19 (most influential), liver enz.
 - weight important

- **Non linear PK**
 - Cohort 2 1037
 - KM different
 - Comparable dose to adult 3 mg/kg
 - CYP2C19 (most influential), liver enz.
 - weight important
 - Less Bioavailability

- **Non linear PK**
 - Comparable dose to adult 4mg/kg
 - IV and 200mg PO
 - KM different
 - CYP2C19 (most influential), liver enz.
 - weight important
 - Less Bioavailability
 - Variance structure
Analysis Concentration Data (1)
Analysis Concentration Data (2)
Adult Reference Distribution – Different Criterion Required?
Criteria Adopted to Assess Dosing Recommendations

• In broadening criteria from median to the entire distribution the dosing recommendations had to balance the following:
 - maintaining concordance with ICH guidelines which seeks comparable AUC in children and adults at the central tendency (median)
 - *but* not over or under exposing individuals at other points of the distribution relative to adults
 - recognizing differing degree of confidence in the predictions of medians compared to tails
• What can be defined as “over” or “under” exposure in this case?
 - sought consistency with the adult label
 - largest magnitude of a change in AUC resulting from co-administration of another compound that *did not* warrant a dosage alteration 41%
 - smallest magnitude of a change in AUC resulting from co-administration of another compound that *did* warrant a subsequent dosage alteration 70%
 - led to a “single point” criteria of 50% used to evaluate effects upon AUC distribution
• In the reference adults (n=236) 4 mg/kg IV bid has CV 83% n AUC
 - achieving concordance for across percentiles of the entire paediatric AUC distribution is very challenging
7 mg/kg IV provides acceptable concordance
Pfizer Paediatric Model Derived Dosing Approach

<table>
<thead>
<tr>
<th>Adult data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
<th>Ped. data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=11 P1 studies</td>
<td>N=2 studies</td>
<td>N=3 studies</td>
<td>N=3 studies</td>
<td>N=3 studies</td>
</tr>
<tr>
<td>N=236 subjects</td>
<td>N=35 subjects</td>
<td>N=47 subjects</td>
<td>N=82 subjects</td>
<td>N=82 subjects</td>
</tr>
<tr>
<td>N=2313 samples</td>
<td>N=355 samples</td>
<td>N=879 samples</td>
<td>N=1274 samples</td>
<td>N=1274 samples</td>
</tr>
</tbody>
</table>

- **Non linear PK**: Intrinsic PK for label, CYP2C19 (most influential), gender and age important.
- **High Bioavailability**: J apan bridging.
- **Linear PK**: Intrinsic PK for label, Comparable dose to adult 3 mg/kg, CYP2C19 (most influential), liver enz. weight important.
- **Comparable dose to adult 4mg/kg**: IV and 200mg PO.
- **KM different**: CYP2C19 (most influential), liver enz. weight important, Less Bioavailability.
- **Less Bioavailability**: Variance structure, Complex Bioavailability.
- **EU approval**:
Oral mg/kg does not provide acceptable concordance
Fixed mg does provide acceptable concordance
Oral dose Justification

• An age/weight interaction on bioavailability exists
• Some potential explanations why such an effect may be most pronounced in children, but not adults:
 – Children have a higher Km than adults
 • less saturation of metabolism at similar concentrations compared to adults
 – The hepatic blood flow (per kg bodyweight) is higher in children than in adults
 • for the same mg/kg oral dose, the concentration entering the liver from the absorption site will be lower in children
• 200mg bid oral dosage applicable across the entire weight range
 – For higher body weight subjects, with high bioavailability (consistent with adults), an oral dose of 200mg bid is equivalent to adults
 – For lower body weights subjects, with low bioavailability (inconsistent with adults), the 200mg bid dose provides a higher “effective mg/kg dose” compensating for the low bioavailability in these individuals
Vfend® Paediatric Dosing Recommendations

• From previous analysis of voriconazole paediatric data 4mg/kg q12h IV comparable to 3mg/kg q12h IV in adults
 - Higher IV maintenance dose due to higher elimination capacity in paediatric patients (greater liver mass to body mass ratio)
• 7mg/kg q12h IV comparable to 4mg/kg q12h IV in adults
 - Larger dose differential due to different degree of non-linearity in voriconazole pharmacokinetics
• 200mg q12h PO comparable to 200mg q12h PO in adults
 - For oral administration in paediatrics, an additional consideration (lower oral bioavailability)