Modeling & Simulation for Pediatric Investigation Plans (PIPs):

challenges and opportunities for drug development

Steven Kern, Ph.D.
University of Utah
Salt Lake City, Utah USA

Sabbatical Professor
Novartis Pharma AG
Basel Switzerland
Conflicts & Disclaimers

• On sabbatical from U of Utah at Novartis
 - Funding from Utah and Novartis
 - Funding from other pharma companies in the past

• Opinions expressed are mine
 - Utah as member of NIH Pediatric Pharmacology Research Units
 - Novartis experience reviewing PIPs and responses from EMEA & PDCO
EMEA PIP Time line

Scientific advice (by SAWP)

- Non-clin
- Phase 1
- Phase 2
- Phase 3

Amendments

Compliance check:
- Paediatric data
- OR deferral
- OR waiver

Paediatric Committee (PDCO)

Adapted from: www.emea.europa.eu
Typical Phase I PK Experiment in Adults
What is known at EOP1 (maybe)...

- Preclinical pharmacology
- Dose-exposure in healthy adults
- Impact on a biomarker of interest (?)
- Some idea of drug effect (?)
- Perhaps some indication of metabolism (?)
What needs to be known…

• Dose-exposure in adult *patients*
• Dose-exposure-response similarity (or not) between adult and pediatric populations
• Differences in exposure across pediatric age groups
• Scalability of biomarker of interest or concentration – effect relationship
What needs to be known…

- Dose-exposure in adult patients
- Dose-exposure-response similarity (or not) between adult and pediatric populations
- Differences in exposure across pediatric age groups
- Scalability of biomarker of interest or concentration – effect relationship
“Established” M & S for PIPs

- Allometric scaling from Adult PK when rational
 - Many examples presented
- Incorporation of known/expected maturation affects on disposition
 - Example of Famvir
- Bridging between known and unknown data
 - Example with Trileptal
- Impact of limited resolution
 - PK Assay LLOQ
 - Dose selection and discretization
“Emerging” M & S for PIPs

- PBPK as means to bridge preclinical and early dosing information
- Mechanism-based modeling to enhance understanding of exposure-effect relationship
- In silico approaches to anticipate differences in pediatric patients
- Novel statistical methods for maximizing information from limited populations
PIP Amendments are a dialogue

- Dialogues can be difficult
- PIP adaptation may be needed as more knowledge is gained in adult trials
- Sponsors must provide support and rationale to help HAs understand adaptations based on pharmacometrics
- HAs need to integrate this understanding into decision making and action
Are HA’s ready for the dialogue?

GUIDELINE ON THE ROLE OF PHARMACOKINETICS IN THE DEVELOPMENT OF MEDICINAL PRODUCTS IN THE PAEDIATRIC POPULATION

EXECUTIVE SUMMARY
This guideline provides advice on the use of pharmacokinetic studies in paediatric drug development and on methodological issues concerning pharmacokinetic studies in paediatric patients.

1. INTRODUCTION (background)
An application for paediatric use of a medicinal product should include sufficient information to establish efficacy and safety. Paediatric patients have the same right to well investigated therapies as adults. There are, however, several reasons why it is more difficult to study a medicinal product in paediatric patients, particularly in very young patients. Hence, it is often unrealistic to expect the applicant to fully demonstrate efficacy and safety in paediatric patients in clinical studies. In such a situation pharmacokinetic data may be used to extrapolate efficacy and/or safety from data obtained in adults or in paediatric age groups other than the age groups applied for.

Special consideration is often necessary when performing pharmacokinetic studies in paediatric patients and it is important that the pharmacokinetic information available is presented and used in an optimal manner. A specific feature of very young paediatric patients is rapid maturation of organ functions important for drug absorption, distribution, and elimination. Therefore changes in dose may be necessary for a patient over time, based on individual maturation.

It should be recognised that documenting a drug for paediatric use involves a multitude of choices and that, at present, knowledge and experience in this field is limited. Sponsors are encouraged to explore new approaches in the development of drugs for the paediatric population.
Communicating With the FDA: The “Third Rail” of a New Model for Drug Development

Donald R. Stanksi, MD, and John J. Orloff, MD

In this issue, Wang and colleagues present a new program, the End-of-Phase 2A (EOP2A) meeting, that has been piloted at the Food and Drug Administration (FDA) during the past several years. FDA has been limited, the feedback presented by Wang and colleagues suggests a highly valuable experience that in many cases altered the design of the clinical drug development program.
The Novartis Long Term Vision of Model Based Drug Development

Modeling & Simulation

Build the model
Confirm the model
Monitored Release
Full Release
Provisional Approval
Full Approval

Biomarkers

Continuous sharing of data with Health Authority
The phrase **third rail** is a metaphor in politics to denote an idea or topic that is so "charged" and "untouchable" that any politician or public official who dares to broach the subject would invariably suffer politically.

The third rail in a train system is the exposed electrical conductor that carries high voltage power. Stepping on the high-voltage third rail usually results in electrocution. The use of the term in politics serves to emphasize the "shock" that results from raising the controversial idea, and the "political death" (or political suicide) that the unaware or provocative politician would encounter as a result.

This third rail, used to power trains, carries hundreds of volts of electricity, resulting in a spectacular electrocution and likely death for anyone who touches it. Third rail political issues are similarly "charged".
Third rail for the future - power or shock?

- Use modeling & simulation to bridge between what we know and what we don’t
- Establish “best practices” in approaches
- Develop studies that require the fewest possible numbers of subjects
 - “Waste not a drop…”
 - Tradeoff of utility vs. futility
- Maximize our use of quantitative knowledge
Waste not a drop…

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Amlodipine</th>
<th>Enalapril</th>
<th>Fosinopril</th>
<th>Irbesartan</th>
<th>Lisinopril</th>
<th>Losartan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary end point</td>
<td>Systolic</td>
<td>Diastolic</td>
<td>Systolic</td>
<td>Systolic</td>
<td>Diastolic</td>
<td>Diastolic</td>
</tr>
<tr>
<td>Dosing range</td>
<td>2</td>
<td>32</td>
<td>6</td>
<td>9</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Success</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Sample size</td>
<td>268</td>
<td>110</td>
<td>253</td>
<td>318</td>
<td>115</td>
<td>177</td>
</tr>
<tr>
<td>Low-dose change, SBP</td>
<td>7.48</td>
<td>7.04</td>
<td>11.15</td>
<td>13.58</td>
<td>3.47</td>
<td>3.42</td>
</tr>
<tr>
<td>Low-dose change, DBP</td>
<td>3.72</td>
<td>6.35</td>
<td>4.25</td>
<td>5.92</td>
<td>5.64</td>
<td>5.01</td>
</tr>
<tr>
<td>Medium-dose change, SBP</td>
<td>8.77</td>
<td>6.61</td>
<td>11.06</td>
<td>11.01</td>
<td>7.94</td>
<td>7.82</td>
</tr>
<tr>
<td>Medium-dose change, DBP</td>
<td>4.41</td>
<td>8.91</td>
<td>3.77</td>
<td>3.67</td>
<td>7.1</td>
<td>8.45</td>
</tr>
<tr>
<td>High-dose change, SBP</td>
<td>...</td>
<td>12.52</td>
<td>11.95</td>
<td>9.2</td>
<td>10.82</td>
<td>6.25</td>
</tr>
<tr>
<td>High-dose change, DBP</td>
<td>...</td>
<td>14.87</td>
<td>5.88</td>
<td>3.2</td>
<td>11.97</td>
<td>8.64</td>
</tr>
</tbody>
</table>

Table 2. Trial Design Characteristics and Subject Response to Therapy

Dosing

Low
- 2.5 mg
- 0.625 mg if <50 kg; 1.25 mg if ≥50 kg if <50 kg; 1.25 mg if ≥50 kg
- 0.1 mg/kg up to 40 mg
- 0.5 mg/kg
- 0.625 mg if <50 kg; 1.25 mg if ≥50 kg
- 2.5 mg if <50 kg; 5.0 mg if ≥50 kg

Medium
- 5 mg
- 2.5 mg if <50 kg; 5 mg if ≥50 kg
- 0.3 mg/kg up to 40 mg
- 1.5 mg/kg
- 2.5 mg if <50 kg; 5 mg if ≥50 kg
- 25 mg if <50 kg; 50 mg if ≥50 kg

High
- ≤20 mg if <50 kg; ≤40 mg if ≥50 kg
- 0.6 mg/kg up to 40 mg
- 4.5 mg/kg
- 20 mg if <50 kg; 40 mg if ≥50 kg
- 100 mg if ≥50 kg

SBP indicates systolic blood pressure; DBP, diastolic blood pressure.

Benjamin et al. *Hypertension* 2008; 51:834-840
Back to the future

Clinical Pharmacology & Therapeutics

Volume 73 Number 6

June 2003

Commentary

Hypothesis: A single clinical trial plus causal evidence of effectiveness is sufficient for drug approval

Carl C. Peck, MD, Donald B. Rubin, PhD, and Lewis B. Sheiner, MD
Washington, DC, Cambridge, Mass, and San Francisco, Calif

In 1997, President Clinton signed the Food and Drug Administration Modernization Act of 1997 (FDAMA). Among its many provisions, section 115a amended the Federal Food, Drug, and Cosmetics Act to permit determination of substantial evidence of effectiveness as required for approval of a new drug to be based on "data from one adequate and well-controlled investigation and confirmatory evidence."* This language contrasts to the statute's previous wording, introduced in the 1962 amendment, that required "adequate and well controlled investigations" (note plural, emphasis added) and interpreted by the US Food and Drug Administration to require (at least) 2 such trials. Exactly how the new mandate of FDAMA 1997 should be interpreted has since been a matter of as yet unresolved debate (see, for example, Peck and Wechsler). The
The Pediatric Challenge

• Factors in pediatric drug development challenge “traditional” methods of drug evaluation trials
 – “Volunteer” studies are with patients
 – Limited sampling volumes
 – Challenges in consent
 – Challenges to placebo trials
• Doing more with less
• Risks of futility
The Pediatric Opportunity

- Greater acceptance by Health Authorities of pharmacometric methods for pediatric drug development

- Better methods of drug development for all populations

- Greater acceptance by Health Authorities of pharmacometric methods for **ALL** drug development
Conclusion

• Use of M & S in pediatrics is increasing

• Role in design & analysis of drug studies in pediatrics

• Methodologies to be continually evaluated, refined, tailored

• Joint responsibility and effort of industry, health authorities, and academia