Case Study Title: Evaluation of fixed dose combinations in paediatric indications - Use of pharmacokinetic bridging across ethnic groups

Oscar Della Pasqua
GlaxoSmithKline
The fixed-dose combination of atovaquone and proguanil was used to illustrate the consequences of covariate interactions, as determined for the effects of body weight and ethnicity on the pharmacokinetics of both compounds.

A population pharmacokinetic model was developed for each compound using plasma concentration data from adult patients in an initial population (Africans). PK parameter estimates were then used to simulate drug exposure in African children using allometric and Bayesian methods. Subsequently, the model was used to predict drug exposure in Oriental children following different dose levels taking into account the effects of body weight.

Without evidence of ethnic differences in drug disposition from clinical trials in Orientals, modelling of the effect of body weight alone does not suffice to provide accurate dosing recommendations in the Asian population. Furthermore, we show that in order to achieve comparable target exposure across both populations, different dose ratios may be required across age groups.
Scaling across populations

TARGET: Dose rationale for a fixed-dose combination should ensure comparable exposure across populations.

APPROACH: Data from PK in a reference adult population was analysed using a model-based approach.

Model parameter estimates were subsequently used to predict exposure in a new (ethnically diverse) population using allometric scaling and Bayesian priors.
M&S Assumptions

The main assumptions/requirements included:

1) The anti-malarial effect and mechanism of action of the two compounds is the same in adults and children, as well as across different ethnicities.

2) Fixed ratio between doses is warranted if the influence of size on drug exposure can be described by a linear function.

3) The effect of size is the main cause of differences across groups.

4) Simulations were performed to demonstrate the implementation of pharmacokinetic bridging and estimate the required dosing requirements.

5) Given the wide therapeutic window, fixed-dose combinations were to be considered even if systemic exposures showed deviations from the proposed target range, but ensured levels above a predefined threshold.
Predicted AUC distribution in Orientals

Proguanil

AUC distribution (mg*h/L) vs Allometric scaling

11-20 kg

21-30 kg

31-40 kg

> 40 kg
M&S Results

Pharmacokinetic analysis (adult data)

Separate models were developed for ATV and PGN using the adult data only. A one-compartment model with first-order absorption and elimination best described the pharmacokinetics of each compound. The effect of BW on volume of distribution (V) was characterised by a linear correlation. For PGN ethnicity was found to be the only covariate affecting both CL and V. Inter-individual variability was estimated for all fixed effects parameters, i.e. CL, V and absorption constant (Ka). All diagnostic measures (diagnostic plots, NPDE and bootstrap, data not shown) indicated acceptable goodness-of-fit and model performance. The area under the curve (AUC0-∞) was then calculated and used as target exposure for the purposes of bridging. Mean estimates were 368.7 mg*h/L for ATV and at 13.6 mg*h/L for PGN.

Ethnicity (Africans or Orientals) was found to be a covariate on the clearance (CL) of ATV.
Simulation Scenarios & Dosing Recommendation

Paediatric dosing recommendations were proposed based on pooled data analysis – The correlations between parameters and covariates in the adult population were not sufficiently accurate to predict the true covariate-parameter relationship in children.

Final PK parameter estimates (Table 1) were used to simulate drug exposure in children across a wide weight range following different doses of ATV and PGN. The dose of each compound and the corresponding dose ratio were then derived taking into account the number of simulations in which target exposure was achieved.

The dosing recommendations for different weight ranges and ethnicities are summarised in the next slides.
Effect of Body weight on Target Exposure

Atovaquone median target exposure (368.7 mg*h/L)

Africans

Orientals

DOSE

DOSE

PERCENT

PERCENT

5 Kg
10 Kg
15 Kg
25 Kg
35 Kg
70 Kg

5 Kg
10 Kg
15 Kg
25 Kg
35 Kg
70 Kg
Effect of Body weight on Target Exposure

Proguanil median target exposure (13.6 mg*h/L)

Africans

Orientals

PERCENT

DOSE

DOSE
Dose ratios

<table>
<thead>
<tr>
<th>Body weight</th>
<th>Africans</th>
<th>ATV (mg)</th>
<th>PGN (mg)</th>
<th>ratio</th>
<th>Orientals</th>
<th>ATV (mg)</th>
<th>PGN (mg)</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>160</td>
<td>200</td>
<td>1 : 1.25</td>
<td></td>
<td>460</td>
<td>220</td>
<td>2.1 : 1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>240</td>
<td>240</td>
<td>1 : 1</td>
<td></td>
<td>640</td>
<td>280</td>
<td>2.5 : 1</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>320</td>
<td>320</td>
<td>1 : 1</td>
<td></td>
<td>950</td>
<td>360</td>
<td>2.6 : 1</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>400</td>
<td>400</td>
<td>1 : 1</td>
<td></td>
<td>1100</td>
<td>440</td>
<td>2.6 : 1</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>760</td>
<td>580</td>
<td>1.4 : 1</td>
<td></td>
<td>2100</td>
<td>580</td>
<td>3.6 : 1</td>
</tr>
</tbody>
</table>
Conclusions & Lessons learned

1. The current results clearly show that a model-based approach provides a strong basis for bridging during the development of drug combinations.

2. However, as illustrated by the findings with ATV and PGN, adult data alone may not be sufficiently robust to allow characterisation of parameter-covariate correlations or infer the consequences of differences due to ethnicity, as shown by the significant differences in drug exposure across populations.

3. The empirical evidence of efficacy and safety does not necessarily warrant an accurate rationale for dose selection when bridging concepts can be applied.
4. The main lesson from this exercise is the need to account for a potential change in the benefit-risk ratio of a treatment when using fixed dose ratios in drug combinations in the presence of interacting covariates.

5. The effect of the interaction between covariates such as body weight, age and ethnicity on drug disposition cannot be assumed constant for different compounds.

6. Without careful assessment of the differences in pharmacokinetics across populations, inferences made about the efficacy and safety of drug combinations may be biased.
Backup slides
Fixed-dose combination of atovaquone + proguanil

1. Will the drug be used in a special population ethnic group or rare disease?
 - Yes
 - No

 2. Is the indication the same as in the current label?
 - Yes
 - No

 3. Is the disease process similar to the current indications?
 - Yes
 - No

 4. Is the outcome of therapy likely to be similar in the new population?
 - Yes
 - No

 5. Does efficacy correspond with blood levels in adult?
 - Yes
 - No

 6. Is the dose-conc. relationship likely to match that of the current indication?
 - Yes
 - No

No clinical development

Clinical efficacy PK & safety data

PD PK & safety data
(Efficacy/safety extrapolated from reference population)

PK & safety data
(Efficacy/safety extrapolated from reference population)
Model-based development strategy

1. Can historical data on the same population be used to support evidence?
 - YES
 - NO

2. Can data from another population be used to extrapolate across groups?
 - YES
 - NO

3. Can data from another disease be used to support extrapolations?
 - YES
 - NO

4. Can data on another outcome of therapy be used to support extrapolations?
 - YES
 - NO

5. Can in vitro/in vivo data be used to support extrapolations?
 - YES
 - NO

6. Can simulated theoretical PKPD relationships be used to support extrapolations?
 - YES
 - NO

Clinical and statistical assumptions

PK & safety data
- Clinical efficacy
- PK & safety data
- PD
- PK & safety data
- (Efficacy extrapolated from reference population)

Model-based development strategy based on clinical, biological, and statistical assumptions.
Demographics

- Rich adult and rich children data available (n=783)

<table>
<thead>
<tr>
<th></th>
<th>CHILDREN (mean/range)</th>
<th>ADULTS (mean/range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africans</td>
<td>423</td>
<td>106</td>
</tr>
<tr>
<td>Orientals</td>
<td>49</td>
<td>150</td>
</tr>
<tr>
<td>Malaysians</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Bodyweight (kg)</td>
<td>26.5 (5.4 - 68)</td>
<td>55.6 (39 - 110)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>8.8 (0.3 - 17)</td>
<td>29.2 (18 - 65)</td>
</tr>
<tr>
<td>Sex (m/f)</td>
<td>247/234</td>
<td>268/33</td>
</tr>
<tr>
<td>Blood samples/subject</td>
<td>2.2 (1 - 13)</td>
<td>5.1 (1 - 15)</td>
</tr>
</tbody>
</table>
Summary of modelling results

Table 1

<table>
<thead>
<tr>
<th>Parameters (units)</th>
<th>ATV</th>
<th>PGN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>Bootstrap mean (%CV)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL/F, Africans (L/h)</td>
<td>3.9</td>
<td>3.9 (6.0)</td>
</tr>
<tr>
<td>CL/F, Orientals (L/h)</td>
<td>11.7</td>
<td>11.6 (4.7)</td>
</tr>
<tr>
<td>V/F (L/Kg)</td>
<td>10.4</td>
<td>10.3 (3.8)</td>
</tr>
<tr>
<td>V/F (L)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KA (/h)</td>
<td>0.24</td>
<td>0.24 (9.7)</td>
</tr>
<tr>
<td>Exponent on CL</td>
<td>0.801</td>
<td>0.801 (7.5)</td>
</tr>
<tr>
<td>Exponent on V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inter-individual variability %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>25.9</td>
<td>25.4 (14.8)</td>
</tr>
<tr>
<td>V</td>
<td>27.7</td>
<td>27.5 (18.1)</td>
</tr>
<tr>
<td>KA</td>
<td>94.4</td>
<td>93.6 (8.0)</td>
</tr>
<tr>
<td>Steady-state variability</td>
<td>22.6</td>
<td>22.1 (27.6)</td>
</tr>
<tr>
<td>Non steady-state variability</td>
<td>43.0</td>
<td>42.6 (6.2)</td>
</tr>
<tr>
<td>Residual error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional error (%)</td>
<td>33.5</td>
<td>33.3 (5.4)</td>
</tr>
<tr>
<td>Additive error</td>
<td>0.14</td>
<td>0.14 (23.5)</td>
</tr>
</tbody>
</table>
Impact of body weight and ethnicity
Impact of body weight and ethnicity

ADULTS

ATOVAQUONE

CL

Clearance, L/h

Body Weight, Kg

Vd

Volume of Distribution, L/h

Body Weight, Kg

ADULTS + CHILDREN

ATOVAQUONE

CL

Clearance, L/h

Body Weight, Kg

Vd

Volume of Distribution, L/h

Body Weight, Kg
Impact of body weight and ethnicity

PROGUANIL

ADULTS

ADULTS + CHILDREN

CL

Vd

Body Weight, Kg

Volume of Distribution, L/h

Clearance, L/h
Evidence synthesis - Conclusions

Q1 - Could PK in Orientals be predicted from Africans?

94% of the administered dose of ATV is found unchanged in faeces. Hence, there are no obvious reasons for such differences across ethnic groups. Similar considerations apply to the elimination of PGN, which is primarily excreted by renal processes (60%). The remaining fraction is metabolised by CYP2C19. However, only 15-20% of Orientals is known to show poor metabolism.

Q2 - Could PK in children be predicted from adult data in both ethnic groups?

Assuming data from both ethnic groups were available in adults, PK modelling shows only the effect of ethnicity on CL of ATV and PGN. The influence of body weight was observed solely on Vd of ATV. Hence, prediction of PK in children would require the use of priors or empirical scaling by allometric methods.
Evidence synthesis – Conclusions

Q3 – How well does an allometric model predict PK in children?

In contrast to a fixed allometric exponent of 0.75 for CL, for PGN the estimated exponent values were 0.545 and 0.64, respectively for CL and Vd. Minor differences between theoretical and observed values for ATV.

Q4 – Can PK differences in children and across ethnic groups be characterised by sampling from a limited group of subjects instead of evaluating drug properties in a full scale trial?

Yes. The use of nonlinear mixed effects modelling shows that PK parameters can be accurately estimated in a small group of children, if priors from the reference population are incorporated into the analysis.
References

