From regulation to reality – challenges in translation of gene therapy and cell-based medicinal products

Gene therapy case study: ADA-SCID

Alessandro Aiuti

Jonathan Appleby
HSR-TIGET is focused on the implementation of basic and clinical research for genetic diseases

Overview

- HSR-TIGET is a joint venture between Telethon and San Raffaele Hospital (HSR)
- HSR-TIGET has a Research staff of 93 people, including 4 heads of unit, 10 group-leaders/project leaders, 59 junior researchers, and 20 technicians
- HSR-TIGET has also established a Pediatric Clinical Research Unit that focuses on the diagnosis, treatment and follow up of patients, including those enrolled in the gene therapy trials

Research

- State-of-the-art research in gene transfer technologies and gene and cell therapy strategies
- Genetic diseases currently under investigation include:
 - Primary immunodeficiencies
 - Thalassemia
 - Autoimmune diseases
 - Leukodystrophies
 - Other lysosomal storage disorders
As research progresses, funds to therapeutic approaches are increasing (approx. 30% of Telethon funds)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic studies</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Studies on mechanisms</td>
<td>9%</td>
<td>58%</td>
</tr>
<tr>
<td>Therapeutic approaches in vitro</td>
<td>2%</td>
<td>8%</td>
</tr>
<tr>
<td>Therapeutic approaches in vivo</td>
<td>4%</td>
<td>11%</td>
</tr>
<tr>
<td>Therapeutic clinical trials</td>
<td>3%</td>
<td>10%</td>
</tr>
<tr>
<td>Treatments</td>
<td>30% (2005-2009) vs. 9% (1991-1995)</td>
<td>29%</td>
</tr>
</tbody>
</table>

ADA-SCID
ADA-SCID

Immunodeficiency
Infections
Autoimmunity

Adenosine deaminase

HSC → PSC → CLP
NK cell → T cell → B cell

Organ alterations

dAdo, Ado, dAXP

Autosomal recessive
1:375,000
Scientific rationale

- The ADA gene is constitutively and ubiquitously expressed
- Correction of HSC could correct the defect in all blood cells
- Gene-corrected lymphocytes have an advantage over ADA-deficient cells.
- 10% of normal ADA expression may be sufficient

Unmet medical need

- 90% of children lack an histocompatible donor in the family
- High risk of bone marrow transplant from alternative donors
- Treatment with bovine enzyme (PEG-ADA) requires weekly administration, not always effective and very expensive
Day -4: Purification of BM CD34+ cells

Gene transfer protocol into autologous bone marrow CD34+ cells

Medicinal Product: Autologous transduced cells

No PEG-ADA

Busulfan
2 mg/Kg/day x 2 (days -3, -2)

Day 0: Infusion

Days -3 to -1:
3 cycles of transduction on retinonectin + cytokines

Day -4: Prestimulation (TPO, FLT3-ligand, SCF, IL-3)

BM Harvest

ADA
Neo
MLV LTR
Gene Therapy for Immunodeficiency Due to Adenosine Deaminase Deficiency

Alessandro Aiuti, M.D., Ph.D., Federica Cattaneo, M.D., Stefania Galimberti, Ph.D., Ulrike Benninghoff, M.D., Barbara Cassani, Ph.D., Luciano Callegaro, R.N., Samantha Scaramuzza, Ph.D., Grazia Andolfi, Massimiliano Mirolo, B.Sc., Immacolata Brigida, B.Sc., Antonella Tabucchi, Ph.D., Filippo Carlucci, Ph.D., Martha Eibl, M.D., Memet Aker, M.D., Shimon Slavin, M.D., Hamoud Al-Moasa, M.D., Abdulaaziz Al-Ghonaum, M.D., Alina Ferster, M.D., Andrea Duppongler, M.D., Luigi Notarangelo, M.D., Uwe Wintergerst, M.D., Rebecca H. Buckley, M.D., Marco Bregni, M.D., Sarah Marktel, M.D., Maria Grazia Valsecchi, Ph.D., Paolo Rossi, M.D., Fabio Ciceri, M.D., Roberto Miniero, M.D., Claudio Bordignon, M.D., and Maria Grazia Roncarolo, M.D.

Improved T-cell counts

N=14 Aiuti et al. NEJM 2009 and unpublished data
Development of gene therapy for ADA-SCID

- **Pilot Studies**
- **Phase I/II study**
- **Long-term FU**
- **Orphan drug designation**
- **Protocol assistance**
- **CMC and preclinical activities**
- **Telethon**
- **GSK**

Timeline:
- 2000
- 2002
- 2005
- 2008
- 2009
- 2010
- 2011
- 2012

Key Events:
- GSK
- EMA
- FDA
- GSK/MolMEd
Academia and industry joining forces for developing ATMP

• Basic studies on disease mechanism

• State of the art research in gene transfer technology

• Expertise in non clinical models for safety and efficacy of ATMP

• Pediatric clinical trial center with experience in ATMP

• Knowledge of specific regulatory aspects in this field

• Manufacturing to industrial scale

• Development of commercial Quality Systems

• Patient Access

• Pharmacovigilance
Practical Challenges

• Rare Populations

• Local vs Global regulations

• Duration of follow up
 – EU and FDA guidance
 – Pharmacovigilance and risk assessment / mitigation plans

• Safety Assessment
 – Bespoke complex studies with limited background information

• Manufacturing
 – Industry Leading Standards