Pharmacokinetic-pharmacodynamic assessment of topiramate dosing regimens for children with epilepsy 2 to <10 years of age
MAIN ISSUES

To bridge the **data** gap of limited or no information using M&S

- data integration
- evidence “synthesis”
Background & Rationale

Topiramate

Adjunct therapy
- Approved: 2 yrs, 6 yrs, 10 yrs
- Data

Mono therapy
- Approved: [bar showing approved years]
- Data
Available Data

- 11 studies
 - 8 adjunct: 2-68 years (12 patients < 6 years)
 - 3 monotherapy: 6-85 years
- PK
 - 1217 patients, 4640 observations
- PD Efficacy endpoint
 - Adjunct therapy
 - % reduction in seizure frequency
 - Responder rate
 - Monotherapy:
 - time to first seizure
M&S Assumptions

Pediatrics vs Adults

- Epilepsies in children:
 - Partial onset seizures (POS) and Lennox-Gastaud syndrome
 - treatment effect can be extrapolated from adults to children
 - Infantile epilepsies are specific to children: most relevant issue +++
 - no possible extrapolation for treatment effect from adults to children
 - no possible extrapolation for PK/PD
 - epilepsy is often refractory and may even be worsened
 - no possible extrapolation for adverse events
 - possible model-based extrapolation for PK
Where are we?

1. Will the drug be used in a special population (ethnic group or rare disease)?
 - Yes
 ② Is the indication the same as in the current label?
 - Yes
 ③ Is the disease process similar to the current indications?
 - Yes
 ④ Is the outcome of therapy likely to be similar in the new population?
 - Yes
 ⑤ Does efficacy correspond with blood levels in adult?
 - Yes
 ⑥ Is the dose-conc. relationship likely to match that of the current indication?
 - Yes
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 PD
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 - No
 Clinical efficacy PK & safety data
 - No
 ① Is the indication the same as in the current label?
 - Yes
 ② Is the indication the same as in the current label?
 - Yes
 ③ Is the disease process similar to the current indications?
 - Yes
 ④ Is the outcome of therapy likely to be similar in the new population?
 - Yes
 ⑤ Does efficacy correspond with blood levels in adult?
 - Yes
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 PK & safety data
 (Efficacy/safety extrapolated from reference population)
 - No
 Clinical efficacy PK & safety data
 - No
 - No
 No clinical development
Factors Determining Treatment Response...

ADME
- Dose
- Formulation
- Compliance
- PK
 - Absorption
 - Distribution
 - Clearance
 - Metabolism
- Biophase
 - RO
 - Distribution to target

Pharmacodynamics
- Biomarkers
 - Expression
 - GT/PH
 - Pathway
 - Disease association

Disease
- Early Clinical
 - Expression
 - Onset
 - Heterogeneity
 - Time-course
- Late Clinical
 - Expression
 - Onset
 - Heterogeneity
 - Time-course

Reference Population
- Target Population
M&S Results (PK)

Two-compartment with 1st –order absorption

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical value (%SE)</th>
<th>Interindividual variability (%SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance (L/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLSTM (baseline clearance monotherapy) (θ₁)</td>
<td>1.21 (1.2)</td>
<td>27.28 (10.2)</td>
</tr>
<tr>
<td>CLSTA (effect of adjuvant) (θ₂)</td>
<td>0.479 (25.3)</td>
<td></td>
</tr>
<tr>
<td>FCWT (effect of weight) (θ₃)</td>
<td>0.453 (9.0)</td>
<td></td>
</tr>
<tr>
<td>FCAGE (effect of age) (θ₄)</td>
<td>-0.00306 (30.9)</td>
<td></td>
</tr>
<tr>
<td>FCIN (effect of INMD) (θ₅)</td>
<td>1.94 (7.8)</td>
<td></td>
</tr>
<tr>
<td>FCVP (effect of valproate) (θ₆)</td>
<td>0.686 (7.8)</td>
<td></td>
</tr>
<tr>
<td>FCNE (effect of NEMD) (θ₇)</td>
<td>0.635 (6.2)</td>
<td></td>
</tr>
<tr>
<td>Central volume of distribution (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VST (θ₈)</td>
<td>4.61 (33.2)</td>
<td>116.2 (35.0)</td>
</tr>
<tr>
<td>FVWT (effect of weight) (θ₉)</td>
<td>1.14 (19.1)</td>
<td></td>
</tr>
<tr>
<td>Ka (h⁻¹) (θ₁₀)</td>
<td>0.105 (27.0)</td>
<td>22.34 (88.2)</td>
</tr>
<tr>
<td>K23 (h⁻¹) (θ₁₁)</td>
<td>0.577 (16.7)</td>
<td>NE</td>
</tr>
<tr>
<td>K32 (h⁻¹) (θ₁₂)</td>
<td>0.0586 (23.6)</td>
<td>NE</td>
</tr>
<tr>
<td>CCV residual error (%CV)</td>
<td>25.46 (7.8)</td>
<td></td>
</tr>
<tr>
<td>Additive residual error (mg/L)</td>
<td>0.1797 (39.9)</td>
<td></td>
</tr>
</tbody>
</table>

%SE – percent standard error, NE, not evaluated.
M&S Results (PK/PD, adjunct-therapy)

- % change in seizure frequency

\[Y_{\text{obs},i} = \beta_0 + \beta_1 C_{\text{MIN},i} + \beta_2 [\log(B_i) - \log(B)] + \beta_3 C_{\text{MIN},i} [\log(B_i) - \log(B)] + \varepsilon_{Y,i} \]

where,

\[Y = \log \left(\frac{100(S - B)}{B} + 110 \right) \]

- responder rate

\[P_{\text{RESP}} = g \left\{ p_0 + \frac{E_{\text{MAX}} \cdot C_{\text{MIN}}}{E_{\text{C50}} + C_{\text{MIN}}} + p_{\text{PED}} \cdot \text{PED} \right\} \]

where,

\[g\{x\} = \frac{e^x}{1 + e^x} \]
M&S Results (PK/PD, monotherapy)

\[
\log(\lambda_i) = \lambda_0 + \lambda_t \cdot t + \lambda_{\text{CMIN}} \cdot C_{\text{MIN},i} + \lambda_{\text{BS3-10}} \cdot \text{BS}_{3-10,i} + \lambda_{\text{BS10}} \cdot \text{BS}_{10,i}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate ± SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_0</td>
<td>-3.130 ± 0.0919</td>
<td>–</td>
</tr>
<tr>
<td>λ_t</td>
<td>-0.051 ± 0.0036</td>
<td><0.0001</td>
</tr>
<tr>
<td>λ_{CMIN}</td>
<td>-0.112 ± 0.0151</td>
<td><0.0001</td>
</tr>
<tr>
<td>$\lambda_{\text{BS3-10}}$</td>
<td>1.048 ± 0.1046</td>
<td><0.0001</td>
</tr>
<tr>
<td>$\lambda_{\text{BS>10}}$</td>
<td>2.411 ± 0.1356</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

SE, standard error; λ_0, hazard (the instantaneous risk of a first seizure after randomization to occur); λ_t, parameter describing the relationship between log (hazard) and t; λ_{CMIN}, parameter describing the relationship between log (hazard) and C_{MIN}; $\lambda_{\text{BS3-10}}$, parameter describing the relationship between log (hazard) and $\text{BS}_{3-10,i}$; $\lambda_{\text{BS>10}}$, parameter describing the relationship between log (hazard) and $\text{BS}_{>10,i}$.
M&S Results (Dose-Response, monotherapy)
Conclusions

- Absence of evidence of an effect of age is ONLY VALID for POS and Lennox-Gastaut syndrome

- Otherwise MAJOR EFFECT OF AGE
 - other types of epilepsies ... the most relevant to consider specifically
 - symptoms are different (epilepsy syndromes) and are severe
 - refractory epilepsies
 - poor cognitive prognosis

- need for a specific approach to infantile and juvenile epilepsies resistant to usual first and second line anti-epileptic treatment: 2 step approach:
 - add-on observational approach: identification of candidate syndrome(s)
 - add-on comparative trial vs placebo in the identified syndromes

- Avoid oversimplification in extrapolation for PK while ignoring the maturational differences in younger age-groups (below 2 years of age): model-based modelling approach rather than allometric approach

- FDA decision tree is not fully adequate in the most specific aspects of paediatric drug development due to oversimplification