MULTIPLICITY CORRECTIONS IN BIOEQUIVALENCE TRIALS

Jiri Hofmann

EMA Workshop on Multiplicity Issues in Clinical Trials,
London, November 16, 2012
BIOEQUIVALENCE TRIALS

IN DRUG DEVELOPMENT

- Bridging the clinical (phase III) formulation with market formulation
- Generic formulation approval
- Major variations of approved product
- Lack of drug-drug or food-drug interactions
Two medicinal products containing the same active substance are bioequivalent if they are pharmaceutically equivalent or pharmaceutical alternatives and their bioavailabilities (rate and extent) after administration of the same molar dose lie within acceptable predefined limits.

The plasma concentration curve is generally used to assess the rate and extent of absorption.

C_{max} (the maximum plasma concentration)

AUC (the area under the concentration-time curve)

Section 4.1.1. (Standard design) ‘Two-period, two-sequence cross-over design recommended’

(Alternative designs) ‘...the study design and statistical analysis scientifically sound, alternative design could be considered such as...’

- Parallel design
- Replicate cross-over (3-period and 4-period design)
- Sequential (two-stage) cross-over design

- Cross-over design with more than two formulations
5-period, open label, randomized, cross-over, single-dose in fasting conditions

Study design: Williams design (10 sequences)

Test A, B, C, D vs. Reference (E)

Statistical analysis: ANOVA with effect of sequence, subject(sequence), period, formulation; confidence interval for test to reference (geometric mean) ratio

STUDY DESIGN/ OBJECTIVE

'It is vital that protocol of a trial designed to demonstrate equivalence or non-inferiority contain a clear statement that this is its explicit intention. An equivalence margin should be specified in the protocol;…'

Note for Guidance on Statistical Principles for Clinical Trials (CPMP/ICH/363/96)

(5-way study) The objective of this study is to compare the rate and extent of absorption of Test formulations of 'Molecule' (Test A, B, C, D) versus Reference formulation after a single oral dose administration under fasting conditions. If results are conclusive, they may be used as a proof of bioequivalence between and each Test and Reference product.
Situation 1 (‘JOINT DECISION RULE‘)

The aim of the study would be to show that all test formulations are bioequivalent to Reference product. 'No adjustment of the type I error (alpha) is needed to keep the familywise type I error under control.'

Situation 2 (‘MULTIPLE DECISION RULE‘)

'The option to choose either one of the bioequivalent test formulations, the familywise type I error has to be adjusted.'

Bonferroni, Holm, Hochberg correction(s)

Dunnett procedure (incompatible with CHMP guideline)

Dunnett, Ch. (1955). A multiple comparison procedure for comparing several treatments with a control, J Am Stat Assoc 50(272)
5.5 'A 3-way study with 2 test products (alternate lead formulations) may raise some questions with some medicines agencies. This may lead to alpha adjustments.' (multiple decision rule; Situation 2)

'A more appropriate solution would always be to run 2 separate bioequivalence studies.'

- Situation 3 (\'NO ALPHA CORRECTION\')

'If there were 2 test products and the other formulation was for exploratory purposes e.g., solution or different form, then it may be acceptable to perform the study and remove this arm from the calculation.'
COMMON/ SEPARATE VARIANCE ESTIMATE

Section 4.1.8. ’In studies with more than two treatment arms (e.g. EU/US reference product; fasting/fed study), the analysis for each comparison should be conducted excluding the data from the treatments that are not relevant for the comparison in question.’

OPTIONS

Calculate separate ANOVA analyses with alpha correction based on Bonferroni, Holm, Hochberg…..(other methods?)

ILLUSTRATIVE (RE)ANALYSIS

5-period, open label, randomized, cross-over, single-dose in fasting conditions

20 healthy adult male or female subjects (moderate smokers and/or non-smokers)

Wash-out: 7 days

Blood sampling: 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 12, 16, 24, 36, and 48 hours post-dose

Statistical analysis: ANOVA with effect of sequence, subject(sequence), period, formulation for each comparison

Calculations performed in Phoenix WinNonlin 6.3. (Pharsight) & in R (R Foundation for Statistical Computing, Vienna, Austria)
SUMMARY & CONCLUSION

- Requirement of 'separate ANOVA' analysis (EMA Guideline of Investigation of Bioequivalence) is incompatible with Dunnett correction.

- Corrections to preserve the type I error compatible with separate ANOVA analyses should be used: Bonferroni or Holm or Hochberg or…..(?)

- Method of Holm and Hochberg would be recommended as they are more powerful than Bonferroni [Zheng et al., 2012]

- Guidance recommendation missing so far
MULTIPLICITY CORRECTIONS IN BIOEQUIVALENCE TRIALS

Jiri Hofmann
jiri.hofmann@zentiva.cz
Clinical Development Manager

EMA Workshop on Multiplicity Issues in Clinical Trials,
London, November 16, 201