Multiplicity Issues in FDA-Reviewed Clinical Trials

EMA Workshop on Multiplicity Issues
Kathleen Fritsch, Ph.D.
FDA/CDER/OTS/DBIII
November 16, 2012
Note

A regulatory FDA guidance is under preparation on the topic of Multiple Endpoints in Clinical Trials. The draft guidance has not yet been released for public comment.
Key Multiplicity Issue: Defining ‘Claim’

• Ensure that all important ‘claims’ have overall Type I error rate control

• Regulators are charged with making two types of decisions:
 – Should this drug be approved?
 – If so, what information should be included in labeling?

• What constitutes a claim?
 – Indication only? (approval decision)
 – Any primary or secondary endpoint?
 – Any statement that appears in labeling?
How Far Should Error Rate Control Extend?

Continuum for Type I Error Control

→ To all primary and secondary endpoints
→ Overall error rate should not exceed α
Endpoint Families

- **Primary Endpoints**
 - Endpoint(s) necessary and/or sufficient to establish efficacy (define a successful trial)

- **Secondary Endpoints**
 - Not sufficient to establish efficacy in the absence of an effect on the primary endpoints; not required for establishing efficacy
 - Potentially could lead to additional labeling claims

- **Exploratory Endpoints**
 - Hypothesis generating endpoints (clinical utility unknown)
 - Variations on primary or secondary endpoints (alternate ‘responder’ definitions, alternate timepoints)
Challenging Cases – Which Family?

• (Possibly underpowered) mortality endpoint
 – Primary or secondary?
 – Ideally, primary (if sufficient to determine efficacy), however may not always be feasible

• Minor variations in endpoints (alternate responder definitions, alternate timepoints)
 – Secondary or exploratory?
 – Do these represent ‘new claims’?
 – Many may not need to be under Type I error control
What is Permissible for Labeling?

• Primary endpoints (multiplicity controlled)

• Secondary endpoints that provide clinically meaningful information (multiplicity controlled)
 – Not all may qualify—being multiplicity-controlled not a guarantee that the endpoint belongs in labeling
 – Role for non-significant secondary endpoints? May provide useful information on endpoints that characterize the indication

• Descriptive or graphical extensions of endpoints that established efficacy (not new claims)
 – time course trends
 – full distribution (histogram or cumulative distribution graph)
 – descriptive subgroups
 – components of composite endpoint
Targeted Subgroups

• Want approval for the most general population for which the drug product is efficacious (target subgroup or whole population)

• Not the same as the most general population for which the hypothesis test is statistically significant (‘average effect’ may be significant, but comes from averaging a large effect and no effect)

• Challenging area – needs careful thought on defining the hypotheses and how best to characterize the effect on the non-target subgroup
Additional Multiplicity Challenges

• How to handle situations where different regulatory bodies request different primary endpoints?
 – Is a ‘within-regulatory-body’ multiplicity plan sufficient?

• Are methods that pass α from secondary endpoints back to primary endpoints permissible?

• When are procedures that rely on additional assumptions (e.g. Hochberg’s) permissible? How much justification is needed?
Mismatch of Study Goals and Procedures

- Overuse of sequential methods
 - Multiple dose studies (natural ordering, but might regret consequences)
 - Secondary endpoints (usually not naturally ordered)

- For complex designs, how can we ensure that sponsors and reviewers can determine whether the multiplicity is controlled?
 - Intuition is often not sufficient
 - Literature findings misused or not trickling down to users
Key Message

• Carefully select the most appropriate hypotheses
 – Choose ‘need to have’ endpoints, but don’t pile on ‘nice to have’ endpoints
 – Put the endpoints in the right families
 – Carefully consider which hypotheses represent distinct claims, and ensure all ‘claims’ are covered under the multiplicity control structure

• Ensure a good match between the study objectives and the multiplicity control methods
 – Utilize natural hierarchies (but avoid arbitrary ones)
 – Take the time to understand complex structures to ensure overall control