Extrapolation in paediatric juvenile idiopathic arthritis: case study

Ruth Oliver, PhD
Laura Shaughnessy, PhD
Philippa Charlton, MD MPH

17.MAY.2016 EMA workshop
Extrapolation in juvenile idiopathic arthritis (JIA)

Certolizumab pegol (CZP) case-study

1. CZP overview
2. JIA overview
3. CZP JIA clinical trial programs overview
4. Evidence to support efficacy extrapolation
5. Extrapolation of exposure, allometric scaling
6. Planned interim review of data
7. Analysis performed (1)
8. Analysis performed (2)
9. Simulations and limitations (1) – dose restriction (50/100/150 or 200)
10. Simulations and limitations (2)
11. Trial adaptation
12. Conclusions
Certolizumab pegol

- A humanized antibody antigen-binding fragment (Fab’) with high specificity for human TNFα
- Linear PK, elimination T_{1/2} of 14 days
- Administered via subcutaneous injection

- Approved in Europe for treatment of rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial spondyloarthritis (AxSpa) including ankylosing spondylitis (AS) in adults.
- Posology – 400 mg (week 0, 2, 4) followed by 200 mg every 2 weeks thereafter or an alternative 400mg every 4 weeks dose regimen can be considered

Juvenile idiopathic arthritis

Persistent arthritis of unknown aetiology with onset prior to 16 years of age

- Most commonly diagnosed paediatric rheumatic disease, prevalence ~100 in 100,000
- Symptoms of limping, stiffness, irritability, weight loss, delayed maturation etc.
- Depending on severity, treatment typically includes disease modifying anti-rheumatic drugs (DMARDs) such as methotrexate, and may progress to include biologic agents

International League of Associations for Rheumatology (ILAR) JIA Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic arthritis</td>
<td></td>
</tr>
<tr>
<td>Oligoarthritis, persistent</td>
<td></td>
</tr>
<tr>
<td>Oligoarthritis, extended</td>
<td></td>
</tr>
<tr>
<td>Polyarthritis, rheumatoid factor +/-</td>
<td>>4 joints/polyarticular-course</td>
</tr>
<tr>
<td>Psoriatic arthritis (PsA)</td>
<td></td>
</tr>
<tr>
<td>Enthesitis-related arthritis (ERA)</td>
<td></td>
</tr>
<tr>
<td>Undifferentiated</td>
<td></td>
</tr>
</tbody>
</table>

1 Perry RE et al, J Rheumatol 2004; 31(2):390-2
CZP JIA clinical trial programs overview

- JIA study RA0043 ‘PASCAL’\(^1\) – enrollment completed, dosing ongoing
 - FDA postmarketing requirement
 - Open-label investigation of CZP PK, safety, and efficacy
 - Moderately to severely active polyarticular-course JIA, 2-17 years old
 - Inadequate response/intolerance to prior DMARDs
 - Enrollment in North America, South America, Russia

- JIA study JA0002 – planned
 - As described in agreed PIP (EMEA-001071-PIP02-12-M01)
 - Similar in design to RA0043

- **NOTE**: CZP is not indicated for use in pediatric patients

\(^1\)ClinicalTrials.gov identifier: NCT01550003
Evidence to support efficacy extrapolation

In keeping with EMA guidance documents:
2012 extrapolation (129698) and 2015 JIA (239770)

- Children with polyarticular-course JIA are expected to respond to treatments comparably to adults with RA
- Adults and paediatric conditions represent inflammatory arthritis
- Efficacy studies can potentially be waived “in well-studied pharmacological classes”, or when considerable amount of data has been collected in adults (eg licensed indication in one or more of the corresponding adult arthritis categories)
- When the paediatric development plan was negotiated:
 - Two other TNF-antagonists (etancercept and adalimumab) were approved in US and EU for the treatment of both RA and JIA
 - Although no direct quantitative similarity between key efficacy scales (ACR and PedACR respectively)
 - CZP was approved for RA
Extrapolation of exposure

Data from two phase 3 studies and a population PK and PK-PD model\(^1\) were used for the extrapolation approach

- Recommended dosing regimen in adults with RA is 400 mg at weeks 0, 2 and 4 followed by 200 mg Q2W thereafter
- \(C_{avg50}\) = average concentration leading to 50% of the maximum ACR20 response was 16.8 ug/mL [95% CI:10.2 to 23.4]
- Assumed that the target therapeutic concentration required in paediatrics was similar to that in adults
- Applied allometric scaling to propose dose/regimen for children >2 years with BW >10 kg using the relationship:

\[
V_{ped} = V_{adult} \times (\frac{W_{ped}}{70})
\]

\[
CL_{ped} = CL_{adult} \times (\frac{W_{ped}}{70})^{0.75}
\]

\(^1\) Lacroix BD, \textit{et al.} \textit{Pharmacol Ther.} 2009 Oct;86(4):387-95
Allometric scaling results

Initial predictions suggested that a dose reduction in subjects <40 kg should achieve the target concentrations

<table>
<thead>
<tr>
<th></th>
<th>Loading dose (weeks 0, 2 and 4)</th>
<th>Treatment dose (week 6 onwards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to < 20 kg</td>
<td>100 mg (0, 2, 4)</td>
<td>50 mg Q2W</td>
</tr>
<tr>
<td>20 to < 40 kg</td>
<td>200 mg (0, 2, 4)</td>
<td>100 mg Q2W</td>
</tr>
<tr>
<td>≥ 40 kg</td>
<td>400 mg (0, 2, 4)</td>
<td>200 mg Q2W</td>
</tr>
</tbody>
</table>

Trial simulations (TS) were performed in TS2, to evaluate:

- Adequacy of the proposed dosing regimen in terms of matching exposure measures (Cmax, Ctrough, and AUC)
- Expected incidence of anti-CZP-antibodies relative to adults
- Precision of CL/F and V/F depending on overall sample-size
Predicted steady-state (week 14-16) PK parameters

Stratified by age group

Box-and-whisker plots of C_{max} by age group

Box-and-whisker plots of AUC_{τ} by age group

Expected precision of parameters based on a sample-size of 125 across the entire age/weight range was high, <10 % for CL/F and V/F
Predicted C_{trough} and expected anti-drug antibody incidence

Table 9:3 Summary of C_{trough} values and anti-body incidence

<table>
<thead>
<tr>
<th>Age Group</th>
<th>C_{trough} (μg/mL)</th>
<th>Range</th>
<th>% < 10 μg/mL (ratio)</th>
<th>% Anti-body Positive (ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (ratio$^{(a)}$)</td>
<td></td>
<td>% Anti-body Positive (ratio$^{(a)}$)</td>
<td></td>
</tr>
<tr>
<td>4 - 8 yrs</td>
<td>13.4 (0.84)</td>
<td>0.011 - 67.5</td>
<td>31.1 (1.59)</td>
<td>7.7 (1.01)</td>
</tr>
<tr>
<td>5 - 12 yrs</td>
<td>15.4 (0.96)</td>
<td>0.265 - 76.1</td>
<td>22.3 (1.14)</td>
<td>6.1 (0.80)</td>
</tr>
<tr>
<td>13 - 17 yrs</td>
<td>18.5 (1.16)</td>
<td>0.426 - 65.8</td>
<td>14.8 (0.76)</td>
<td>6.7 (0.88)</td>
</tr>
<tr>
<td>Adult</td>
<td>16</td>
<td>0.234 - 59.8</td>
<td>19.5</td>
<td>7.6</td>
</tr>
</tbody>
</table>

$^{(a)}$ pediatric to adult ratio

Data on file
Planned model-based interim analysis

Conducted after 36 subjects had been enrolled

- Overall, the exposure appeared higher in paediatric subjects compared with adults
- during both the loading phase (weeks 0, 2 and 4),
- and during the maintenance phase (post-week 6)
- Population analysis performed, combining data from adult RA population in western countries and Japan and available data from RA0043
- Subsequent model was used to perform a series of simulations to evaluate a more optimal dosing algorithm
Simulations

Paediatric population with realistic WT-HT-AGE distribution was constructed based on demographic data from NHANES.

Paediatric subjects appear to have a lower CL/F and V/F compared to adults.
Overall predicted exposure ranges based on interim data

Higher exposures during loading and maintenance phase

Data on file
Dose optimization

Evaluate optimal dose and weight/BSA cut-off

<table>
<thead>
<tr>
<th>Weight range</th>
<th>Loading dose</th>
<th>Maintenance dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% of current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 to < 20 kg</td>
<td>50 mg Q2W</td>
<td>50 mg Q4W</td>
</tr>
<tr>
<td>20 to < 40 kg</td>
<td>100 mg Q2W</td>
<td>50 mg Q2W</td>
</tr>
<tr>
<td>≥ 40 kg</td>
<td>200 mg Q2W</td>
<td>100 mg Q2W</td>
</tr>
<tr>
<td>Optimized WT cut-off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 to < 21 kg</td>
<td>50 mg Q2W</td>
<td>50 mg Q4W</td>
</tr>
<tr>
<td>21 to < 41 kg</td>
<td>100 mg Q2W</td>
<td>50 mg Q2W</td>
</tr>
<tr>
<td>≥ 41 kg</td>
<td>200 mg Q2W</td>
<td>100 mg Q2W</td>
</tr>
<tr>
<td>Optimized BSA cut-off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.47 to < 0.84 m²</td>
<td>50 mg Q2W</td>
<td>50 mg Q4W</td>
</tr>
<tr>
<td>0.84 to < 1.21 m²</td>
<td>100 mg Q2W</td>
<td>50 mg Q2W</td>
</tr>
<tr>
<td>≥ 1.21 m²</td>
<td>200 mg Q2W</td>
<td>100 mg Q2W</td>
</tr>
<tr>
<td>Adults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>400 mg Q2W</td>
<td>200 mg Q2W</td>
</tr>
</tbody>
</table>

1 The optimal dose estimated to be 25 mg Q2W, but the lowest available dose size is 50 mg. A 50 mg Q4W dosing regimen was used instead of 25 mg Q2W
Trial adaptation

All three evaluated dosing regimens could match the target Css average in adults, 50% of current dosing regimen appeared most pragmatic

This interim analysis resulted in a protocol amendment and a reduced dosing was implemented
Conclusions

Extrapolation allows program optimization

- No dose-finding study conducted in paediatric population
- No controlled efficacy clinical trial needed
- Open label design of pediatric study facilitated recruitment and reduced sample size in this vulnerable population
- Health authorities consultation and feedback:
 - Study design (RA0043) and use of extrapolation agreed by FDA
 - Similar study design (JA0002) and extrapolation plan included in the agreed PIP (EMEA-001071-PIP02-12-M01)