

4 August 2016
 EMA/209012/2015 DRAFT for public consultation

³ Guideline on good pharmacovigilance practices (GVP)

- 4 Module IX Addendum I Methodological Aspects of Signal Detection from
- 5 Spontaneous Reports of Suspected Adverse Reactions

Draft finalised by the Agency in collaboration with Member States for submission to ERMS FG	30 June 2016
Draft agreed by ERMS FG	18 July 2016
Draft adopted by Executive Director	4 August 2016
Released for public consultation	8 August 2016
End of consultation (deadline for comments)	14 October 2016
Anticipated date for coming into effect of final version	Q1 2017

6

Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>gvp@ema.europa.eu</u>

7

- 8 Note: This guidance extends and updates some of the information given in the Guideline on the Use of
- 9 Statistical Signal Detection Methods in the EudraVigilance Data Analysis System (EMEA/106464/2006
- 10 rev. 1) and supersedes the previous advice in the areas addressed by the new guidance.

11

12

See websites for contact details

European Medicines Agency www.ema.europa.eu Heads of Medicines Agencies www.hma.eu The European Medicines Agency is an agency of the European Union

© European Medicines Agency and Heads of Medicines Agencies, 2016. Reproduction is authorised provided the source is acknowledged.

13 Table of contents

14	IX. Add I.1. Introduction	3
15	IX. Add I.2. Statistical methods	3
16	IX. Add I.2.1. Disproportionate reporting	4
17 18	IX. Add I.2.1.1. Components of the statistical signal detection system based on disproportionate reporting	4
19	IX. Add I.2.1.2. Considerations related to performance of statistical signal detection	4
20	IX. Add I.2.2. Increased ICSR reporting frequency	7
21	IX. Add I.3. Methods aimed at specific groups of adverse events	7
22	IX. Add I.3.1. Designated medical events	7
23	IX. Add I.3.2. Serious events	8
24	IX. Add I.4. Methods aimed at specific patient populations	8
25	IX. Add I.4.1. Paediatric populations	8
26	IX. Add I.4.2. Geriatric populations	9
27	IX. Add I.5. Methods aimed at underlying causal processes	9
28	IX. Add I.5.1. Abuse, misuse, overdose, medication error or occupational exposure	9
29		

30

31 IX. Add I.1. Introduction

Monitoring of databases of spontaneously reported suspected adverse reactions (in the format of 32 individual case safety reports (ICSRs), see GVP Module VI) is an established method of signal 33 34 detection. The monitoring process is facilitated by statistical summaries of the information received for each "drug-event" combination over defined time periods. To limit the chances of failing to detect a 35 signal and to ensure that the processes in place are controlled and predictable in terms of resources 36 37 required, it is recommended that these summaries are produced in a routine periodic fashion. For the 38 same reasons, when possible, the criteria for selecting "drug-event" combinations (DECs) for further 39 investigation should be objectively defined. The aim of this Addendum to GVP Module IX on signal 40 management is to describe components of an effective system for routine scanning of accumulating 41 data focusing on components that have been proved to be effective. It does not give details of 42 particular implementations of such system because these may be influenced by a number of factors that differ between databases. For those interested in the specific implementation developed for use in 43 44 EudraVigilance other guidance is available (Screening for Adverse Drug Reactions in EudraVigilance¹). 45 In common with other GVP documents, the information given herein is guidance on good practice to assist in ensuring compliance with Commission Implementing Regulation (EU) No 520/2012². Other 46 47 methods may also satisfy this requirement.

48 This Addendum lists some of the methodological aspects that should be considered in detecting

49 potential signals. The proposed approach complements the classical disproportionality analysis with

additional data summaries, based on both statistical and clinical considerations. Although

51 disproportionality methods have been demonstrated to detect many adverse reactions before other

52 currently used methods of signal detection, this is not true for all types of adverse reactions. Hence a

53 comprehensive and efficient routine signal detection system will seek to integrate a number of different

54 methods to prioritise DECs for further evaluation.

The specific details of implementation of the methods proposed may vary depending on, for example, the nature of the medicinal products in the dataset or the rate at which new ICSRs are received. The approaches to signal detection discussed herein have been tested in a number of large and medium sized reporting databases³ with some variations in performance (see IX. Add I.2.1.2.) noted between databases. Thus, a general principle is that any system of signal detection should be monitored not

60 only for overall effectiveness but for the effectiveness of its components (e.g. statistical methods and

61 specific group analyses).

62 The decision based on the assessment of the data summaries described herein is whether more

63 detailed review of ICSRs should be undertaken. Such review may then prompt a search for additional

64 data from other pharmacovigilance data sources. The decision process may rely on factors beyond the

data summaries, for instance if the suspected adverse reaction is a specific incidence of a class of

66 events already listed in the summary of product characteristics (SmPC). So far as possible the decision

67 process should be formally pre-specified and validated. In each case it should be fully documented.

68 IX. Add I.2. Statistical methods

69 When the accrual to the dataset is too large to allow individual scrutiny of all incoming ICSRs, it is

vul vul vul value to calculate summary statistics on (subsets of) the data that can help to focus attention on

71 groups of ICSRs containing an adverse reaction. Generally such statistics are used to look for high

¹ See <u>www.ema.europa.eu, available as of Q4 2016</u>.

² Commission Implementing Regulation (EU) No 520/2012 Article 19 and 23.

³ Wisniewski A, Bate A, Bousquet C, Brueckner A, Candore G, Juhlin K, et al. Good signal detection practices: evidence from IMI-PROTECT. Drug Saf. 2016; 39: 469–490.

- proportions of a specific adverse event with a given medicinal product, compared to the reporting of
- this event for all other medicinal products (disproportionate reporting). Sudden temporal changes in
- frequency of reporting for a given medicinal product may also indicate a change in quality or use of the
- 75 product with adverse consequences (which could include a reduction in efficacy).

76 IX. Add I.2.1. Disproportionate reporting

IX. Add I.2.1.1. Components of the statistical signal detection system based on disproportionate reporting

79 Disproportionality statistics take the form of a ratio of the proportion of spontaneous ICSRs of an 80 adverse event with a specific medicinal product to the proportion that would be expected if no association existed between the product and the event. The calculation of the expected value is based 81 on ICSRs that do not contain the specific product and it is assumed that these ICSRs contain a diverse 82 83 selection of products most of which will not be associated with the adverse event. Hence these ICSRs 84 reflect the background incidence of the event in patients receiving any medicine. There are a number of different ways to calculate such statistics and this choice is the first step involved in designing a 85 statistical signal detection system. 86

When an adverse event is caused by a medicine, it is reasonable to assume that it will be reportedmore often (above background incidence) and hence this ratio will tend to be greater than one. Thus

89 high values of the ratio for a given DEC suggest further investigation may be appropriate. In practice a

90 formal set of rules, or signal detection algorithm (SDA) is adopted. This usually takes the form of

- 91 specified thresholds that the ratio or other statistics must exceed but more complex conditions may
- also be used. When these rules are satisfied for a given DEC, it is called a signal of disproportionate
- reporting (SDR). Then a decision needs to be made regarding whether further investigation is required.
- A further decision needs to be taken as to whether the statistics are calculated across the whole
- 95 database or if modifications based on subgrouping variables would be of value. While the decision is
- 96 motivated by theoretical consideration, the specific choice of whether to use subgroups and, if so,
- 97 which to use should be based on empirical assessment of signal detection performance. In particular
- the impact on the false positive rate should be considered. Whether the database is sufficiently large to
- 99 avoid very low case counts within subgroups may also be a factor in this decision.

100 IX. Add I.2.1.2. Considerations related to performance of statistical signal detection

- 101 The performance of signal detection systems can be quantified using three parameters that reflect the 102 intended objective of the system. Desirable properties are:
- 103 1. high sensitivity (the proportion of adverse reactions for which the system produces SDRs);
- 104 2. high positive predictive value or precision (the proportion of SDRs that relate to adverse reactions);
- 3. short time to generate SDR (that can be assessed from a chosen time origin, possibly the grantingof a marketing authorisation to the first occurrence of an SDR for an adverse reaction).
- 107 Estimates of these performance parameters depend on the particular reference set⁴ of known adverse
- reactions selected for their evaluation and are also not fixed because spontaneous reports accumulate
- 109 over time. They are thus best used as relative measures for comparing competing methods of signal
- 110 detection within the same spontaneous reporting system at the same point in time.
- 111 The following factors may affect the performance of signal detection systems:

⁴ Further guidance to be finalised in a separate document in Q4 2016.

112 • MedDRA hierarchy

A precondition for automated screening of DECs for adverse reactions is the availability of schemes for classifying adverse events and medicinal products. The nature and granularity of these schemes affects the performance of the screening. MedDRA (see GVP Annex IV), used for reporting suspected adverse reactions for regulatory purposes, classifies adverse events in a multi-axial hierarchical structure and a choice must be made whether to screen at one level of granularity (e.g. SOC, HLT, PT) or several and whether to include all terms or only a subset. Screening at the second finest level of granularity, i.e. Preferred Term (PT), has been shown to be a good choice in terms of sensitivity and positive predictive

120 value⁵.

Finally, focus of statistical signal detection on to adverse events considered most clinically important avoids time spent in assessments that are less likely to benefit patient and public health. A subset of MedDRA terms judged to be important medical events (IMEs) is thus considered a useful tool in statistical signal detection.

The remarks above relate to routine signal detection and not to targeted monitoring of potential risks associated with specific products where ad hoc use of other levels of MedDRA terms may be appropriate. In addition, although no formally defined MedDRA term subgroups (e.g. HLT, SMQ) have proven better for signal detection than the PTs, some of them are effectively synonymous. The definition of a synonym in this context is the pragmatic one that two PTs are considered synonyms if it is reasonable to suppose that a primary reporter of a suspected adverse reaction, presented with a single patient and without a specialist evaluation, would not necessarily be able to decide which term

- to use. It may also be appropriate to combine such terms when they relate to identified areas ofinterest.
- 134 Thresholds

The SDA applied to the summary statistics for each DEC usually takes the form of a set of threshold
values such that SDRs occur only if each statistic exceeds its corresponding threshold. Very low
thresholds will result in large, and potentially unmanageable, numbers of SDRs to investigate with a
higher probability of being false. This will also reduce the resources available for assessment of true
SDRs. Too high thresholds will result in identification of adverse reactions being delayed or even

entirely prevented. Thus the choice of thresholds is fundamental to the success of the statistical signaldetection system.

142 This has also been confirmed by studies comparing different disproportionality methods and different

sets of threshold showing that the former can achieve similar overall performance by choice of

144 appropriate SDA. Therefore, in contrast to the choice of disproportionality statistic, it is the choice of

145 SDA to define a SDR that will strongly influence signal detection performance⁶.

Thresholds for disproportionality methods are usually based on two separate indicators, one reflectingthe disproportionality statistic itself and another based on the number of ICSRs received. For the

148 former, in practice, rather than the point estimate, a formal lower confidence bound is often used. The

- rationale for its use is that when the statistic is based on few ICSRs, it falls further below the point
- 150 estimate and makes an SDR less likely. Hence, this is an intuitive way of incorporating into the signal
- detection process the degree of confidence about the reliability of the data. It has also been shown
- 152 that a threshold based on the lower confidence bound performed better alone than with an additional
- 153 threshold for the absolute value of the disproportionality statistic itself.⁵

⁵ Hill R, Hopstadius J, Lerch M, Noren G.N. An attempt to expedite signal detection by grouping related adverse reaction terms. Drug Saf. 2012; 35:1194–1195.

⁶ Candore G, Juhlin K, Manlik K, Thakrar B, Quarcoo N, Seabroke S, et al. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Drug Saf. 2015; 38: 577–587.

- 154 In addition, it has been shown that a correlation exists between the value of a disproportionality
- 155 statistic and the relative risk of an adverse reaction when exposed to the product estimated in
- epidemiological studies⁷, therefore setting any threshold on the disproportionate statistic above 1
- 157 might lead to missing an adverse reaction for which the risk ratio is not great enough.
- Finally, there appears to be a reduction in positive predictive value with a medicinal product's time on the market, hence it might be more efficient to vary the amount of effort to invest in signal detection over the life-cycle of the product. This might involve the use of differing thresholds to define an SDR depending on the time of the product on the market.⁵
- 162 Periodicity of monitoring
- A one-month interval between consecutive data summaries has been investigated in validation studies for signal detection methods. More frequent monitoring has also been used, for instance for medicinal products under additional monitoring or during intensive vaccination programmes. The appropriate frequency of monitoring may vary with the accumulation of knowledge of the risk profile of a specific active substance/medicinal product (see IX.C.2.).
- 168 Spontaneous ICSR databases
- The performance has also been shown to depend on the nature of the spontaneous ICSR database andthis appears to be related to the mix of medicinal products included in the database.
- 171 An important inference from these considerations is that organisations doing signal detection should
- assess the performance of a signal detection system directly on the database to which it will be
- applied. This will allow the ability to detect new adverse reactions and the work load involved to be
- 174 predicted and controlled by appropriate changes to the SDA. As databases evolve in terms of numbers
- of ICSRs included and their mix of medicinal products, periodic reassessment of performance should beundertaken.
- 177 Subgroup analysis and stratification
- 178 Spontaneous ICSR databases cover a range of medicinal products with different indications and are
- used across a broad range of patient populations. Also, ICSR reporting patterns vary over time and
- between different geographical regions. Many quantitative signal detection algorithms disregard this
 diversity which may result in an SDR either being masked or a false association being flagged as a
- 182 signal.
- 183 Stratification and subgroup analysis are generally used in epidemiology to reduce bias due to
- 184 confounding and may also have advantages in statistical signal detection. By subgroup signal detection
- 185 is meant analyses carried out to detect SDRs within specific ICSR subgroups. Stratification involves
- 186 combining results from within different subgroup to obtain an adjusted result for the whole dataset.
- 187 The comparison of stratified versus subgroup analysis has shown that the latter consistently performed
- better than the former. Moreover, subgroup analysis has also shown to provide clear benefits in both
- 189 sensitivity and precision over crude analyses for large international databases⁸. However, such benefits
- 190 may not be obtained in small databases.
- 191 Subgrouping variables that showed the most promising results included age and reporting
- region/country, but it is likely that choice of variables for subgroup analyses varies according to thedatabase.

 ⁷ Abajo FJ De, Roberts G, Macia M, Slattery J, Thakrar B, Wisniewski AFZ. An empirical approach to explore the relationship between measures of disproportionate reporting and relative risks from analytical studies. Drug Saf. 2016; 39: 29-43.
 ⁸ Seabroke S, Candore G, Juhlin K, Quarcoo N, Wisniewski A, Arani R, et al. Performance of stratified and subgrouped disproportionality analyses in spontaneous databases. Drug Saf. 2016; 39: 355-364.

194 IX. Add I.2.2. Increased ICSR reporting frequency

195 Most routine signal detection is aimed at unknown associations between medicinal products and 196 adverse events that are assumed likely to result in a constant or slowly changing reporting rate over 197 time. However, some events of interest in the context of pharmacovigilance may show a marked 198 temporal variation. Examples are manufacturing quality issues, a developing culture of abuse, evolving 199 antimicrobial resistance or changes in the use of the product and, in particular, new off-label use. One 200 way of detecting signals associated with such events, that may add value to simple disproportionality 201 methods, is to monitor changes in the frequency of overall reporting for the products. 202 However, changes of reporting frequency are also expected that do not reflect the safety of the

- medicinal products. These may result from rapid increases in use when the product is first marketed or new indications are authorised, publicity associated with unfounded safety concerns, sudden changes in exposure (e.g. seasonal use of vaccines), reporting promoted by patient support schemes not clearly labelled as studies, clusters of ICSRs reported in the scientific literature reports or duplicated ICSR reports.
- There are several options for detecting temporal changes in reporting frequency. The simplest method examines the changes in the number of ICSRs received per product over a fixed time period as an absolute count. Statistical tests compare recent counts with the latest count, testing for significant increases. Similar methods can be used at the DEC level and, for these, relative values compared to the total ICSR count for the product may be considered as an alternative to absolute counts.
- 213 Another option is to consider changes in the disproportionality statistics over time. This approach 214 would be less susceptible to increase in number of ICSRs triggered by effects related to the product 215 rather than a specific adverse event. For example general publicity about the product, stimulated 216 reporting or changes in exposure; however, results will still be influenced by the background 217 distribution in the rest of the database and not only by changes in reporting frequency for the specific 218 medicinal product. In addition, results might be less reactive to temporal variations since the focus is 219 on changes in statistics based on the cumulative count, not in comparing recent counts with the latest 220 count. This problem will be more pronounced when large numbers of cases have accumulated, as 221 proportional changes will then be smaller.
- Limited work has been performed to assess the effectiveness of these methods even if theoreticallythey seem appealing. Thus these methods might be implemented with ongoing quality control
- 224 measures to ensure acceptable performance.

IX. Add I.3. Methods aimed at specific groups of adverse events

227 IX. Add I.3.1. Designated medical events

Some medical events are known to result on most occasions from exposure to medicines. Thus, when such events are reported, the prior probability of a causal relationship to one of the medicines listed in the report is high. Hence the ICSRs will evoke concerns even before an SDR is observed. A list of these terms, complemented by important and serious events that should not be missed, should then be created and can serve as a safety net in signal detection. It is recommended that these designated medical events (DME) are drawn to the attention of signal detection assessors irrespective of any other statistical methods used and that they are prioritised for clinical review.

The list of DME should also be occasionally reviewed and revised based on experience gained and performance.

237 IX. Add I.3.2. Serious events

The seriousness of events described in spontaneous ICSRs does not obviously relate to the probability

that they are medicine-related. However, it may impact the patient and public health importance

should they later prove to be related. This reason is a rationale for prioritising assessment of serious
 events. Complementary to the creation of a list of DMEs and in addition to the use of lists of IMEs, a

simple approach to such prioritisation is to highlight new ICSRs in which a death is reported and to

- 243 give separate counts of those ICSRs for each DEC. It should be appreciated that this may be a rather
- imprecise criterion and prioritising all ICSRs with reported death may result in many false positive
- signals. Hence it is considered that further research may be required in this area.

IX. Add I.4. Methods aimed at specific patient populations

When ICSR databases are sufficiently large, some classes of patients may be identified that merit separate attention in signal detection due to known or suspected systematic differences in their responses to medicines. Two such groups that can be differentiated in most databases are the youngest and oldest patients.

A caveat relevant to analyses restricted to any subgroup of spontaneous ICSRs is that homogeneity of adverse events may be increased resulting in greater potential for masking of signals. A possible

solution is to monitor specific patient populations in parallel with analyses of the total dataset.

254 IX. Add I.4.1. Paediatric populations

255 Often a single paediatric group is chosen below a selected age threshold. Although childhood is a 256 period of rapid change and no threshold is likely to define a homogenous group, this succeeds in 257 defining a population with marked developmental, physiological and psychological differences from 258 adults.

259 Separate presentation of adverse reactions that occur in the paediatric population and use of both 260 clinical and statistical methods seems to be justified to improve the detection of signals in the 261 paediatric population. In line with the general population, statistical disproportionality tools should be 262 applied to ICSRs relating to the use of medicines in children to increase the ability to detect signals in the paediatric population from spontaneous ICSR databases. Within-group disproportionality statistics 263 264 that are significantly higher than those in the non-paediatric group should be highlighted for additional 265 consideration⁹. Additionally, given the lower number of ICSRs usually received for the paediatric 266 population compared to the rest of the population, it is recommended to use a lower thresholds based on the number of ICSRs received. 267

An additional aid to focusing on paediatric safety issues can be provided by a list of adverse events that tend to have more serious outcomes in children than adults¹⁰. This list should be used to reduce missed signals that are more clinically relevant in the paediatric population, otherwise not flagged by other methods. More extensive discussion of pharmacovigilance in the paediatric population will be available in the revised Guideline on Conduct of Pharmacovigilance for Medicines Used by the Paediatric Population¹¹. The age threshold for paediatric signal detection should be chosen to align with the upper age limit from this guideline.

275

 ⁹ Blake KV, Saint-Raymond A, Zaccaria C, Domergue F, Pelle B, Slattery J. Enhanced paediatric pharmacovigilance at the European Medicines Agency: a novel query applied to adverse drug reaction reports. Pediatr Drugs. 2016; 18: 55-63.
 ¹⁰ Further guidance to be finalised in a separate document in Q4 2016.
 ¹¹ Currently under review; to be finalised in 2016-2017.

276 IX. Add I.4.2. Geriatric populations

277 Specific signal detection measures aimed at older recipients of medicines are a reasonable precaution 278 given the high frequency of concomitant use of multiple medicines and the possibility of impaired

- 279 physiological elimination mechanisms.
- 280 The age threshold at which such measured should be implemented has not been clearly established.
- Although the proportion of patients for whom suspected adverse reactions are reported increases with
- age, some research has suggested that this can be explained by more common use of medicines¹².
- 283 Thus it may be better to choose a threshold based on increased exposure rather than possible
- increased susceptibility. Alternatively, a consistent approach is to use the same age group in routine
- signal detection as selected for other pharmacovigilance activities. In this respect refer to GVP P IV:Geriatric population.
- 207 For routing signal detection processes it is recommended if 1000 for the interview
- For routine signal detection processes it is recommended that ICSRs from patients above the chosen age threshold should be clearly identified and that, as for the paediatric population, within-group
- disproportionality statistics that are significantly higher than those in the non-geriatric group should be
- 290 highlighted for additional consideration.

IX. Add I.5. Methods aimed at underlying causal processes

In addition to the description of the clinical manifestation of the suspected adverse reaction, ICSRs

- 293 may include information on the potential causal mechanisms for the reaction. Such information may
- relate to the circumstances of medicine use which could have contributed to the occurrence of the
- adverse reaction, e.g. abuse, misuse, overdose, medication error or occupational exposure.

IX. Add I.5.1. Abuse, misuse, overdose, medication error or occupational exposure

298 Although the coding of these circumstances is enabled as Preferred Terms in MedDRA (see GVP Annex 299 IV), they are gualitatively different from the clinical circumstances which are the focus of 300 disproportionality-based signal detection. Firstly, they are manifestly related to at least one medicinal 301 product identified in the ICSR. With suspected adverse reactions in normal circumstances of use this 302 relationship is a matter of clinical judgement. Secondly, the circumstances described by each of these 303 terms differ depending on the product concerned. Hence between-medicine comparisons of reporting 304 frequency of ICSRs with MedDRA-codes describing these circumstances are both unnecessary and 305 potentially misleading.

However, knowledge of these circumstances can appreciably alter the assessment of causality when
 reviewing a potential signal. Thus, it is recommended that the numbers of ICSRs with the respective
 MedDRA codes should be displayed for each DEC in signal detection listings.

¹² Begaud B, Martin K, Fourrier a, Haramburu F. Does age increase the risk of adverse drug reactions? Br J Clin Pharmacol. 2002; 54: 550–552.