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Executive Summary 1 

The objective is to seek CHMP qualification for the proposed statistical methodology intended to 2 
improve the efficiency of Phase 2 and 3 clinical trials, by using trial subjects’ predicted outcomes on 3 
placebo (prognostic scores) in linear covariate adjustment; such prognostic scores can be generated 4 
using a predictive model trained on historical data. Our approach is efficient in the sense that it uses 5 
historical data to reduce variance of the treatment response estimates (and thus reduce the minimum 6 
sample size required to achieve the desired level of confidence) better than other available 7 
approaches. 8 

Our proposed statistical methodology called prognostic covariate adjustment or PROCOVA™, leverages 9 
historical data (from control arms of clinical trials and from observational studies) and predictive 10 
modeling to decrease the uncertainty in treatment effect estimates from Phase 2 and 3 Randomized 11 
Controlled Trials (RCTs) measuring continuous responses, in the large-sample setting. 12 

This methodology (outlined in the Novel Methodology section below) is recommended for use in 13 
trials with continuous variables for which there is historical data on the patient population in question, 14 
such that one can build a prognostic model to predict control outcomes (generate prognostic score) 15 
with sufficient accuracy, given the subjects’ measured baseline covariates. Therefore, the variables 16 
used by the prognostic model must be measured at baseline for all subjects (and a missing data 17 
imputation scheme should be pre-specified).   18 

Our procedure can utilize a prognostic score generated by any prognostic model, including mechanistic 19 
models, linear statistical models, as well as machine-learning-based methods as described in this 20 
submission.  The latter are particularly useful as the machine-learning-based methods can learn non-21 
linear predictive models from large databases.  In addition, the construction of the prognostic model 22 
may be outsourced to machine learning experts, with access to the historical but not the trial dataset.  23 
In fact, the historical data can be used to train the prognostic model with guaranteed protection of 24 
private health information. 25 

PROCOVA™ represents a special case of Analysis of Covariance (ANCOVA), in that once the prognostic 26 
score has been calculated, the analysis is a standard linear regression. This makes it simple to 27 
implement with existing software, and easy to explain, interpret, and incorporate into various analysis 28 
plans. We provide a simple formula that can be used to calculate power prospectively while accounting 29 
for the beneficial effect of prognostic score adjustment. 30 

We show that PROCOVA™ is optimal if the prognostic model attains the maximal possible correlation 31 
with the actual outcomes of subjects under control conditions. However, one can realize gains in 32 
efficiency even with imperfect prognostic models. The other important advantage of PROCOVA™ is that 33 
it involves an adjustment for a single covariate derived from a larger set of variables that constitute 34 
the input of a prognostic model, providing a substantial dimensionality reduction. Even if the input to 35 
the prognostic model is high-dimensional in nature (e.g., a brain image, or a whole transcriptome), 36 
PROCOVA™ still represents an adjustment for a single covariate. One only has to measure the Pearson 37 
correlation of this single covariate with the actual outcome in a similar historical population in order to 38 
account for the prognostic score in a prospective sample size estimation for a planned trial. We present 39 
mathematical proof and an actual demonstration of a prospective application of PROCOVA™ to power a 40 
trial without estimating or assuming a large number of population parameters. 41 
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In summary, our method is scientifically sound since it only adjusts for a single covariate derived from 42 
information collected at baseline/prior to randomization; produces unbiased estimates for treatment 43 
effects; controls the type-I error rate; and leads to correct confidence interval coverage.  It is also 44 
consistent with current FDA and EMA regulatory guidance. 45 

We demonstrate that PROCOVA™ is a robust methodology to optimize both the design and analysis of 46 
RCTs with continuous responses, in prospective context-of-use represented by the following two 47 
empirical examples: 48 

Experiment 1. Pre-specified primary analysis of Phase 2 and 3 trials, to deliver higher 49 
power/confidence in the results compared to unadjusted analyses. 50 

Experiment 2. Prospective design/sample size estimation for Phase 2 and 3 trials, to attain the desired 51 
level of power/level of confidence with a smaller sample size compared to unadjusted trials. 52 

To demonstrate the flexibility of our approach with regard to the prognostic model, we utilize 53 
prognostic scores generated by two different models: a random forest and a deep learning model 54 
trained on historical data from clinical trials and observational studies.  55 

While our methodology is applicable to in-scope trials in any therapeutic area where historical control 56 
data are available, we have chosen Alzheimer’s Disease (AD) as our initial target. The predictive 57 
models described in this submission were constructed on historical data from AD trials contained in two 58 
different AD databases, and our empirical demonstrations involve re-analysis of a Phase 3 trial in 59 
patients with AD. 60 

Statement of the Need for and Impact of the Proposed Novel Methodologies in Clinical Drug 61 
Development 62 

Background 63 

The goal of much clinical research is to estimate the effect of a treatment on an outcome of interest 64 
(causal inference). The RCT is the gold standard for causal inference because randomization cancels 65 
out the effects of any unobserved confounders in expectation. However, clinical research must still 66 
contend with the statistical uncertainty inherent to finite samples. Because of this, methods for the 67 
analysis of trial data are chosen to safely minimize this statistical uncertainty about the causal effect. 68 

For a given trial design and analytical approach, sample size is the primary determinant of sampling 69 
variance and power. Therefore, the most straightforward method to reduce sampling variance is to run 70 
a larger trial that includes more subjects. However, trial costs and timelines typically increase with the 71 
number of subjects, making large trials economically and logistically challenging. Moreover, ethical 72 
considerations would suggest that human subjects research should use the smallest sample sizes 73 
possible that allow for reliable decision making. 74 

As most clinical trials compare an active treatment to a placebo (often against the background of 75 
standard-of-care (SOC), which all trial participants receive), there is a possibility to use existing 76 
historical control arm data from completed trials to reduce variance and decrease sample size. Even in 77 
the case of an active control, data from patients receiving the active control can often be obtained 78 
from historical or real-world sources. Such “historical borrowing” methods are becoming increasingly 79 
attractive especially with the recent creation of large, electronic patient datasets that can make it 80 
easier to find a suitably matched historical population. 81 

Various approaches to historical borrowing have been proposed and their properties extensively 82 
evaluated, ranging from directly inserting subjects from previous studies into the current sample, to 83 
using previous studies to derive prior distributions for Bayesian analyses. Although such methods do 84 
generally increase power, they cannot strictly control the type-I error rate reducing the relevance of 85 
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such methods, particularly for pivotal/ confirmatory/ Phase 3 RCTs. A common approach to addressing 86 
the risk of type-I error rate inflation when information is borrowed is to carry out multiple simulation 87 
studies to quantify this effect. 88 

The Novel Methodology 89 

We propose a novel approach that leverages historical control arm data and predictive modelling to 90 
decrease the uncertainty in treatment effect estimates from RCTs without compromising strict type-I 91 
error rate control in the large-sample setting. Our methodology comprises these three steps: 92 

Step 1: Training and evaluating a prognostic model to predict control outcomes. We define a 93 
prognostic model as a mathematical function of a subject’s baseline covariates that predicts the 94 
subject’s expected outcome if that subject were to receive the control treatment in the planned trial 95 
(e.g., placebo). The output of the prognostic model for a given subject is called that subject’s 96 
prognostic score. 97 

Step 2: Accounting for the prognostic model while estimating the sample size required for a 98 
prospective study. 99 

Step 3: Estimating the treatment effect from the completed study using a linear model while adjusting 100 
for the control outcomes predicted by the prognostic model. 101 

The last step amounts to adding a single (constructed) adjustment covariate into an adjusted analysis. 102 
As such, it poses no additional statistical risk over any other pre-specified adjusted analyses (which are 103 
preferable to unadjusted analyses in almost every case). Our approach is entirely pre-specifiable, is 104 
generic enough to be integrated into many analysis plans and is supported by regulatory guidance. 105 

Our procedure is flexible with respect to the prognostic model used to generate predicted control 106 
outcomes (e.g., on placebo) for the trial subjects and maintains type-I error rate control regardless of 107 
the type of such model. In this submission, we present results employing two different predictive 108 
models - random forests and a deep learning model. Deep learning models are particularly well suited 109 
to handle such common clinical trial challenges as missing covariates, multiple longitudinal outcomes, 110 
and high-dimensional covariates (e.g., a whole genome).  Deep learning methods can also combine 111 
data from multiple sources to improve performance when the relevant historical data are meagre. In 112 
addition, the construction of the prognostic model may be outsourced to a group of machine-learning 113 
experts, which also makes it possible to separate access to the historical and trial datasets. In fact, the 114 
historical data can be used to train a prognostic model within a privacy preserving framework with 115 
guaranteed protection of private health information. 116 

Adjustment for composite or computed covariates such as body mass index, Charlson comorbidity 117 
index, or Framingham risk score, is not new. These “indices” or “scores” are usually the output of a 118 
simplified prognostic model derived from historical data. For instance, the Framingham cardiovascular 119 
risk score was developed by training Cox and logistic regression models using a large community-120 
based cohort to obtain a single covariate that is highly predictive of cardiovascular outcomes. From 121 
that perspective, our proposed approach is a formalization of what has previously been an ad-hoc 122 
procedure. 123 

A number of recent technological developments have led to substantial improvements in the ability to 124 
train highly accurate prognostic models. First, large databases of longitudinal patient data from control 125 
arms of historical clinical trials, observational and natural history studies, and real-world sources have 126 
become widely available. Second, high dimensional biomarkers from technologies such as imaging and 127 
next generation sequencing provide large amounts of patient-level information. And, third, 128 
improvements in machine learning methods (especially in the subfield known as deep learning) allow 129 
one to create prognostic models that can fully utilize all of these patient data. The intersection of these 130 
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three key developments — large, analysable databases containing high-dimensional outcomes, and 131 
powerful deep learning models — allows for the generation of more predictive prognostic scores, 132 
adjusting for which can substantially reduce variance/confidence intervals, and/or increase power and 133 
reduce minimum required sample sizes. 134 

Objective, Scope and Context-of-use 135 

The objective of this submission is to seek CHMP qualification for the proposed statistical methodology 136 
intended to improve the efficiency of Phase 2 and 3 clinical trials by using trial subjects’ predicted 137 
control outcomes (prognostic scores) in linear covariate adjustment (PROCOVA™); such prognostic 138 
scores can be generated from each subject’s baseline characteristics using a predictive model trained 139 
on historical data. Our approach is efficient in the sense that it uses historical data to reduce variance 140 
of the treatment response estimates (and thus the minimum sample size required to achieve the 141 
desired level of confidence) better than other methods with access to the same baseline covariates. 142 

In this submission, we present mathematical simulation and empirical demonstrations that PROCOVA™ 143 
is an effective and safe method for leveraging historical data to reduce uncertainty in RCTs. Once the 144 
prognostic score has been calculated, the analysis is a standard linear regression. This makes it 145 
suitable under current regulatory guidance, simple to implement with existing software, and easy to 146 
explain and interpret. In comparison to other kinds of historical borrowing methods, PROCOVA™ 147 
guarantees unbiased estimates, strict type-I error rate control, and confidence interval coverage, as 148 
proven theoretically and demonstrated through simulations in this submission. In anything but the 149 
smallest of trials, there is no need for elaborate simulations to demonstrate the trial operating 150 
characteristics (as is usually the case for methods that cannot theoretically guarantee control of type-I 151 
error). Finally, we provide a simple formula that can be used to calculate power prospectively while 152 
benefiting from prognostic score adjustment. 153 

We demonstrate that PROCOVA™ is a robust methodology to optimize both the design and analysis of 154 
Phase 2 and 3 RCTs with continuous responses, in prospective context-of-use represented by the 155 
following two empirical examples: 156 

Experiment 1. Pre-specified primary analysis of Phase 2 and 3 trials, to deliver higher 157 
power/confidence in the results compared to unadjusted analyses. 158 

Experiment 2. Prospective design/sample size estimation for Phase 2 and 3 trials, to attain the desired 159 
level of power/level of confidence with a smaller sample size compared to unadjusted trials. 160 

To demonstrate the flexibility of our approach with regard to the prognostic model, we utilize 161 
prognostic scores generated by two different models: a random forest and a deep learning model 162 
trained on historical data from clinical trials and observational studies. 163 

Our methodology is intended for use in RCTs with continuous responses.  When applied to such trials, 164 
PROCOVA™ offers two critically important advantages over other approaches.  First, it can attain the 165 
lowest variance among reasonable analytical approaches with access to the same covariates if the 166 
prognostic model is “perfect”, i.e., if the computed prognostic score for a subject is equal to his/her 167 
actual outcome on control treatment, given his/her baseline covariates.  Second, PROCOVA™ is an 168 
adjustment for a single covariate derived from a larger set of variables that constitute the input of a 169 
prognostic model, providing a substantial dimensionality reduction. Even if the input to the prognostic 170 
model is high-dimensional in nature (e.g., a brain image, or a whole transcriptome), PROCOVA™ still 171 
represents an adjustment for a single covariate. One only has to measure the Pearson correlation of 172 
this single covariate with the actual outcome in a historical population similar to that of the planned 173 
trial in order to account for the prognostic score in a prospective sample size estimation. 174 



 
DRAFT Qualification opinion for Prognostic Covariate Adjustment (PROCOVA™)   
 Page 6/33 
 

While our methodology is applicable to in-scope trials in any therapeutic area where historical control 175 
data are available, we have chosen Alzheimer’s Disease (AD) as our primary initial target because of 176 
an exceptionally high, and growing, unmet need; challenging, long and large Phase 2/3 trials; 177 
abundant placebo control data from over 150 randomized clinical trials and many observational studies 178 
conducted since the 1990’s; and largely unchanged SOC and the clinical trial endpoints for 179 
symptomatic AD over the last 17 years (ensuring small or no temporal drifts in the data).  As such, the 180 
predictive models described in the simulations and empirical examples/context-of-use parts of this 181 
submission were constructed on historical data from AD trials contained in the Alzheimer’s Disease 182 
Neuroimaging Initiative (ADNI) database and the Critical Path for Alzheimer’s Disease (CPAD) 183 
database).  Our empirical context-of-use demonstrations involve re-analysis of a Phase 3 trial in 184 
patients with AD reported by Quinn et al.  185 

Background information as submitted by the Applicanti 186 

Statement of the Need for and Impact of the Proposed Novel Methodologies in Clinical Drug 187 
Development 188 

Background 189 

The goal of much clinical research is to estimate the effect of a treatment on an outcome of interest 190 
(causal inference). The RCT is the gold standard for causal inference because randomization cancels 191 
out the effects of any unobserved confounders in expectation. However, clinical research must still 192 
contend with the statistical uncertainty inherent to finite samples. Because of this, methods for the 193 
analysis of trial data are chosen to safely minimize this statistical uncertainty about the causal effect. 194 

For a given trial design and analytical approach, sample size is the primary determinant of sampling 195 
variance and power. Therefore, the most straightforward method to reduce sampling variance is to run 196 
a larger trial that includes more subjects. However, trial costs and timelines typically increase with the 197 
number of subjects, making large trials economically and logistically challenging. Moreover, ethical 198 
considerations would suggest that human subjects research should use the smallest sample sizes 199 
possible that allow for reliable decision making. 200 

As most clinical trials compare an active treatment to a placebo (often against the background of 201 
standard-of-care (SOC), which all trial participants receive), there is a possibility to use existing 202 
historical control arm data from completed trials to reduce variance and decrease sample size. Even in 203 
the case of an active control, data from patients receiving the active control can often be obtained 204 
from historical or real-world sources. Such “historical borrowing” methods are becoming increasingly 205 
attractive especially with the recent creation of large, electronic patient datasets that can make it 206 
easier to find a suitably matched historical population. 207 

Various approaches to historical borrowing have been proposed and their properties extensively 208 
evaluated, ranging from directly inserting subjects from previous studies into the current sample, to 209 
using previous studies to derive prior distributions for Bayesian analyses 3–6. Although such methods 210 
do generally increase power, they cannot strictly control the type-I error rate 3,5,7 reducing the 211 
relevance of such methods, particularly for pivotal/ confirmatory/ Phase 3 RCTs 8. A common approach 212 
to addressing the risk of type-I error rate inflation when information is borrowed is to carry out 213 
multiple simulation studies to quantify this effect.  214 

The Novel Methodology 215 

We propose a novel approach that leverages historical control arm data and predictive modeling to 216 
decrease the uncertainty in treatment effect estimates from RCTs without compromising strict type-I 217 
error rate control in the large-sample setting. Our methodology comprises these three steps: 218 
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Step 1: Training and evaluating a prognostic model to predict control outcomes. We define a 219 
prognostic model as a mathematical function of a subject’s baseline covariates that predicts the 220 
subject’s expected outcome if that subject were to receive the control treatment in the planned trial 221 
(e.g., placebo). The output of the prognostic model for a given subject is called that subject’s 222 
prognostic score. 223 

Step 2: Accounting for the prognostic model while estimating the sample size required for a 224 
prospective study. 225 

Step 3: Estimating the treatment effect from the completed study using a linear model while adjusting 226 
for the control outcomes predicted by the prognostic model. 227 

The last step amounts to adding a single (constructed) adjustment covariate into an adjusted analysis. 228 
As such, it poses no additional statistical risk over any other pre-specified adjusted analyses (which are 229 
preferable to unadjusted analyses in almost every case 9–12). Our approach is entirely pre-specifiable, 230 
is generic enough to be integrated into many analysis plans and is supported by regulatory guidance 231 
13,14. 232 

Our procedure is flexible with respect to the prognostic model used to generate predicted control 233 
outcomes (e.g., on placebo) for the trial subjects and maintains type-I error rate control regardless of 234 
the type of such model. In this submission, we present results employing two different predictive 235 
models - random forests and a deep learning model 18–21 (Appendix 6). Deep learning models are 236 
particularly well suited to handle such common clinical trial challenges as missing covariates, multiple 237 
longitudinal outcomes, and high-dimensional covariates (e.g., a whole genome).  Deep learning 238 
methods can also combine data from multiple sources to improve performance when the relevant 239 
historical data are meager 22. In addition, the construction of the prognostic model may be outsourced 240 
to a group of machine-learning experts, which also makes it possible to separate access to the 241 
historical and trial datasets. In fact, the historical data can be used to train a prognostic model within a 242 
privacy preserving framework with guaranteed protection of private health information 1,2,23. 243 

Adjustment for composite or computed covariates such as body mass index, Charlson comorbidity 244 
index, or Framingham risk score, is not new 9,11,15–17. These “indices” or “scores” are usually the output 245 
of a simplified prognostic model derived from historical data. For instance, the Framingham 246 
cardiovascular risk score was developed by training Cox and logistic regression models using a large 247 
community-based cohort to obtain a single covariate that is highly predictive of cardiovascular 248 
outcomes. From that perspective, our proposed approach is a formalization of what has previously 249 
been an ad-hoc procedure. 250 

A number of recent technological developments have led to substantial improvements in the ability to 251 
train highly accurate prognostic models. First, large databases of longitudinal patient data from control 252 
arms of historical clinical trials, observational and natural history studies, and real-world sources have 253 
become widely available. Second, high dimensional biomarkers from technologies such as imaging and 254 
next generation sequencing provide large amounts of patient-level information. And, third, 255 
improvements in machine learning methods (especially in the subfield known as deep learning) allow 256 
one to create prognostic models that can fully utilize all of these patient data. The intersection of these 257 
three key developments — large, analyzable databases containing high-dimensional outcomes, and 258 
powerful deep learning models — allows for the generation of more predictive prognostic scores, 259 
adjusting for which can substantially reduce variance/confidence intervals, and/or increase power and 260 
reduce minimum required sample sizes. 261 

Objective, Scope and Context-of-use 262 

The objective of this submission is to seek CHMP qualification for the proposed statistical methodology 263 
intended to improve the efficiency of Phase 2 and 3 clinical trials by using trial subjects’ predicted 264 
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control outcomes (prognostic scores) in linear covariate adjustment (PROCOVA™); such prognostic 265 
scores can be generated from each subject’s baseline characteristics using a predictive model trained 266 
on historical data. Our approach is efficient in the sense that it uses historical data to reduce variance 267 
of the treatment response estimates (and thus the minimum sample size required to achieve the 268 
desired level of confidence) better than other methods with access to the same baseline covariates. 269 

In this submission, we present mathematical (Section 3.1.2), simulation (Section 3.2), and empirical 270 
(Section 3.3) demonstrations that PROCOVA™ is an effective and safe method for leveraging historical 271 
data to reduce uncertainty in RCTs.  Once the prognostic score has been calculated, the analysis is a 272 
standard linear regression. This makes it suitable under current regulatory guidance,13,14 simple to 273 
implement with existing software, and easy to explain and interpret. In comparison to other kinds of 274 
historical borrowing methods, PROCOVA™ guarantees unbiased estimates, strict type-I error rate 275 
control, and confidence interval coverage, as proven theoretically and demonstrated through 276 
simulations in this submission. In anything but the smallest of trials, there is no need for elaborate 277 
simulations to demonstrate the trial operating characteristics (as is usually the case for methods that 278 
cannot theoretically guarantee control of type-I error). Finally, we provide a simple formula that can be 279 
used to calculate power prospectively while benefiting from prognostic score adjustment. 280 

We demonstrate that PROCOVA™ is a robust methodology to optimize both the design and analysis of 281 
Phase 2 and 3 RCTs with continuous responses, in prospective context-of-use represented by the 282 
following two empirical examples: 283 

Experiment 1. Pre-specified primary analysis of Phase 2 and 3 trials, to deliver higher 284 
power/confidence in the results compared to unadjusted analyses. 285 

Experiment 2. Prospective design/sample size estimation for Phase 2 and 3 trials, to attain the desired 286 
level of power/level of confidence with a smaller sample size compared to unadjusted trials.  287 

To demonstrate the flexibility of our approach with regard to the prognostic model, we utilize 288 
prognostic scores generated by two different models: a random forest and a deep learning model 289 
trained on historical data from clinical trials and observational studies. 290 

Our methodology is intended for use in RCTs with continuous responses.  When applied to such trials, 291 
PROCOVA™ offers two critically important advantages over other approaches.  First, it can attain the 292 
lowest variance among reasonable analytical approaches with access to the same covariates if the 293 
prognostic model is “perfect”, i.e., if the computed prognostic score for a subject is equal to his/her 294 
actual outcome on control treatment, given his/her baseline covariates.  Second, PROCOVA™ is an 295 
adjustment for a single covariate derived from a larger set of variables that constitute the input of a 296 
prognostic model, providing a substantial dimensionality reduction. Even if the input to the prognostic 297 
model is high-dimensional in nature (e.g., a brain image, or a whole transcriptome), PROCOVA™ still 298 
represents an adjustment for a single covariate. One only has to measure the Pearson correlation of 299 
this single covariate with the actual outcome in a historical population similar to that of the planned 300 
trial in order to account for the prognostic score in a prospective sample size estimation. 301 

While our methodology is applicable to in-scope trials in any therapeutic area where historical control 302 
data are available, we have chosen Alzheimer’s Disease (AD) as our primary initial target because of 303 
an exceptionally high, and growing, unmet need; challenging, long and large Phase 2/3 trials; 304 
abundant placebo control data from over 150 randomized clinical trials and many observational studies 305 
conducted since the 1990’s; and largely unchanged SOC and the clinical trial endpoints for 306 
symptomatic AD over the last 17 years (ensuring small or no temporal drifts in the data).  As such, the 307 
predictive models described in the simulations (Section 3.2) and empirical examples/context-of-use 308 
(Section 3.3) parts of this submission were constructed on historical data from AD trials contained in 309 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and the Critical Path for 310 
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Alzheimer’s Disease (CPAD) database (Appendix 5).  Our empirical context-of-use demonstrations 311 
involve re-analysis of a Phase 3 trial in patients with AD reported by Quinn et al. 24. 312 

Out-of-Scope/Future Directions 313 

Several aspects of the proposed methodology are beyond the scope of this submission.  For example, 314 
it may be possible that prognostic score adjustment retains a statistical advantage relative to direct 315 
nonlinear adjustment in trials with other types of response variables including binary variables or time-316 
to-event outcomes, though we have left theoretical investigation of this question to future studies. 317 

Similarly, the estimand targeted by PROCOVA™ as described in this submission, is the difference in the 318 
counterfactual population means of a continuous outcome (this is the exact estimand that is targeted 319 
by the unadjusted estimator in this setting). Estimands for other types of outcomes are less 320 
straightforward and will be considered for further research beyond the scope of this submission.   321 

It should also be possible to combine the advantages of multiple procedures, i.e., to perform adaptive 322 
adjustment for a fixed prognostic model trained on historical data. 323 

In addition, the particular choice of prognostic model, and the method used to train it, are beyond the 324 
scope of this submission. One of the primary benefits of PROCOVA™ is that it guarantees type-I error 325 
rate control for any prognostic model, thus separating the concerns of how to build a highly predictive 326 
model from how to apply the predictions from a model to maximize power in an RCT. Moreover, the 327 
only requirement for prospective powering is the ability to estimate the performance of the prognostic 328 
model in the target population. 329 

In the future, PROCOVA™ may be exploited as a component in other kinds of estimators (generalized 330 
estimating equation, generalized linear model, survival models etc.). We have limited our theoretical 331 
discussion here to the linear model for continuous responses since it is so common, but a prognostic 332 
score may be used as a covariate in any analysis that allows for covariate adjustment. In addition, we 333 
have limited our discussion to analyses of a single timepoint, but prognostic scores could also be used 334 
in analyses with repeated measures. It remains to be seen what optimality properties are satisfied by 335 
doing prognostic covariate adjustment in each kind of analysis and under what conditions. 336 

Similarly, one may account for heterogeneous treatment effects by including treatment-by-covariate 337 
interactions while estimating the treatment effect. Indeed, some theoretical properties of PROCOVA™ 338 
including treatment-by-covariate interactions are presented in Schuler et al. 25. However, this 339 
particular submission describes the use of PROCOVA™ without treatment-by-covariate interactions, in 340 
line with the EMA’s guidelines on adjustment for baseline covariates in clinical trials 13. 341 

Finally, while this submission is focused exclusively on RCTs with strict type-I error rate control (i.e., in 342 
a frequentist framework), we are in the process of developing a Bayesian framework that combines 343 
prognostic covariate adjustment with an empirical prior distribution learned from the predictive 344 
performances of the prognostic model on past trials 26. We have shown theoretically that Bayesian 345 
PROCOVA™ offers a substantial further increase in statistical power compared to frequentist 346 
PROCOVA™, while limiting the type-I error rate under reasonable conditions. 347 

Preview of the Technical Aspects Detailed in Methods and Results 348 

In the next section, we provide a detailed description of PROCOVA™ and present mathematical proofs 349 
of its main statistical properties (Section 3.1). Specifically, we prove that estimates of treatment 350 
effects obtained with PROCOVA™ are unbiased and that type-I error rates of hypothesis tests are 351 
controlled at the pre-specified level. These results hold for PROCOVA™ use with any prognostic model. 352 
In addition, we prove that PROCOVA™ can attain the maximum power of any estimator with access to 353 
the pre-specified baseline covariates if the prognostic model is exact — that is, PROCOVA™ is the 354 
optimal estimation procedure if the computed prognostic score for a subject is equal to his/her actual 355 
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expected outcome under control conditions, given his/her baseline characteristics. In addition, we 356 
provide a simple formula to estimate the power/minimum sample size in a prospective trial that will be 357 
analyzed with PROCOVA™. 358 

We then describe and quantify the procedure’s performance, by demonstrating the efficiency gain 359 
associated with the use of PROCOVA™ via several simulations (Section 3.2). These explore how the 360 
mean-squared estimation error of the treatment effect varies with and without prognostic covariate 361 
adjustment in four scenarios: when the covariate-outcome relationship is linear, when the covariate-362 
outcome relationship is nonlinear, when the treatment effect is heterogeneous, and when the 363 
prognostic model is trained on a dataset with different properties from the trial population. We conduct 364 
these simulations first using PROCOVA™ alone, and then repeat them for PROCOVA™ combined with 365 
standard adjustment for baseline covariates. We show that prognostic covariate adjustment decreases 366 
the mean-squared error of the estimated treatment effects in all scenarios, with one exception. There 367 
is no change to the mean-squared error when the simulated outcome is a simple linear combination of 368 
baseline covariates which are also used individually for standard covariate adjustment. 369 

Next, we present an empirical demonstration of PROCOVA™ through re-analyses of a completed Phase 370 
3 trial in patients with AD, in order to illustrate different benefits of PROCOVA™ (Section 3.3). The first 371 
experiment demonstrates that, using the same sample size and randomization ratio as in the original 372 
study, adjusting for prognostic scores decreases the magnitude of the estimated standard errors and 373 
the width of the confidence intervals. The second experiment demonstrates that accounting for the 374 
prognostic scores during sample size estimation results in a trial with fewer subjects but with standard 375 
errors of equal magnitude to those in a larger trial designed without PROCOVA™. 376 

We perform these re-analyses using two different types of ML models to generate prognostic scores 377 
(Appendix 6), a random forest and a deep learning model (specifically, a Conditional Restricted 378 
Boltzmann Machine, or CRBM), in order to emphasize that PROCOVA™ can be applied with different 379 
types of prognostic models. 380 

Methodology and Results 381 

The Prognostic Covariate Adjustment (PROCOVA™) Method 382 

Here we describe in detail the steps for using PROCOVA™ to estimate the treatment effect in an RCT 383 
and to perform a sample size calculation. We present the mathematical properties of the proposed 384 
procedure in a series of theorems, with mathematical proofs and technical details provided in Appendix 385 
1, Appendix 2, and Appendix 3. 386 

Description of PROCOVA™ 387 

Our proposed method, Prognostic Covariate Adjustment (PROCOVA™), consists of the following three 388 
general steps, described in further detail in Appendix 1: 389 

Step 1: Training and evaluating a prognostic model to predict control outcomes/generate 390 
prognostic scores. 391 

We define a prognostic model as a mathematical function of a subject’s baseline covariates that 392 
predicts the subject’s expected outcome if that subject were to receive the control treatment in the 393 
planned trial (e.g., placebo). The output of the prognostic model for a given subject is called that 394 
subject’s prognostic score. 395 

In principle, there are many ways to obtain a prognostic model. The type-I error rate will be controlled 396 
for any type of model, whereas the realized increase in trial efficiency will depend on the predictive 397 
performance of the model in the target population, defined here and below as subjects meeting the 398 
selection criteria in the trial of interest. Machine learning-based methods are especially effective in 399 
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fitting the model to a collection of historical data and linking subjects’ baseline covariates to their 400 
outcomes under the control condition. We provide two examples of this type of prognostic model in our 401 
empirical analyses. 402 

The minimum sample size required to detect a given effect using PROCOVA™ is a function of the 403 
Pearson correlation coefficient between the observed and predicted outcomes in the target population, 404 
in addition to the target effect size and the variance of the outcome. The larger the correlation, the 405 
smaller the minimum sample size. Therefore, the Pearson correlation coefficient should be estimated 406 
using a separate set of historical data linking subjects’ baseline covariates to their actual outcomes 407 
under the control condition, one that was not used to train the prognostic model. The subjects in this 408 
historical dataset should have similar baseline characteristics to those in the target population (e.g., 409 
they should meet the subject selection criteria of the planned trial). The same dataset can be used to 410 
estimate the variance of the outcome. 411 

Step 2: Accounting for the prognostic model while estimating the sample size required for a 412 
prospective study. 413 

For a given sample size, an analysis that uses PROCOVA™ will have higher power than an analysis that 414 
does not use PROCOVA™. Similarly, a given target effect size can be detected with a smaller sample 415 
size in an analysis that uses PROCOVA™ than in an analysis that does not use PROCOVA™. The 416 
minimum sample size for a trial can be estimated once the following parameters have been defined: 417 
the target effect size, the significance threshold, the desired power level, the proportion of subjects to 418 
be randomized to the active treatment arm, and the expected dropout rate. In addition, we need the 419 
estimates for the correlation between the prognostic scores and the actual outcomes in the target 420 
population as defined in Step 1 above, and the variance of the observed outcomes from Step 1. In 421 
many cases, the sponsor of the clinical trial may conservatively choose a correlation that is slightly 422 
smaller than estimated, and/or a variance that is slightly larger than estimated, in order to ensure the 423 
planned trial has sufficient power. Typically, these parameters are assumed to be the same for the 424 
active treatment and control groups. 425 

With the above parameters now defined, we find the smallest sample size that will achieve the desired 426 
power to detect the target effect size. If there are multiple outcomes of interest, such as co-primary 427 
endpoints, each with a desired power level and target effect size, then this procedure must be 428 
repeated for each outcome, and the largest sample size should be selected. This may require the use 429 
of multiple prognostic models (i.e., one to predict each outcome of interest) or a multivariate 430 
prognostic model. 431 

Step 3: Estimating the treatment effect from the completed study using a linear model while 432 
adjusting for the control outcomes predicted by the prognostic model. 433 

An RCT is performed using its originally estimated minimum sample size, in which each subject is 434 
randomized to active treatment or control. Data from subjects who have dropped out of the study 435 
should be handled with an appropriate pre-specified method as in any trial analysis 27. Next, the 436 
treatment effect is estimated by fitting a linear model, while adjusting for the estimated prognostic 437 
scores. One could also adjust for additional covariates in the regression if desired, so long as the 438 
sample size is much greater than the total number of terms in the linear model. 439 

Finally, a null hypothesis (e.g., no treatment effect) can be assessed by computing a two-sided p-440 
value. The null hypothesis is rejected with a two-sided significance test at significance level 𝛼𝛼 if 𝑝𝑝 <  𝛼𝛼.  441 

The PROCOVA™ method described above is a special case of Analysis of Covariance (ANCOVA) with a 442 
particular choice of adjustment covariate. As such, PROCOVA™ inherits the statistical properties of 443 
ANCOVA; for example, estimated treatment effects will be unbiased and the type-I error rate will be 444 
controlled. For these reasons, ANCOVA is widely used in the analysis of clinical trials with continuous 445 
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responses and is supported by guidance from EMA 13 and draft guidance from FDA 14. These statistical 446 
properties hold for PROCOVA™ using any prognostic model, regardless of the approach to modeling or 447 
the data used to inform the model.  448 

It is well known that ANCOVA can improve power in clinical trials if there is a correlation between the 449 
outcome and the adjustment covariate. PROCOVA™ is motivated by the fact that the covariate which is 450 
most correlated with the outcome is the prediction for the outcome itself. That is, rather than adjusting 451 
for a raw baseline covariate, we construct the optimal adjustment covariate. Under certain conditions 452 
outlined below, we show that adjusting for the prognostic score in a linear model to estimate the 453 
treatment effect achieves the minimum variance among appropriate analytical approaches with access 454 
to the same baseline covariates. The mathematical (Section 3.1.2), simulations (Section 3.2), and 455 
empirical (Section 3.3) results presented below, demonstrate that, for a given sample size, PROCOVA™ 456 
can lead to substantial increases in power without sacrificing control of the type-I error rate. In 457 
addition to the traditional assumptions regarding the target effect size, the significance threshold, the 458 
desired power level, etc., one only has to measure the Pearson correlation of a single prognostic 459 
covariate with the actual outcome in a historical population similar to that of the planned trial in order 460 
to account for the prognostic score in a prospective sample size estimation.  461 

Mathematical Results 462 

Mathematical Properties of ANCOVA 463 

PROCOVA™ is a special case of an Analysis of Covariance (ANCOVA). As a result, all of the statistical 464 
properties of ANCOVA also apply to PROCOVA™. We provide a short review of important properties of 465 
ANCOVA, with mathematical details described in Appendix 2, and technical proofs in Appendix 3. 466 

ANCOVA can be used to estimate a treatment effect from an RCT by fitting the linear model while 467 
adjusting for a treatment indicator variable, and any other covariates that were measured at or before 468 
baseline. The coefficient of the regression on the primary endpoint is an estimate of the treatment 469 
effect. The coefficients on the other endpoints or covariates aren’t necessarily important, but including 470 
those covariates can decrease the uncertainty in the estimate for the treatment effect. 471 

For adjusted estimation based on linear models or generalized linear models, the recently updated 472 
draft FDA guidance14 recommends that sponsors estimate standard errors using the Huber-White 473 
robust “sandwich” estimator or the nonparametric bootstrap method, rather than using nominal 474 
standard errors. We chose to estimate the standard errors in the regression coefficients using the 475 
Huber-White estimator, which is robust to heteroscedasticity. 476 

The following mathematical theorems establish statistical properties of ANCOVA and, as a result, of 477 
PROCOVA™. Here, we only present descriptions and implications of the mathematical theorems, 478 
leaving rigorous proofs and results to Appendix 2. 479 

Theorem 1:  480 

We consider an ANCOVA analysis in which the adjustment covariates are computed by applying an 481 
arbitrary transformation to the raw baseline covariates.  We show that the estimate of the treatment 482 
effect obtained with ANCOVA is unbiased for any reasonable transformation of the baseline covariates. 483 
Moreover, the variance of the estimated treatment effect depends on the covariances between the 484 
treatment and control potential outcomes with the transformed baseline covariates. This Theorem has 485 
several important corollaries listed below.  Both the theorem and the corollaries are described in detail 486 
in Appendix 2. 487 

Corollary 1.1 implies that the type-I error rate is controlled using ANCOVA with any reasonable 488 
transformation of the baseline covariates.  489 
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Corollary 1.2 provides a simple formula to compute the expected power of an ANCOVA analysis, as 490 
long as the relevant parameters in the formula for the variance given in Theorem 1 can be estimated. 491 

Corollary 1.3 demonstrates that the formula for the variance of the estimated treatment effect is 492 
simplified if the baseline covariates are transformed into a one-dimensional variable. This is useful for 493 
prospective power calculations, because it substantially reduces the number of parameters that need 494 
to be estimated in order to estimate the minimum sample size required in a future study. 495 

Corollary 1.4 demonstrates that adjusting for a covariate in a trial with equal randomization always 496 
decreases the variance of the estimated treatment effect, for any transformation of the baseline 497 
covariates into a one-dimensional variable. 498 

Use of ANCOVA is facilitated by the fact that the resulting estimates of treatment effects are unbiased, 499 
and type-I error rates of hypothesis tests are controlled. In addition, using ANCOVA always increases 500 
power in randomized trials with equal randomization. Therefore, we propose to choose the 501 
transformation that maximizes statistical power, which is PROCOVA™. 502 

Mathematical Properties of PROCOVA™ 503 

PROCOVA™ is motivated by the theorem presented below, with detailed results provided in Appendix 2 504 
and Appendix 3. 505 

Theorem 2:  506 

If the treatment effect is constant, then the optimal covariate to adjust for in ANCOVA is a prediction of 507 
the potential control outcome for a subject, based on that subject’s observed baseline covariates. That 508 
is, adjusting for a prediction of the potential control outcome minimizes the variance of the estimated 509 
treatment effect. These and other related considerations are presented in a more general context 510 
elsewhere25. 511 

An RCT analyzed with PROCOVA™ borrows information from a historical dataset to construct a 512 
covariate which, when adjusted for in a regression, minimizes the variance of the estimated treatment 513 
effect. As a result, it also maximizes the statistical power of the trial to detect a given effect. If the 514 
prognostic model used to predict the control potential outcomes is accurate (i.e., it obtains a high 515 
correlation with actual outcomes), then this method obtains the maximum power of any linear analysis 516 
using the same baseline covariates that does not include treatment-by-covariate interactions. 517 

A number of recent technological developments have led to substantial improvements in the ability to 518 
train highly accurate prognostic models. First, large databases of longitudinal patient data from control 519 
arms of historical clinical trials, observational and natural history studies, and real-world sources have 520 
become widely available. Second, high dimensional biomarkers from technologies such as imaging and 521 
next generation sequencing provide large amounts of information about individual patients. And, third, 522 
improvements in machine learning methods (especially in the subfield known as deep learning) allow 523 
one to create prognostic models that can fully utilize all of these patient data. The intersection of these 524 
three key developments — large, analyzable databases containing high-dimensional outcomes, and 525 
powerful deep learning models — allows for the generation of more predictive prognostic scores, 526 
adjusting for which can substantially reduce variance/confidence interval, and/or increase power and 527 
reduce minimum required sample sizes, as shown in Section 3.2 and Section 3.3.  528 

Simulation Studies of PROCOVA™ 529 

We demonstrate that PROCOVA™ provides more precise estimates of treatment effects than 530 
unadjusted estimators in realistic simulated scenarios. By using simulations, we are able to specify the 531 
data generating distribution and treatment effect. Since the treatment effect is known, the discrepancy 532 
between the estimated and actual treatment effects can be directly measured. Specifically, we used 533 
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simulation studies to explore how mean-squared estimation error of the treatment effect varies with 534 
and without PROCOVA™. 535 

Simulation Study Methods 536 

We simulated four different scenarios that model realistic situations encountered in clinical trials, and 537 
that enable us to probe the sensitivity of PROCOVA™ to particular assumptions.  538 

The Linear simulation describes a scenario in which the outcome-covariate relationship is linear in 539 
both the active and control treatment arms with a constant treatment effect.  540 

The Non-linear simulation describes a scenario in which the outcome-covariate relationship is non-541 
linear in both treatment arms, but the treatment effect is constant.  542 

The Heterogeneous simulation describes a scenario in which the conditional average effect 543 
E[𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋] = 𝜇𝜇1(𝑋𝑋) − 𝜇𝜇0(𝑋𝑋) is not constant (i.e., E[𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋] ≠ 𝜇𝜇1(𝑋𝑋) − 𝜇𝜇0(𝑋𝑋)).  544 

The Shifted simulation describes a scenario in which the historical population used to train the 545 
prognostic model is not representative of the trial population in terms of the baseline 546 
covariates (i.e., 𝑃𝑃𝐻𝐻(𝑋𝑋′ = 𝑥𝑥) ≠ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)).  547 

Details on the data generating process for each of the simulation scenarios are provided in Appendix 4.  548 

The first two simulation scenarios, covering Linear and Non-linear outcome-covariate relationships, fall 549 
under the assumptions in our theoretical results. Therefore, we expect PROCOVA™ to perform well, as 550 
long as we use a prognostic model capable of capturing non-linear relationships. In contrast, the 551 
Heterogeneous scenario violates the constant treatment effect assumption of Theorem 2, so this 552 
scenario probes the sensitivity of PROCOVA™ to that assumption. Although the fourth scenario does 553 
not violate any of our assumptions, a prognostic model trained on the simulated historical data in the 554 
Shifted scenario may not generalize well to the simulated study population. Therefore, this scenario 555 
probes the sensitivity of PROCOVA™ to the predictive performance of the trained prognostic model. 556 

In each simulation scenario, we generated a simulated historical control dataset 𝑎𝑎𝑎𝑎𝑎𝑎 trained a random 557 
forest as a prognostic model. Then, we simulated a randomized trial dataset with 500 subjects 558 
randomized 1:1 to the active treatment and control. Finally, we used the prognostic model to generate 559 
an estimated prognostic score, and also computed the exact prognostic score (i.e., the expected 560 
control outcome) using the simulated data generating process. The exact prognostic score represents 561 
the performance that could be obtained with a “perfect” prognostic model but, because a random 562 
forest is unlikely to learn the exact relationship, we expect the estimated prognostic score to perform 563 
slightly worse than the exact prognostic score.  564 

We analyzed the data using three estimation procedures: unadjusted, adjusted with the estimated 565 
prognostic score obtained with the random forest, and adjusted with the exact prognostic score. The 566 
three estimation procedures were repeated for models with and without additional baseline covariates 567 
included. Finally, we calculated the squared-error of each estimate relative to the true treatment 568 
effect, which is known because it was used to generate the simulated data, repeated this process 569 
10,000 times, and averaged the squared-errors to obtain mean-squared errors for each analysis.  570 

Simulation Study Results 571 

Table 1 and Table 2 present the results obtained in each of the 4 chosen scenarios, including Linear 572 
and Non-linear outcome-covariate relationships, both of which can be learned by the random forest 573 
prognostic model, and the Heterogeneous and Shifted scenarios, which probe the sensitivity of 574 
PROCOVA™ to the violation of the Theorem 2 assumption regarding constant treatment effect, and to 575 
the accuracy of the prognostic model, respectively. The two tables differ in that Table 1 does not 576 
include any additional covariates besides the prognostic score, while Table 2 includes additional 577 



 
DRAFT Qualification opinion for Prognostic Covariate Adjustment (PROCOVA™)   
 Page 15/33 
 

baseline covariates.  The Table lists the mean-squared errors of estimated treatment effects obtained 578 
in unadjusted analysis; analysis using adjustment for an estimated prognostic score: and analysis 579 
using adjustment for an exact prognostic generated by a “perfect” prognostic model as described 580 
above. 581 

Table 1. Mean-squared errors of estimated treatment effects computed from 582 
simulations with no additional covariates 583 

Scenario Unadjusted Analysis 
Adjustment for  
estimated prognostic 
score 

Adjustment for 
 exact prognostic score 

Linear 3.49 0.96 0.82 

Non-linear 7.73 1.85 0.82 

Heterogeneous 5.54 2.32 2.32 

Shifted 7.65 6.79 0.82 

Table 2. Mean-squared errors of estimated treatment effects computed from 584 
simulations with additional baseline covariates 585 

Scenario 
Analysis adjusted only 
for additional covariate 

Adjustment for  
estimated prognostic 
score and additional 
covariate 

Adjustment for 
 exact prognostic score 
and additional 
covariate 

Linear 0.84 0.84 0.84 

Non-linear 5.11 1.82 0.83 

Heterogeneous 2.98 2.19 1.98 

Shifted 5.00 4.86 0.83 

In agreement with our theoretical results, the mean-squared errors of the analysis with PROCOVA™ 586 
were always smaller than or equal to the mean-squared errors without it. In fact, with the exception of 587 
the simple linear relationship with additional covariates, the mean-squared errors were substantially 588 
smaller with PROCOVA™ and, as expected, using the exact prognostic score always produced a lower 589 
mean-squared error than using the estimated prognostic score.  The results of the third scenario 590 
demonstrate that PROCOVA™ can decrease the mean-squared estimation error even when the 591 
assumption of Theorem 2 regarding constant treatment effect is violated. Thus, PROCOVA™ is 592 
generally a robust technique for estimating treatment effects from RCTs. 593 

PROCOVA™ provides the largest increases in power when the prognostic model accurately predicts the 594 
expected control outcomes in the study population. However, statistical and machine learning-based 595 
methods for fitting predictive models may overfit to the population in the training data; leading to a 596 
scenario in which the predictive model has a much larger correlation with observed outcomes in the 597 
training dataset than in the study population. The shifted scenario illustrates this phenomenon. In this 598 
scenario, PROCOVA™ still provides unbiased estimates, type-I error rate control, and decreases the 599 
variance of the estimated treatment effect. However, the increase in precision is not as large as could 600 
have been obtained with a model that generalized better to the target population. Therefore, while 601 
development and validation of the prognostic model to ensure that it achieves good performance in the 602 
target population is not necessary to ensure type-I error rate control, it is needed to maximize the 603 
efficiencies gained through application of PROCOVA™. 604 
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The following simple rules-of-thumb help understand the impact of adjusting for the prognostic score 605 
on the trial power: 606 

 Variance with PROCOVA
Variance without PROCOVA ∼ 1 − 𝑅𝑅2  

 Power with PROCOVA
Power without PROCOVA ∼ 1 + (𝑅𝑅2/2)  

 Minimum sample size with PROCOVA
Minimum sample size without PROCOVA ∼ 1 − 𝑅𝑅2  

Above, R2 is the squared correlation coefficient between the prognostic scores and actual control 607 
outcomes; “with PROCOVA™” means adjusting for the prognostic score; and “without PROCOVA™” 608 
means not adjusting for the prognostic score. These rules-of-thumb are not rigorous as the exact 609 
ratios depend on various aspects of the trial design. Nevertheless, they provide an idea of the 610 
magnitude of the increases in power which can be achieved by applying PROCOVA™ with an advanced 611 
prognostic model. 612 

To apply these rules-of-thumb, using a prognostic score with an 𝑅𝑅 = 0.5 provides a 25% decrease in 613 
variance.  Similarly, using a prognostic score with an  𝑅𝑅 = 0.8 yields around 64% decrease in variance.  614 
Obtaining such correlations is quite realistic with current technologies, driven by the development of 615 
large clinical databases and novel machine learning technologies that enable the development of 616 
advanced prognostic models. 617 

Empirical Applications of PROCOVA™ 618 

We illustrate the proposed prospective context-of-use for PROCOVA™ through re-analyses of a 619 
previously completed clinical trial investigating the effect of docosahexaenoic acid (DHA) on cognitive 620 
and functional decline in subjects with mild-to-moderate AD, referred to below as the demonstration 621 
trial24. First, using two different prognostic models trained on historical data, we illustrate that using 622 
PROCOVA™ to add a prognostic covariate to the analyses of this RCT decreases the variance of the 623 
treatment effect estimates (Experiment 1). Next, using the same prognostic models, we illustrate that 624 
PROCOVA™ enables the design of substantially smaller clinical trials with the same statistical power 625 
(Experiment 2). We use two prognostic models to demonstrate that PROCOVA™ is a general statistical 626 
technique that is not tied to a particular type of prognostic model. 627 

Empirical Analyses Methods 628 

We obtained a set of historical controls by combining data from the Alzheimer's Disease Neuroimaging 629 
Initiative (ADNI) 28 and the Critical Path for Alzheimer's Disease (CPAD) 29,30 The combined dataset was 630 
composed of data from 6,919 subjects with early-stage Alzheimer's Disease. Importantly, the historical 631 
dataset did not contain data from the demonstration trial. Two different prognostic models were 632 
trained to predict control potential outcomes using the ADNI and CPAD datasets: a random forest 31, 633 
and a deep learning model 18,32. For our demonstration, we focused on the 18-month changes in the 634 
Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog11) 33 and the Clinical Dementia 635 
Rating (CDR) 34. More details on the training data and the prognostic models are provided in Appendix 636 
5 and Appendix 6. 637 

The demonstration trial was originally performed through the Alzheimer's Disease Cooperative Study 638 
(ADCS), a consortium of academic medical centers and private Alzheimer disease clinics funded by the 639 
National Institute on Aging to conduct clinical trials on Alzheimer disease. In this trial, 238 subjects 640 
were randomized to the active treatment arm, and 164 subjects were randomized to placebo. The trial 641 
measured multiple covariates at baseline including demographics and patient characteristics (e.g., sex, 642 
age, region, weight), lab tests (e.g., blood pressure, ApoE4 status 35(p4),36(p4), and component scores of 643 
cognitive tests. More details are provided in Appendix 5. 644 
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Experiment 1.  Pre-specified primary analysis of Phase 2 and 3 trials, to deliver higher 645 
power/confidence in the results compared to unadjusted analyses 646 

After fitting the prognostic models, we analyzed the results from the Quinn et al. trial using three 647 
approaches: the unadjusted analysis; PROCOVA™ using the prognostic scores computed from the 648 
random forest; and PROCOVA™ using the prognostic scores computed from the deep learning model. 649 
This experiment used the same number of subjects and randomization ratio as the original study 650 
reported by Quinn et al. Data from subjects who dropped out of the study were not included in any of 651 
the analyses. We compared the resulting point estimates and 95% confidence intervals obtained with 652 
these three approaches for the effect of treatment on the changes in ADAS-Cog11 and CDR at 18 653 
months. 654 

Experiment 2.  Prospective design/sample size estimation for Phase 2 and 3 trials, to attain the desired 655 
level of power/level of confidence with a smaller sample size compared to unadjusted trials. 656 

We performed a sample size re-estimation and re-analysis of the Quinn et al. trial in order to 657 
demonstrate the clinical utility of accounting for prognostic covariate adjustment during trial design. 658 
When training the random forest and deep learning prognostic models, a subset of the ADNI and CPAD 659 
datasets were withheld for evaluating the variance and correlation required for the sample size 660 
calculation. Of the data that were not used in training the prognostic models, a subset of 345 subjects 661 
had (i) baseline Mini-Mental State Exam (MMSE) scores within the same range (14 to 26) as the 662 
inclusion criteria of the Quinn et al study, and (ii) had ADAS-Cog11 measurements through 18 months 663 
to enable calculation of the necessary standard deviation and correlation coefficients.  664 

The sample size was calculated for a target treatment effect on ADAS-Cog11, though we also include 665 
analyses of CDR as a secondary endpoint. The parameters specified in PROCOVA™ Step 2 are given in 666 
Table 3. 667 

Table 3. Parameters used in sample size re-estimation for the Quinn et al. study 668 

Parameter Value 

Significance level (α) 5% 

Desired power (ζ) 80% 

Proportion of subjects randomized to treatment arm (π) 3/5 

Target treatment effect (𝛽𝛽1∗) 3.1 

Expected dropout (𝑎𝑎) 0.3 

Estimated standard deviation (σ�0) 9.1 

Inflation parameter for standard deviation in the control arm (γ0) 1.0 

Inflation parameter for standard deviation in the active treatment arm (𝛾𝛾1) 1.0 

Estimated prognostic correlation, random forest (ρ�0) 0.36 
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Estimated prognostic correlation, deep learning model (𝜌𝜌�0) 0.43 

Deflation parameter for prognostic correlation in the control arm (λ0) 0.9 

Deflation parameter for prognostic correlation in the active treatment arm (𝜆𝜆1) 0.9 

The sample size calculation was carried out using a binary search in a custom software library. We 669 
compared the original trial design and results to those obtained with PROCOVA™ based on the number 670 
of subjects as well as the resulting point estimates and 95% confidence intervals for the treatment 671 
effect on ADAS-Cog11 and CDR at 18 months. Additional details are provided in Appendix 7. 672 

Of note, the only difference between Experiment 1 and Experiment 2 is the choice of the deflation 673 
parameters for prognostic correlation in the control and active treatment arms, λ0 and λ1, respectively. 674 
In Experiment 1, λ0 = λ1 = 0, which discounts the correlation to zero. That is, the estimated minimum 675 
sample size is the same as originally prespecified (before accounting for the prognostic score). 676 
Experiment 2, by contrast, uses λ0 = λ1 = 0.9, which assumes that the correlation of the prognostic 677 
model to observed outcomes in the study population will be slightly smaller than the one estimated 678 
from historical data. 679 

Empirical Analyses Results 680 

Experiment 1. Pre-specified primary analysis of Phase 2 and 3 trials, to deliver higher 681 
power/confidence in the results compared to unadjusted analyses. 682 

Table 4 shows the results of three different approaches to estimating the treatment effect of DHA on 683 
the change in ADAS-Cog11 and CDR at 18 months: the unadjusted, difference-in-means analysis; 684 
PROCOVA™ while adjusting for prognostic score computed from the random forest; and PROCOVA™ 685 
while adjusting for prognostic score computed from the deep learning model. The data presented are 686 
point estimates and 95% confidence intervals for the estimated treatment effects. 687 

Table 4. Reanalysis of the Quinn et al. trial at 18 months using two different 688 
prognostic scores 689 

 Unadjusted analysis 
Analysis adjusting for 
random forest  
prognostic score 

Analysis adjusting for 
deep learning  
prognostic score 

ADAS-Cog11 -0.10 ± 2.03 -0.11 ± 1.96 0.28 ± 1.88 

CDR-SB -0.02 ± 0.66 -0.02 ± 0.66 -0.11 ± 0.64 

Concordant with the simulation studies, the standard errors for the effects obtained using prognostic 690 
covariate adjustment were smaller than or equal to those obtained using the unadjusted analysis. This 691 
led to narrower confidence intervals, which are still mathematically guaranteed to have the correct 692 
frequentist coverage.  693 

While the point estimates for the treatment effects were modified to some extent when prognostic 694 
score adjustment was applied, the changes were minimal relative to the size of the estimated standard 695 
errors. Adjusting for baseline covariates or a prognostic score does not add bias 12,37,38, even though 696 
the point estimates for individual endpoints may change. That is, differences in point estimates 697 
between adjusted and unadjusted analyses are random, and do not persist in expectation. The original 698 
analysis of this particular trial24 did not demonstrate statistically significant improvements on any of 699 
the endpoints of interest, and nor did any of our re-analyses.  700 
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Experiment 2. Prospective design/sample size estimation for Phase 2 and 3 trials, to attain the desired 701 
level of power/level of confidence with a smaller sample size compared to unadjusted trials. 702 

In designing a trial, one can set a desired statistical power for detecting a target treatment effect and 703 
then estimate the minimum number of subjects required to achieve that power. Using PROCOVA™ 704 
enables one to achieve a desired statistical power in a trial with fewer subjects. To demonstrate the 705 
efficiency gains associated with the use of PROCOVA™ during trial design, we performed a sample size 706 
re-estimation and re-analysis of the demonstration trial24 introduced earlier.  707 

Table 5 shows the minimum number of subjects required to achieve the desired power, estimated 708 
using an unadjusted analysis; using PROCOVA™ with a prognostic score computed from a random 709 
forest, and using PROCOVA™ with a prognostic score computed from a deep learning model. The Table 710 
also presents the point estimates and 95% confidence intervals for the estimated treatment effects on 711 
the two endpoints of interest. 712 

Table 5. Re-analysis of the Quinn et al. study using different sample sizes that account 713 
for the impact of the prognostic score  714 

 
Unadjusted 
analysis 

Analysis using adjustment 
for random forest 
prognostic score 

Analysis using adjustment 
for deep learning 
prognostic score 

Actively-treated 
Subjects 

238 217 206 

Placebo Subjects 164 144 137 

Total Subjects 402 361 343 

ADAS-Cog11 -0.10 ± 2.03 -0.14 ± 2.05 0.23 ± 2.04 

CDR-SB -0.02 ± 0.66 -0.02 ± 0.69 -0.11 ± 0.70 

Using the random forest prognostic score resulted in a 10% reduction in the total number of required 715 
subjects compared to the unadjusted analysis, while using the deep learning prognostic score resulted 716 
in a 15% reduction in the total number of required subjects compared to the unadjusted analysis. 717 
Despite the reduced sample sizes, the widths of the confidence intervals for the effect on ADAS-Cog11 718 
in the trial designs using PROCOVA™ are effectively the same.  719 

Both hypothetical trial designs using PROCOVA™ have confidence intervals for the treatment effect on 720 
CDR that are 6% larger than in the unadjusted analysis. That is because the sample sizes were 721 
estimated from the performance of the respective prognostic models on ADAS-Cog11, with the goal of 722 
detecting a given effect on ADAS-Cog11. If one desires to achieve a given level of statistical power on 723 
multiple endpoints, then the sample size estimation procedure should be repeated for each of these 724 
endpoints and the largest sample size should be used. In addition, such applications will require either 725 
multiple prognostic models (i.e., one for each endpoint, as in our random forest example) or a 726 
multivariate prognostic model (i.e., one model that predicts all endpoints, as in our deep learning 727 
model). 728 
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Conclusions 729 

In summary, our mathematical, simulation, and empirical results demonstrate that PROCOVA™ is a 730 
robust and efficient statistical methodology to leverage historical control arm data and predictive 731 
modeling (of any type).  Its application significantly decreases the uncertainty in treatment effect 732 
estimates without compromising strict type-I error rate control in the large sample setting in Phase 2 733 
and 3 trials.  We have shown that our methodology increases the efficiency of both the design and 734 
analysis of RCTs measuring continuous responses in prospective applications. 735 

Specifically, our mathematical results (Section 3.1.2) prove that PROCOVA™ improves over traditional 736 
ANCOVA methods that adjust for raw baseline covariates by constructing the optimal adjustment 737 
covariate – a prediction of a potential outcome under control conditions for all trial participants, 738 
conditioned on their observed baseline covariates.  Specifically, Theorem 1 proves that estimates of 739 
treatment effects with PROCOVA™ are unbiased, and that Type-1 error rates of hypothesis tests are 740 
controlled at pre-specified levels, while Theorem 2 proves that such prediction of the potential outcome 741 
is the optimal covariate to adjust for in the analysis. 742 

Our simulations (Section 3.2) show marked decreases in the mean-squared error of the estimated 743 
treatment effects associated with the use of PROCOVA™ alone or in combination with standard 744 
adjustment for baseline covariates, under four sets of conditions that model realistic situations 745 
encountered in clinical trials.  Our results also indicate that prognostic covariate adjustment is a robust 746 
method that performs well even if the treatment effect is not constant, and when the prognostic model 747 
only approximates the expected control potential outcome of a subject conditioned on his/her baseline 748 
covariates. 749 

And finally, our empirical results (Section 3.3) demonstrate that the prospective application of 750 
PROCOVA™ to Phase 2 and 3 RCTs (our stated context-of-use) significantly decreases variance in 751 
treatment effect estimates while maintaining type-I error rate control.  In pre-specified primary 752 
analysis (Experiment 1), the use of PROCOVA™ delivers higher power and confidence in the results 753 
compared to unadjusted analyses; specifically, the width of the confidence intervals is decreased by up 754 
to 8%. In prospective design/sample size estimation (Experiment 2), its application attains desired 755 
level of power/level of confidence with a smaller sample size compared to unadjusted trials; 756 
specifically, the minimum total sample size is decreased by up to 15%. These benefits are realized 757 
using different types of prognostic models, illustrating that PROCOVA™ is a robust statistical 758 
methodology that can be applied with any prognostic model. 759 

A number of recent technological developments, such as the development of large clinical databases, 760 
high dimensional biomarkers, and novel machine learning technologies, have led to substantial 761 
improvements in the ability to train highly accurate prognostic models. Using a simple rule of thumb, a 762 
prognostic model that obtains a correlation of 𝑅𝑅 with observed outcomes can be used with PROCOVA™ 763 
to decrease the variance of the estimated treatment effect by a factor of 1 − 𝑅𝑅2, approximately. For 764 
example, using a prognostic score with 𝑅𝑅 = 0.5 provides up to 25% decrease in variance, whereas using 765 
a prognostic score with 𝑅𝑅 = 0.8 provides up to 64% decrease in variance. Due to the recent 766 
technological developments, it is now feasible to train prognostic models that obtain correlations of this 767 
magnitude for a variety of continuous responses in multiple therapeutic areas. Therefore, using 768 
PROCOVA™ to adjust for these more predictive prognostic scores can substantially reduce variance and 769 
widths of confidence intervals, and/or increase power and reduce minimum required sample sizes. 770 

While the current application focuses on sample size and treatment effect estimation for RCTs with 771 
continuous variables under the requirement of strict type-I error rate control, ongoing and future work 772 
will develop PROCOVA™ applications to/in other areas including, but not limited to, RCTs with repeated 773 
measurements, binary or count outcomes, and time-to-event outcomes, as well Bayesian analogues 774 
that provide more statistical power while limiting the type-I error rate under reasonable conditions.  775 
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Questions on Statistical Properties of PROCOVA from the Applicant 776 

Question 1 777 

Does the EMA agree that PROCOVA™ produces unbiased treatment effect estimates and 778 
controls the type-I error rate, given that:  779 

a. PROCOVA™ is a special case of ANCOVA in which the covariate used for adjustment is a 780 
prognostic score, computed from data collected at or before baseline using a pre-781 
specified prognostic model; 782 

b. ANCOVA can decrease the variance of the estimated treatment effect if the adjustment 783 
covariate is correlated with the response;  784 

c. Using ANCOVA to adjust for a covariate produces unbiased treatment effect estimates 785 
and controls the type-I error rate, as long as the covariate is computed from data 786 
collected at or before baseline. 787 

Applicant’s position 788 

ANCOVA is known to possess several desirable statistical properties: with its use, estimated 789 
treatment effects will be unbiased, the type-I error rate will be controlled, and trial power will 790 
be increased if there is a correlation between the outcome and the adjustment covariate.  791 
Because of these statistical properties, ANCOVA is widely used in the analysis of clinical trials 792 
with continuous responses and is supported by guidance from EMA 13 and draft guidance from 793 
FDA 14. 794 

Our mathematical results (Section 3.1.2) demonstrate that PROCOVA™ is a special case of 795 
ANCOVA with a particular choice of adjustment covariate. As such, PROCOVA™ inherits the 796 
statistical properties of ANCOVA described above, and these statistical properties hold for 797 
PROCOVA™ when used in conjunction with any prognostic model, regardless of the approach 798 
to modeling or the data used to inform the model. 799 

Moreover, PROCOVA™ improves over traditional ANCOVA methods that adjust for raw baseline 800 
covariates by constructing the optimal adjustment covariate – a prediction of a potential 801 
outcome under control conditions for all trial participants, conditioned on their observed 802 
baseline covariates collected at or prior to the randomization. Theorem 1 proves that estimates 803 
of treatment effects with ANCOVA, and therefore PROCOVA™, are unbiased, and that type-1 804 
error rates of hypothesis tests are controlled at pre-specified levels, while Theorem 2 proves 805 
that such prediction of the potential outcome is the optimal covariate to adjust for in the 806 
analysis.  Detailed mathematical results are provided in Appendix 2 and Appendix 3. 807 

The type-1-error rate control is further illustrated by the results of our simulations described in 808 
Section 3.2.2 and Appendix 4. 809 

CHMP answer 810 

The Applicant proposes a method, PROCOVA, to perform estimation and statistical inference on the 811 
treatment effect in randomized controlled clinical trials. The methodology comprises three steps:  812 

Step 1: Training and evaluating a prognostic model to predict outcomes under the control 813 
condition (generate prognostic score). 814 

Step 2: Accounting for the prognostic score while estimating the sample size required for a 815 
prospective study. 816 
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Step 3: Estimating the treatment effect from the completed study using a linear model while 817 
adjusting for the control outcomes predicted by the prognostic model. 818 

The key idea is to first develop a prognostic score for the outcome based on a historical data set that is 819 
independent from the study data and then apply the prognostic score as covariate in an ANCOVA 820 
model for the actual data analysis. 821 

Following the Applicant’s arguments, modern methods of statistical learning, such as random forests or 822 
neural networks could allow for modeling the functional relationship between prognostic variables and 823 
the outcome with higher accuracy than e.g. a simple linear combination would provide. Hence, the 824 
approach would improve the efficiency of the analysis over other methods of adjustment by providing a 825 
prognostic score that is more strongly correlated with the outcome. 826 

The Applicant’s position that PROCOVA is a special case of ANCOVA and hence is an appropriate 827 
method for the analysis of randomized trials is agreed to with minor comments and proposals, which 828 
will be addressed below and in the answers to the specific questions. 829 

The following table summarises the differences between the conventional approach addressing 830 
prognostic factors and PROCOVA. 831 

 Standard approach PROCOVA 

Design Stage 

Most important prognostic factors 
are identified and considered in 
the study design (stratification) 

A prognostic model is developed 
and preferably validated (using 
“external” data set) 

It is unclear whether the 
prognostic score will be used for 
stratification 

 

Sample Size 
considerations 

Sample size is estimated based on 
α β, difference to be detected and 
variability based on historical 
studies 

The gain in efficiency including 
covariates may be incorporated 
(which is not often done in 
practice)  

 

Sensitivity of sample size 
estimates with respect to 
assumptions taken is evaluated 

 

Sample size is estimated based on 
α β, difference to be detected and 
variability, as well as ρ 
(correlation coefficient between 
prognostic index and outcome) 
based on historical studies 

 

Uncertainty in variability and 
prognostic ability is accounted for 
(using parameters λ and γ) 

Analysis 

 

Stratification factors (and possibly 
other variables) are included as 
covariates in the regression model 

A single prognostic index (and 
possibly other variables) are 
included as covariate(s) in the 
regression model 

 832 
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Overall, there are two major differences between the conventional approach and PROCOVA: 833 

- the method to evaluate the robustness of the sample size estimate, which will be addressed in the 834 
answer to Questions 3 and 5 835 

- the inclusion of a single covariate using fixed weights to combine important baseline covariates, 836 
which will be addressed in the answer to Questions 2 and 4. 837 

With regard to the answer to Question 1, CHMP would like to refer to the proposed context of use. The 838 
Applicant suggests that the approach represents a special case of analysis of covariance (ANCOVA) 839 
that can be performed in a large-sample setting using standard linear regression. It is claimed that it 840 
can use historical data to reduce the variance of the treatment response estimates better than other 841 
available approaches, potentially reducing the minimum sample size required to achieve the same level 842 
of confidence. The methodology is recommended for use in trials with continuous variables for which 843 
historical data in a similar patient population is available that allows building a prognostic model to 844 
predict control outcomes with sufficient accuracy using the measured baseline covariates for the 845 
subjects. The variables used by the prognostic model must be measured at baseline for subjects in the 846 
historical data set and the new clinical trial. 847 

Theorem 1 and corollaries 1.1 to 1.4 of the Mathematical Results section in the briefing document are 848 
acknowledged. These demonstrate analytically important properties of the PROCOVA method in a 849 
controlled parallel group clinical trial setting with equal randomisation to the groups. 850 

CHMP agrees that the proposed method is an application of an ANCOVA model in which a predefined 851 
prognostic score is used as covariate. Properties regarding bias and control of type I error rate will be 852 
those of usual ANCOVA models. I.e., in a randomized trial, treatment effect estimates will be 853 
asymptotically unbiased and finite sample bias will typically be negligible. The type I error rate is 854 
controlled asymptotically under the assumption of equal variances in both groups or equal group sizes. 855 
Indeed, in this setting the asymptotic variance of a covariate-adjusted treatment effect estimate is 856 
lower than the variance of an unadjusted estimate, if there is a non-zero correlation between the 857 
covariate and the outcome, hence adjusting for prognostic covariates is generally beneficial in terms of 858 
power. 859 

An important prerequisite for PROCOVA to inherit the properties of ANCOVA is that the definition of the 860 
prognostic score is independent of the study data, and this point is obviously acknowledged by the 861 
Applicant. 862 

For further considerations on the conditions defined in the question by the Applicant and the 863 
consequences for the proposed context of use (Questions 4 to 6), please see the answers of 864 
the following questions. 865 

Question 2 866 

Does the EMA agree that PROCOVA™ can decrease the variance of the estimated treatment 867 
effect, and that it achieves lower variance when the prognostic score is more highly 868 
correlated with the response? 869 

Applicant’s position 870 

Theorem 2 proves that a prognostic score, i.e., the prediction of a potential outcome under 871 
control conditions for all trial participants conditioned on their observed baseline covariates, is 872 
the optimal covariate to adjust for in ANCOVA. Theorem 2 is presented and further discussed in 873 
Section 3.1.2.2, Appendix 2 and Appendix 3.   874 

Our simulation results described in Section 3.2 and specifically in Table 1 and Table 2, as well as 875 
in Appendix 4, demonstrate that the higher the correlation between the prognostic score and the 876 
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observed control outcomes, the greater the reduction in the variance of treatment effect 877 
estimates.  This finding held when PROCOVA™ was applied alone (Table 1) or combined with 878 
adjustment for baseline covariates (Table 2). 879 

Additional evidence is provided by our empirical demonstration presented in Section 3.3, with further 880 
technical details included in Appendix 5, Appendix 6, and Appendix 7.  Specifically, the results in Table 881 
4 and Table 5 show that greater reductions in variance can be achieved when the prognostic score is 882 
more highly correlated with the observed outcome. 883 

CHMP answer 884 

The Applicant shows, under the assumption of a constant treatment effect across all covariate values 885 
and the assumption of equal variances of the outcome variable under treatment and control, that an 886 
ANCOVA model that is adjusted for the true functional relationship between covariates and outcome 887 
results in minimal variance of the treatment effect estimate among all models that are adjusted for a 888 
function of the same covariates. This is an intuitive, albeit relevant result. The sample size of the 889 
clinical trial must be large enough to ensure that the asymptotic variance is a reasonable estimate for 890 
the variance. Some additional, weaker assumptions commonly applied for statistical modelling are also 891 
needed (Schuler et al., arXiv:2012.09935v2 2021). Under these conditions, it can generally be agreed 892 
that the proposed prognostic covariate procedure can achieve a lower variance of the treatment effect 893 
estimate if the correlation of the prognostic score with the outcome of interest is higher. 894 

Extensive modelling (and model validation) to attain a prognostic index (linear or non-linear predictor 895 
of baseline variables) is a valuable exercise in general in order to predict the natural disease course (or 896 
the disease course under some standard therapy). The reduction of variance of treatment effect 897 
estimates due to adjustment for prognostic covariates is well established and will be achieved with the 898 
proposed method if the applied score is correlated with the outcome. 899 

The relevant difference between usual ANCOVA models and the proposed PROCOVA method is that the 900 
latter aims to use a prognostic score that is close to the true functional relationship between the 901 
included covariates and the outcome under the control condition. In contrast, ANCOVA usually is used 902 
with (a limited number of) linear predictors without interactions such that a linear approximation to the 903 
true functional relationship is applied. It is agreed that a model that resembles the true functional form 904 
more closely will likely produce a treatment effect estimate with lower variance.  905 

A drawback of PROCOVA, however, is that the prognostic score must be prespecified including a scale 906 
factor, and weights used within the score cannot be adjusted to possible differences between the 907 
training setting and the actual trial setting. In contrast, in a usual ANCOVA model the functional 908 
relationship is a linear approximation, but it is chosen optimal to the observed data among all linear 909 
approximations. There may be situations in which the optimal linear approximation may outperform 910 
the approximation by a function that is correct in principle, but has misspecified coefficient values.  911 

A particular situation where coefficient values may differ between training and trial data sets may arise 912 
if the distribution of an included variable is different in the training and the trial population and the 913 
prognostic score does not perfectly resemble the true relationship but is still an approximation. For 914 
illustration, consider the case of a true quadratic relationship and a linear approximation: The slope of 915 
the best linear approximation depends on the distribution of the covariate values across patients and 916 
even if the slope was completely known for a training population, it would not be the optimal choice in 917 
an analysis model for a different population with another distribution of the covariate where a model 918 
that estimates the required coefficient from the data may be more efficient. The impact of such 919 
distributional inhomogeneities that may occur in the practical application of PROCOVA should be 920 
investigated in advance (using simulation experiments). 921 
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The simulation studies performed to support the statement of Theorem 2 in four different scenarios 922 
with variations of the strict assumptions (outcome-covariate relationship linear, outcome-covariate 923 
relationship linear non-linear, conditional average treatment effect not constant, shifted trial 924 
population) are appreciated. They show that even if these assumptions are not strictly fulfilled, the 925 
mean squared errors with prognostic covariate adjustment were lower than without. This is 926 
acknowledged. 927 

The empirical application to existing data sets shows that the postulated decrease in variance can be 928 
attained in a realistic scenario with real data and is considered supportive for application of the 929 
proposed procedures. 930 

Of note, the prognostic score may be used together with further covariates as the Applicant explored in 931 
one of their simulation experiments. SAWP issued a second list of issues that addressed 932 
multicollinearity when implementing stratified randomisation in trials using individual baseline 933 
covariates and PROCOVA at the same time. The Applicant provided a written response to this second 934 
list of issues and an updated handbook to be used by trial statisticians when applying PROCOVA. When 935 
applying PROCOVA together with stratified randomisation, a linear model for primary analysis adjusting 936 
for the prognostic score and any additional pre-specified baseline covariate(s), provides an unbiased 937 
point estimate of the treatment effect in the overall trial population. However, this primary analysis 938 
model does not produce an unbiased estimate of a subgroup effect. The instructions for trial 939 
statisticians state that subgroup effects or treatment-by-subgroup interactions should not be evaluated 940 
using the same linear model that is used for primary analysis of the treatment effect, since applying 941 
this model may introduce multicollinearity and could impact the accuracy of subgroup-specific 942 
treatment effect estimates. It is emphasised by the Applicant that the prognostic score is not intended 943 
as a stratification factor. 944 

In addition, it is acknowledged that a prognostic score in PROCOVA may utilise a large number of 945 
covariates, if the training data set is sufficiently large, whereas with usual ANCOVA the number of 946 
covariates is limited to be much less than the number of included subjects.  947 

Question 3 948 

Does the EMA agree that applying adjustment for the prognostic score during sample size 949 
estimation can result in a smaller minimum sample size required to achieve the desired level 950 
of power? 951 

Applicant’s position 952 

We describe the relationship between variance and power in our mathematical results (Section 3.1.2, 953 
Appendix 2 and Appendix 3), as well as in our simulations (Section 3.2 and Appendix 4).  Our empirical 954 
application of PROCOVA™ (Section 3.3) shows that the use of PROCOVA™ allows to maintain power at 955 
lower sample sizes, as outlined in Section 3.3.2 and specifically in Table 5, as well as in Appendix 7. 956 

CHMP answer 957 

It can be agreed that applying adjustment for the PROCOVA prognostic score or a set of covariates for 958 
ANCOVA in general could lead to a smaller minimum sample size to achieve a desired level of power. 959 
As outlined by the Applicant, the minimum sample size is a function of the Pearson correlation 960 
coefficient between observations and predictions of the prognostic model. During sample size planning 961 
an investigator may take into account explained variation due to covariates, such as the prognostic 962 
score in PROCOVA, which will result in smaller sample size than assuming an unadjusted analysis or 963 
zero correlation between covariates and outcome. However, overly optimistic assumptions on the 964 
effect of covariates may result in too low sample sizes and inconclusive studies. It is noted that the 965 
Applicant recommends using a separate data set independent from the training data to estimate the 966 



 
DRAFT Qualification opinion for Prognostic Covariate Adjustment (PROCOVA™)   
 Page 26/33 
 

correlation coefficient and thus avoid overestimation of the correlation; this is supported. Please see 967 
the answer to Question 5 for further considerations and more detailed comments regarding sample size 968 
planning. 969 

Questions on the Context-of-Use 970 

Question 4 971 

Does the EMA agree that PROCOVA™ is an acceptable statistical method to estimate 972 
treatment effects in phase 2 and 3 clinical trials with continuous responses, given that: 973 

a. PROCOVA™ is a special case of ANCOVA; 974 

b. ANCOVA is an acceptable statistical method to estimate treatment effects in phase 2 and 975 
3 clinical trials with continuous responses under current regulatory guidance. 976 

Applicant’s position 977 

ANCOVA is known to possess several desirable statistical properties: with its use, estimated 978 
treatment effects will be unbiased, the type-I error rate will be controlled, and trial power will 979 
be increased if there is a correlation between the outcome and the adjustment covariate.  980 
Because of these statistical properties, ANCOVA is widely used in the analysis of clinical studies 981 
with continuous responses, including registration trials, and is supported by guidance from EMA 982 
13 and draft guidance from FDA 14.  This information is summarized in Section 3.1.1 (in 983 
particular, Step 3), Appendix 2 and Appendix 3.   984 

Our overview of PROCOVA™ (Section 3.1.1) and our mathematical results (Section 3.1.2) 985 
establish that PROCOVA™ is a special case of ANCOVA with a particular choice of adjustment 986 
covariate. As such, PROCOVA™ inherits the statistical properties of ANCOVA described above, 987 
and these statistical properties hold for PROCOVA™ when used in conjunction with any 988 
prognostic model, regardless of the approach to modeling or the data used to inform the 989 
model.  Therefore, PROCOVA™ is also acceptable and should be recommended for use to 990 
estimate treatment effects in pre-specified analyses of pivotal/registration trials. 991 

CHMP answer 992 

As outlined in the answer to question 1, CHMP agrees that the proposed method is a special case of 993 
ANCOVA. Therefore, similar to other ANCOVA models adjusted for a prognostic score, the proposed 994 
method will be acceptable to estimate the treatment effect and perform statistical inference on it in 995 
randomized trials. The proposed PROCOVA procedure can be considered an acceptable formal 996 
presentation of approaches that were used in clinical trial settings before when prognostic covariates 997 
were included in analysis models, e.g. by imaging based risk scores in oncology or covariate based risk 998 
scores in cardiovascular diseases. 999 

Regarding use of linear models for estimation, it is noted that from a regulatory perspective for a 1000 
primary estimand and analysis, application of a linear ANCOVA model with covariate adjustment would 1001 
be acceptable even if the linear model does not model the relationship between treatment, covariates 1002 
and outcomes correctly if an average treatment effect for a population-level summary is targeted. It is 1003 
though acknowledged that an improved modelling of the true relationship between treatment, (a larger 1004 
set of) covariates and outcome can be beneficial and can improve the precision of the estimator and 1005 
could potentially also allow better understanding of conditional treatment effects if relevant in a 1006 
particular disease setting. 1007 

The Applicant proposes to perform statistical inference on the treatment effect using large sample 1008 
normal approximations to the respective test statistic. While this approach is asymptotically valid, it 1009 
neglects the variability of the estimate for the residual variance nuisance parameter. It is therefore 1010 
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recommended to use t-distributions (which take into account this variability under the assumption of 1011 
normally distributed residuals) to avoid too liberal test decisions. This is particularly emphasized as the 1012 
sample a size may be small in phase II, and even phase III studies. The Applicant agreed during the 1013 
discussion meeting that using the t-distribution is a reasonable, conservative approach for trials with 1014 
smaller sample sizes. 1015 

The Applicant further proposes to use robust “sandwich” variance estimation in inferential procedures. 1016 
This is acceptable, however certain properties of the robust variance estimator need to be taken into 1017 
account: Using a bias-adjusted estimator is required as the small sample bias of the unadjusted robust 1018 
variance estimator may be considerable. The bias adjustment proposed by the Applicant is acceptable. 1019 
The robust estimator has larger variability than the model-based estimator. Hence it may not be 1020 
suitable with small sample sizes. In any case, hypothesis tests and confidence intervals should be 1021 
based on t-distributions as discussed above. In the discussion meeting, the Applicant pointed out that 1022 
there is no definite way for choosing the degrees of freedom for a reference t-distribution when using 1023 
robust variance estimation. This is acknowledged, however using an approximate number of degrees of 1024 
freedom is considered acceptable. E.g., the work by Lipsitz, Ebrahim and Parzen 1999 on a respective 1025 
Satterthwaite approximation may be considered (Lipsitz, S. R., Ibrahim, J. G., & Parzen, M. (1999). A 1026 
degrees-of-freedom approximation for a t-statistic with heterogeneous variance. Journal of the Royal 1027 
Statistical Society: Series D (The Statistician), 48(4), 495-506). 1028 

The following further specific concerns may need to be addressed in an actual application: 1029 

1) Since the prognostic score is trained under control conditions, it is possible that its correlation to the 1030 
outcome is larger under control than under treatment. This could result in unequal residual variance in 1031 
the two groups, which may lead to inflation of the type I error rate in trials with unequal group sizes. 1032 
The robust variance estimation as proposed by the Applicant is an acceptable remedy of this issue. 1033 

2) A score that includes complex transformations of the considered variables may be prone to result in 1034 
skewed distribution with some outliers, even if the included variables have unsuspicious distributions at 1035 
their original scale. Outliers in the prognostic score may turn out to be influential points in fitting the 1036 
analysis model, which may raise concerns regarding the robustness of results. It is recommended that 1037 
the PROCOVA analysis should be supported by appropriate model diagnostics to assess the robustness 1038 
of the analysis results with respect to deviations in single observations. 1039 

3) The Applicant claims that with recent methodological developments a prognostic score with 1040 
considerable correlation can be obtained for a variety of continuous responses in multiple therapeutic 1041 
areas. Correlation values around 0.4 are considered in the empirical examples and values up to 0.8 are 1042 
considered in the theoretical sections. Considering the conventional approach, a strong prognostic 1043 
index with a correlation of such a magnitude would usually be accounted for in the study planning, e.g. 1044 
using stratified randomisation. The Applicant clarified during the discussion meeting that the prognostic 1045 
score to be used in the PROCOVA analysis is not intended to be used for stratification. As the 1046 
prognostic score is derived from a potentially large set of variables, it is not considered practical to be 1047 
implemented in the randomization procedure. This aspect was further addressed in a second list of 1048 
issues,and the updated handbook developed by the Applicant instructs trial statisticians to consider (a 1049 
limited number of) the  strongest prognostic factors for stratified randomization   taking into account 1050 
that (some of) these candidate stratification factors could already be included in the prognostic score.  1051 

4) It is expected that data on all variables included in the prognostic score will be collected in the 1052 
randomised trial. Concerning incomplete data on covariates for prognostic score adjustment, there are 1053 
be several options and a missing data imputation scheme should be pre-specified. Missing data was 1054 
further addressed in the second list of issues. Additional instructions were provided for situations 1055 
where significant differences in data completeness exist between the new trial and the validation 1056 
dataset. The correlation coefficient R may be lower in a new trial if one or more important variables are 1057 
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expected to be missing frequently (or with a different pattern of missingness). While the prediction 1058 
model would be able to generate prognostic scores for all subjects, regardless of missing data, the 1059 
advantage of PROCOVA may be decreased. Generally, if the proportion of missing data is low and 1060 
imputation is considered, multiple imputation could be preferable and imputations should not depend 1061 
on data of post-baseline measurements in the target trial. It is acknowledged that baseline covariates 1062 
cannot be impacted by intercurrent events. 1063 

5) While it is understood that the prognostic score adjustment targets an average treatment effect for 1064 
a trial population, subgroup analysis based on covariates could be relevant for characterisation of the 1065 
treatment effect. This would be of particular relevance in case of (expected) differential treatment 1066 
effects. The Applicant provided further instructions on how such situations should be addressed at the 1067 
design and analysis stage when using PROCOVA. Please refer to the answer to Question 2. 1068 

Question 5 1069 

Does the EMA agree that it is acceptable to account for the adjustment of the prognostic 1070 
score using PROCOVA™ during sample size estimation for a phase 2 and 3 clinical trials with 1071 
continuous responses? 1072 

Applicant’s position 1073 

We have provided three lines of evidence demonstrating that the use of PROCOVA™ can reduce 1074 
variance of the treatment effect estimates: mathematical results (Section 3.1.2), simulations 1075 
(Section 3.2 and specifically Table 1 and Table 2) and empirical examples (Section 3.3 – 1076 
Experiment 2 and Table 4).   1077 

In addition, we have shown that the same power can be delivered with a smaller sample size and 1078 
lower variance (reduced via application of PROCOVA™), as with a larger sample size and higher 1079 
variance. This was established in our simulations described in Section 3.2 and in empirical 1080 
demonstration presented in Section 3.3 (see Experiment 2) and Table 5.  1081 

The technical details for our mathematical results are provided in Appendix 2 and Appendix 3; for our 1082 
simulations – in Appendix 4, for empirical demonstrations – in Appendix 5 and Appendix 6, and for 1083 
sample size estimation – in Appendix 7. 1084 

CHMP answer 1085 

As stated in the answer to Question 3, it is agreed that taking into account explained variation due to 1086 
covariates, such as the prognostic score in PROCOVA, results in reduced residual variance and hence 1087 
will result in smaller sample size than assuming an unadjusted analysis. 1088 

Nonetheless, for such a planning approach to be acceptable potential uncertainties in the assumption 1089 
on the variance explained by the prognostic score need to be taken into account. Overly optimistic 1090 
assumptions on the effect of covariates may result in too low sample sizes and inconclusive studies. 1091 
Most trials are planned conservatively without taking into account possible gains in power due to 1092 
adjusting for covariates and the actual power may then be larger than the planning assumption of, e.g. 1093 
80% or 90%. Also in usual sample size planning, different assumptions regarding the variance and 1094 
other relevant parameters are explored to assess the impact of deviations from the made assumptions 1095 
on the resulting power. 1096 

As a first step, an attainable advantage over using ANCOVA with single covariate adjustment should be 1097 
justified. The Applicant demonstrates that this should be the case if the prognostic score is able to 1098 
capture a nonlinear relationship between covariates and outcomes of interest. This is discussed in 1099 
Schuler et al. (Schuler et al., arXiv:2012.09935v2 2021), and there would be no gain in efficiency 1100 
when adjusting with a prognostic score assuming a linear relationship between covariates and 1101 
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outcome. During the discussion meeting, the Applicant further elaborated on the attainable advantage 1102 
of the PROCOVA procedure over ANCOVA with single covariates. The potential sample size reductions 1103 
using PROCOVA depend on the ratio of the correlation between a single baseline covariate (or a linear 1104 
combination of the covariates that would typically be considered in the analysis) and the outcome and 1105 
the correlation between the single prognostic (PROCOVA) score and the outcome. The gain in sample 1106 
size (or likewise in power or precision of the estimates) can then be evaluated (graphically) and should 1107 
also take the optimism due to prognostic model building into account. The relative pros and cons of 1108 
using PROCOVA or ANCOVA are compared to make a final determination to choose one of the three 1109 
paths: no adjustment, ANCOVA with one or more pre-specified covariates, or PROCOVA. This issue was 1110 
raised in a second list of issues and was addressed by the Applicant in a handbook for trial statisticians 1111 
guiding the application of PROCOVA. The handbook provides guidance to help the trial statistician 1112 
make an informed choice among the three paths with step-by-step instructions. 1113 

In the original procedure described by the Applicant, an inflation parameter (γ) for standard deviation 1114 
in the control arm, as well as a deflation parameter (λ) for prognostic correlation in both arms need to 1115 
be selected. The latter has been set to λ=0.9 in the analysis of the Alzheimer data set. A clear 1116 
rationale for that choice was not provided. In an actual application, it needs to be carefully considered 1117 
how λ and γ are chosen. Evaluation of the robustness of the sample size or power estimate with 1118 
respect to deviations from assumptions, as outlined above, seems generally more informative than 1119 
relying on the two modifying parameters. At the discussion meeting and in the written responses to 1120 
CHMP’s first list of issues, the Applicant outlined rules of thumb for the choice of the deflation factor λ 1121 
for the correlation coefficient. The choice is proposed to depend on the extent of model validation. The 1122 
value may be close to 1 if there was extensive validation using external data sets, it may be chosen 1123 
conservatively (e.g. λ=0.5) if the model was developed and validated on the same data set, or it may 1124 
be decided to not use PROCOVA at all. It was considered important by SAWP to provide the practitioner 1125 
with such rules of thumb but also to advise conduct of sensitivity analyses to prevent under-powered 1126 
trials. The updated handbook provides guidance for the choice of the deflation factor λ, and for the 1127 
conduct of sensitivity analyses taking into account a potential over-optimism of the prognostic model 1128 
and the fact that the correlation of the prognostic score with the outcome may be smaller under 1129 
experimental treatment. It should still be kept in mind that the approach using λ and γ may not cover 1130 
the range of all parameters relevant for assessing the robustness of the sample size and should not be 1131 
understood as prescriptive by sponsors to account for all uncertainties. 1132 

Establishing external validity of historical data was raised as an issue in the second list of issues and 1133 
the Applicant addressed this with the updated guidance documents. The handbook provides definitions 1134 
and instructions to validate the prognostic model. Instructions include recommendations to collaborate 1135 
with model developers to establish the external validity of historical validation data sets. Specific 1136 
comments are provided on how to match the validation dataset to the trial population, on how to 1137 
account for the potential changes in the SOC, and how to address different extent of missing data 1138 
between the validation dataset and the trial data. These instructions are acknowledged. Prognostic 1139 
model validation using a data set that is independent from the historical training data and from the 1140 
study data, as proposed by the Applicant, is certainly endorsed to avoid too optimistic estimates of the 1141 
correlation coefficient. However, the feasibility of this step may be limited by the availability of 1142 
additional validation data that have similar properties as the planned study data. 1143 

Moreover, it should be kept in mind that the sample size of a clinical trial should in most cases be 1144 
sufficient not only for the primary hypothesis test but also for providing a sufficiently large safety 1145 
database or, in some cases, to address more than one endpoint or the precision in important 1146 
subgroups (see Q4). 1147 

With regard to the scenarios addressed with the empirical application of PROCOVA provided with the 1148 
briefing document, these are considered to be of relevance and the results of Experiment 1 and 2 1149 
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support the application of the proposed procedures. It is noted that data from patients who dropped 1150 
out of the study were not included in the analysis (p. 21, briefing document). This would not be 1151 
acceptable for regulatory purposes. It is also noted that the empirical applications mention two 1152 
outcomes of interest (ADAS-Cog11 and CDR at 18 months). While the sample size in the example 1153 
cases was calculated for ADAS-Cog11, analyses for CDR are also reported. With respect to co-primary 1154 
endpoints, the Applicant states in Section 3.1.1 “If there are multiple outcomes of interest, such as co-1155 
primary endpoints, each with a desired power level and target effect size, then this procedure must be 1156 
repeated for each outcome, and the largest sample size should be selected.” This approach is not in 1157 
general appropriate as it may result in insufficient power to reject all co-primary endpoints 1158 
simultaneously. Instead, the conjunctive power should be the basis for sample size calculations with 1159 
co-primary endpoints. However, it is agreed that in case of multiple endpoints of interest using 1160 
multiple prognostic models or a multivariate prognostic model may be necessary. 1161 

The Applicant uses two-sided tests in the sample size and power calculations. Rejections due to 1162 
observed effects in both directions are counted as rejection of the null hypothesis. It is noted that from 1163 
a regulatory perspective, only one part of the comparisons may be relevant for study success. This 1164 
should usually be reflected in the hypothesis testing. With respect to considering the expected dropout 1165 
rate d, accounting for dropouts in sample size considerations as proposed by the Applicant using 1166 
nd=n/(1-d) is generally reasonable. However, typically all randomised subjects should be included in 1167 
the primary analysis and a strategy to address post-randomisation events affecting the outcome as 1168 
well as missing data handling should be taken into account. 1169 

In summary, the assumed reduction in residual variance due to a prognostic score may in principle be 1170 
taken into account to reduce sample size, if it can be ensured that the calculation is conservative with 1171 
respect to uncertainties in the assumptions made, and if the resulting sample size is large enough to 1172 
meet other relevant purposes apart from the primary hypothesis test. 1173 

Question 6 1174 

Does the EMA agree that PROCOVA™, combined with a predictive prognostic model and if 1175 
implemented as described, could enable increases in power and/or decreases in minimum 1176 
sample sizes in phase 2 or 3 clinical trials with continuous responses? 1177 

Applicant’s position 1178 

Our approach is designed to prospectively decrease the uncertainty, or variance, in treatment effect 1179 
estimates from RCTs without compromising strict type-1 error rate control in the large-sample setting.  1180 
We achieve this by combining curated historical control arm data, highly predictive modeling, and 1181 
covariate adjustment for the prognostic score generated through modeling. 1182 

Our mathematical results (Section 3.1.2, Appendix 2, and Appendix 3), simulations (Section 3.2 1183 
and specifically Table 1 and Table 2, as well as Appendix 4) and empirical examples (Section 3.3, 1184 
Appendix 5, Appendix 6, and Appendix 7) demonstrate that PROCOVA™ can reduce variance of 1185 
the treatment effect estimates in trials with continuous responses.   1186 

This reduction in variance can be leveraged either by increasing analytical power without 1187 
increasing the sample size (Section 3.3, Experiment 1), or by reducing the minimum required 1188 
sample size while maintaining the power (Section 3.3, Experiment 2).  The Sponsor can make 1189 
that choice depending on the circumstances of a particular trial but must prospectively pre-1190 
specify the application of PROCOVA™ prior to unblinding, to avoid bias. 1191 

In summary, our method is scientifically sound since it only adjusts for a single covariate (or 1192 
single additional covariate) derived from information collected at baseline/prior to randomization; 1193 
produces unbiased estimates for treatment effects; controls the type-I error rate; and leads to 1194 
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correct confidence interval coverage.  It is also consistent with current FDA and EMA regulatory 1195 
guidance. As such, PROCOVA™ can be used to prospectively increase the power or reduce the 1196 
minimum required sample size in studies that support drug approvals, i.e., pivotal/confirmatory 1197 
Phase 3, and occasionally Phase 2, clinical trials. 1198 

CHMP answer 1199 

In principle, CHMP agrees that implementing PROCOVA as prognostic score adjustment using a 1200 
prognostic model derived from independent data and the proposed procedures could enable increases 1201 
in power and/or decreases in sample size in phase 2 and 3 clinical trials with continuous outcomes. The 1202 
presented mathematical properties, simulation exercises and empirical application support this use. 1203 
Regarding choice of sample size, the answers to Questions 3 and 5 should be considered to safeguard 1204 
that the selected sample size is suitable for the trial objectives. 1205 

Regarding the mathematical properties of PROCOVA, as implemented the method can be regarded a 1206 
special case of ANCOVA sharing the properties of type I error control and asymptotically unbiased 1207 
estimates of the treatment effect with sufficiently large sample sizes. For the weaker assumptions the 1208 
Applicant uses the term ‘technical’ assumptions (Schuler et al., arXiv:2012.09935v2 2021), which may 1209 
be debated. However, it can be agreed that similar assumptions are required for a large variety of 1210 
parametric frequentist methods regularly applied and accepted from a regulatory perspective. 1211 
Therefore, the proposed prognostic covariate procedure is an acceptable statistical approach. 1212 

The potential advantages of the PROCOVA procedure and prognostic score adjustment more broadly, 1213 
depend on the availability of appropriate historical data and the derivation of a non-linear predictive 1214 
model that would allow outcome prediction in a future clinical trial. The number of covariates that can 1215 
be included in the modelling approach is determined by the size and quality of the historical dataset. 1216 
However, it is clear that type I error control, unbiased effect estimation and confidence interval 1217 
coverage are not dependent on the choice or performance of the prognostic model. It is noted that 1218 
prognostic score adjustment can be used together with adjustment using single covariates. The 1219 
consequence of using the prognostic score together with additional prognostic covariates (one or more) 1220 
needs to be carefully considered. The impact of the potential multicollinearity on the precision of the 1221 
estimated coefficients may outweigh the proposed advantage of using PROCOVA and should thus be 1222 
investigated in advance in order to inform the parameterisation to be used in the final primary analysis 1223 
model (as well as subgroup analyses). Using PROCOVA together with individual covariates for stratified 1224 
randomisation was addressed in a second list of issues. Subgroup analyses based on covariates 1225 
included in the prognostic score are addressed in an updated handbook for application of the PROCOVA 1226 
method (see also the answer to Question 2). This includes subgroup analysis for covariates that could 1227 
be predictive of treatment effect. If the treatment effect is expected to differ between subgroups due 1228 
to predictive biomarkers as covariate (in contrast to a prognostic covariate) and precision of the 1229 
treatment effect is especially important, additional power calculations are recommended to ensure 1230 
sufficient power for subgroup analysis. Additionally, the need for pre-specification of the prediction 1231 
model may be a disadvantage in case of only a low number of covariates relevant for outcome 1232 
prediction that could instead be included in an ANCOVA as single covariates with potential advantages 1233 
in interpretation of results. 1234 

Qualification opinion statement and conclusion 1235 

The Applicant proposes the PROCOVA method for estimation and statistical inference on the treatment 1236 
effect in randomized controlled clinical trials measuring continuous outcomes. The procedure involves 1237 
developing a prognostic score for the outcome under control based on a historical data set that is 1238 
independent from the study data and then applying the prognostic score as covariate in an ANCOVA 1239 
model for the actual data analysis of a clinical trial.  1240 
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The methodology comprises three steps:  1241 

Step 1: Training and evaluating a prognostic model to predict outcomes under the control 1242 
condition (generate prognostic score). 1243 

Step 2: Accounting for the prognostic score while estimating the sample size required for a 1244 
prospective study. 1245 

Step 3: Estimating the treatment effect from the completed study using a linear model while 1246 
adjusting for the control outcomes predicted by the prognostic model. 1247 

CHMP qualifies PROCOVA as prognostic score adjustment and the proposed procedures as described in 1248 
a handbook for trial statisticians could enable increases in power or precision of treatment effect 1249 
estimates in phase 2 and 3 clinical trials with continuous outcomes. The presented mathematical 1250 
properties, simulation exercises and empirical application support this use. The assumed reduction in 1251 
residual variance due to a prognostic score may in principle be taken into account to reduce sample 1252 
size, if it can be ensured that the calculation is considering uncertainties in the assumptions made, and 1253 
if the resulting sample size is large enough to meet other relevant purposes of the clinical trial apart 1254 
from the primary hypothesis test and treatment effect estimation. 1255 

Regarding the mathematical properties of PROCOVA, as implemented the method can be regarded a 1256 
special case of ANCOVA sharing the properties of type I error control and asymptotically unbiased 1257 
estimates of the treatment effect with sufficiently large sample sizes. The method uses a number of 1258 
assumptions that are similar to those required by a large variety of parametric frequentist methods 1259 
that are regularly applied and accepted from a regulatory perspective. Therefore, the proposed 1260 
prognostic covariate procedure is an acceptable statistical approach for primary analysis of clinical 1261 
trials. 1262 

An attainable advantage over using ANCOVA with single covariate adjustment should be justified to 1263 
support application of the PROCOVA method. The Applicant demonstrates that this should be the case 1264 
if the prognostic score is able to capture a nonlinear relationship between covariates and outcomes of 1265 
interest. The potential sample size reductions using PROCOVA depend on the ratio of the correlation 1266 
between a single baseline covariate (or a linear combination of the covariates that would typically be 1267 
considered in the analysis) and the outcome and the correlation between the single prognostic 1268 
(PROCOVA) score and the outcome. The gain in sample size (or likewise in power or precision of the 1269 
treatment effect estimates) should be evaluated at the stage of planning a trial, also taking the 1270 
optimism due to prognostic model building into account. The relative pros and cons of using PROCOVA 1271 
or ANCOVA should be compared to make a final determination to choose one of the three paths: no 1272 
adjustment, ANCOVA with one or more pre-specified covariates, or PROCOVA. The PROCOVA handbook 1273 
provides step-by-step instructions for the trial statistician to make an informed choice among these 1274 
three paths. 1275 

The potential advantages of the PROCOVA procedure and prognostic score adjustment in general 1276 
depend on the availability of appropriate historical data and the derivation of a prediction model that 1277 
would allow outcome prediction in a future clinical trial. The number of covariates that can be included 1278 
in the modelling approach is determined by the size and quality of the historical dataset(s). 1279 
Establishing external validity of historical data is of paramount importance when applying a prediction 1280 
model in a future clinical trial. Type I error control, unbiased effect estimation and confidence interval 1281 
coverage are not dependent on the choice or performance of the prognostic model. PROCOVA can be 1282 
used together with adjustment using single covariates and stratified randomisation, but the 1283 
consequence of using the prognostic score together with additional prognostic covariates (one or more) 1284 
needs to be carefully considered. Where such single covariates and/or stratification factors are already 1285 
included in the prognostic score, the impact of the potential multicollinearity on the precision of the 1286 
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estimated coefficients may outweigh the proposed advantage. Recommendations given in the 1287 
handbook for trial statisticians on subgroup analysis should be followed. CHMP notes that impact of 1288 
multicollinearity when applying PROCOVA is not fully understood and additional research is desirable. 1289 
In addition to the recommendations in the handbook for use of PROCOVA for a case that involves 1290 
adjusting for additional covariates, including stratification factors for trials with stratified 1291 
randomization, an alternative option to exclude these additional covariates from the prognostic score 1292 
model may be explored before application. 1293 

CHMP cannot qualify a formalised procedure for prediction model development as part of the PROCOVA 1294 
method. Only specific settings were explored and it cannot be foreseen if successful outcome prediction 1295 
will be possible for the proposed very general context of use. There may be disease conditions for 1296 
which prediction of endpoints selected for clinical trials is not possible with a desired precision or was 1297 
not successful in previous settings. Outcomes from historical data may not allow prediction of control 1298 
arm outcomes of future trials in case of changes in the therapeutic landscape. In addition, CHMP 1299 
cannot issue a statement about the precision of prediction models in general and if these models would 1300 
allow meaningful improvement in power or reductions in sample size. However, it is noted that 1301 
prediction models could help understanding disease characteristics or even mechanistic properties. 1302 

The chosen approach to prediction model development is according to the Applicant explicitly out of 1303 
scope of this qualification procedure. There are advances in statistical ‘learning’ methods, the ability to 1304 
handle high-dimensional data and progress with e.g. machine learning or deep learning methods. 1305 
However, derivation of a prediction model would require careful work by sponsors or independent 1306 
groups with access to appropriate data sets. Sponsors should be aware of the risk of overfitting when 1307 
using more complex predictive modelling approaches, including machine learning and artificial 1308 
intelligence methodology. Therefore, assessment of correlation between observations and outcomes 1309 
with data independent of training data would be of importance to avoid too optimistic estimates of this 1310 
correlation. The updated handbook provides guidance for the choice of a deflation factor λ, and for the 1311 
conduct of sensitivity analyses taking into account a potential over-optimism of the prognostic model 1312 
and the fact that the correlation of the prognostic score with the outcome may be smaller in a future 1313 
trial including experimental treatment. 1314 

In simulations performed by the Applicant, potential differences between the historical population used 1315 
to derive the prognostic model and the trial population were addressed with simulations using a 1316 
‘shifted population’. While this is acknowledged, the robustness of the planned PROCOVA approach 1317 
with regard to availability of covariates in historical and future data, data quality with regard to 1318 
misspecification or measurement error and missing or incomplete covariates need to be carefully 1319 
assessed.  1320 

Approaches with non-linear models for analysis and direct comparisons to such models, as well as 1321 
models with treatment-by-covariate interactions are out of scope of this qualification procedure. 1322 

 
i All annexes mentioned under the Applicant’s position refer to the documentation submitted with the request. 
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