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           August 23rd, 2018 

Qualification procedure: EMEA/H/SAB/090/1/2018 
 

Responses to the           
Additional Clarification Questions received on  
July 23rd, 2018 via email  

Introduction 
This preliminary response document addresses the questions raised by the Scientific Advice Working Party 

(SAWP) on July 23rd 2018 in the context of the Qualification procedure EMEA/H/SAB/090/1/2018 for the 

qualification opinion on “Clinically interpretable treatment effect measures based on recurrent event endpoints 

that allow for efficient statistical analyses”. 

Please note that whenever we refer to the original request document we mean the document submitted on 1st 

February 2018. 

The consortium members appreciate the opportunity to further clarify its intended qualification opinion 

request. As emphasized in the original request document and during the discussion meeting on July 10th, 2018 

our aim is not to recommend one specific estimand. The suitability of Estimands 1 and 2 as well as alternative 

estimand choices will strongly depend on the specifics of the drug and therapeutic area of interest. In 

particular, the problem of constructing suitable estimands in chronic diseases where patients may die for 

disease-related reasons remains fundamentally difficult and the qualification opinion request is not meant to 

provide the final solution but rather to substantiate the claim that interpretable treatment effect measures 

based on recurrent event endpoints can be defined that may be more suitable (clinically and statistically) than 

traditional treatment effect measures based on the first composite event only. Once an appropriate estimand 

has been chosen, an analytical approach (main estimator and sensitivity analyses) has to be selected targeting 

this estimand. 

The following abbreviations are used in this document in line with the original request document:  

 CV   cardiovascular; 

 CVD  cardiovascular death; 

 HHF   hospitalizations for heart failure; 

 𝐻𝑅𝐶𝑉  hazard ratio for CV death; 

 𝑅𝑅𝐻𝐻𝐹   rate ratio for recurrent HHF. 
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Response:   

We first would like to clarify that the calculations presented on slide 29 of the presentation dated 10th July, 

2018 do not refer to estimates of Estimand 1, rather they represent the calculations of the true value of 

Estimand 1 in the entire patient population of interest (i.e. millions of patients).  

Furthermore, in the question a reference is made to ‘unbiased estimates’ but it is not clear to us which 

estimand this statement is referring to. 

In part b) of the question, Estimand 1 and Estimand 2 are mentioned as well as the issue that the treatment 

effect on HHR is impacted by the treatment effect on CV death. Since Estimand 2 is a composite endpoint we 

want to highlight that for Estimand 2 there is no issue if its value is affected by the treatment effect on CVD. As 

discussed during the discussion meeting on July 10th, 2018 there would be concerns for estimands which favor 

a treatment with a worse effect on CVD. For Estimand 2 it has been shown that this is not the case across a 

range of realistic scenarios.        

The two different event rate evaluations (dividing total number of events by total time versus averaging 

individual rates in the entire patient population of interest) result in two different estimand definitions. Both 

differ in their clinical interpretation and in the availability of established statistical methods that provide 

estimators of the particular estimand across a range of plausible scenarios. We refer to the clinical 

interpretation in our answer to question a) and to the availability of estimators in our answer to question b). 

a) Please discuss the reasons why the chosen approach to calculating the HHR was selected. 

To enhance transparency we introduce names for the two rates. Henceforth, we will use 

 Exposure-weighted rate for the rate employed for Estimand 1 as presented on slide 29 of the 

presentation dated 10th July, 2018 and 

Question 1:  

It is noted from slide 29 of the presentation dated 10th July that estimates of estimand 1, the HHF rate 

while alive, are calculated for each treatment group by dividing the total number of HHF events for patients 

in that group and dividing that by the total time until death/study end for patients on that group. This 

would seem to provide an unbiased estimate only under assumptions that are unlikely to be valid in reality 

and are not valid in the simulations provide, namely that death is independent of HHR. An analysis based 

on first deriving the HHR for each patient and then calculating from this the average HHR for each 

treatment group would seem to provide unbiased estimates under less stringent assumptions. 

a) Please discuss the reasons why the chosen approach to calculating the HHR was selected. 

b) Please repeat the simulations looking at the performance characteristics of recurrent event 

analysis methods using estimates of estimand 1 and 2 calculated on a per patient basis, and discuss 

whether this reduces the issue of the estimated treatment effect on HHR being impacted by the 

treatment effect on CVD. 
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 Equal-weighted rate for the rate which is based on first deriving the heart failure hospitalization rate 

for each patient and then calculating from this the average rate for each treatment group. 

Note that these rates form the basis for the summary measures which are used in the corresponding estimand 

definitions. 

In the following we will provide 

 a precise definition of the different rates;  

 a discussion of the clinical interpretability of the rates. 

 

Definition of the rates:  

For the purpose of clarity, we consider only one intercurrent event: disease-related death, i.e. CVD. The 

population of interest is well-defined through some inclusion/exclusion criteria and the variable of interest is 

the number of hospitalizations for heart failure (HHFs) while the patient is alive.   

For patient 𝑖 from the entire population of interest with size 𝑚 let    

 𝑵𝒊 = number of HHFs by time of CVD or end of study; 

 𝑻𝒊 = time that patient 𝑖 is in the study and alive, i.e. time of CVD or end of study (say 3 years);  

 𝑹𝒊 = 𝑵𝒊 𝑻𝒊⁄ = individual rate while alive, i.e. number of HHFs divided by the time that the patient is 

in the study and alive. 

For a population of size 𝑚 = 4 (rather than millions of patients) this set-up is illustrated through toy example 

A, see Figure 1.                        

              

Figure 1 Toy Example A: Schematic illustration of the HHF and CVD experience of 4 patients.   
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The exposure-weighted rate can then be derived by dividing the total number of HHFs events by the total 

time until CVD or end of study: 
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As implied through the name ‘exposure-weighted rate’, the individual rate for subject 𝑖 is weighted by a term 

that depends on the exposure 𝑻𝒊. 

Note that the last equation can also be rewritten as follows 
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i.e. a patient with exposure 𝑻𝒊 equal to the average exposure �̅� = ∑ 𝑻𝒊
𝒎
𝒊=𝟏 /𝒎 has weight 1, and a patient with 

longer/shorter exposure will have a weight larger/smaller than 1.  

In contrast, the equal-weighted rate is derived by averaging the individual rates while alive, i.e.   

𝔼 (
𝑵

𝑻
) =

𝟏

𝒎
∑

𝑵𝒊

𝑻𝒊
𝒊=𝟏

                               

=
𝟏

𝒎
∑ 𝑹𝒊.                                                    (Equation 2)

𝒎

𝒊=𝟏

 

For the equal-weighted rate, the individual rates while alive all receive the same weight 1.  

For toy example A, the average exposure is (3 + 3 + 1.5 + 0.5)/4 =  2, and we obtain  

 exposure-weighted rate: 
1

4
(

3

2
× 0 +

3

2
×

1

3
+

1.5

2
× 2 +

0.5

2
× 0) =  

4
4⁄

8
4⁄

=  0.5; 

 equal-weighted rate: 
1

4
(0 +

1

3
+ 2 + 0) ≈ 0.58 .  

Remarks: 

 𝑚 is the size of the entire population of interest and not the number of patients in the study.  

 The two rates will coincide if  𝑻𝒊 (time of death or end of study) or the individual rates 𝑹𝒊 are the same 

for all patients. They will differ more the larger the variability in the individual rates while alive is. 
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 The rates above are defined for one treatment arm. Treatment comparisons can be based on ratios or 

differences of the treatment-specific rates. In the original request document we have generally 

focused on ratios. 

 

Clinical interpretability of the rates:  

For a given study of a certain length the two different rates can be interpreted as follows:  

 Exposure-weighted rate: the average number of HHFs patients suffer over the length of the study or 

until death - whatever comes first - relative to how long patients can expect to live over the course of 

the study.   

 Equal-weighted rate: the average number of HHF a patient can expect per study year s/he is alive 

[regardless of whether the patient will live for long or short]. 

The interpretation is further illustrated through the following toy example B. Assume the whole population of 

interest consists of only 𝑚 = 2 patients and we run a study for 3 years, i.e. 156 weeks. The patient 

experiences are as follows:  

 Patient 1 experiences 𝑵𝟏 = 𝟐 HHFs and dies after two weeks (𝑻𝟏 =
𝟐

𝟓𝟐
 year), i.e. the individual rate 

while alive for Patient 1 is  
𝟐 𝑯𝑯𝑭
𝟐

𝟓𝟐
 year 

 which corresponds to one event per week alive and an individual 

annualized rate while alive of 𝑹𝟏 = 𝟓𝟐.    

 Patient 2 experiences 𝑵𝟐 = 𝟒 HHFs and dies after 2 years, i.e. 𝑻𝟐 =
𝟏𝟎𝟒

𝟓𝟐
 years. The individual rate 

while alive for Patient 2 is  
𝟒 𝑯𝑯𝑭

𝟏𝟎𝟒

𝟓𝟐
 years

 which corresponds to an individual annualized rate while alive of 

𝑹𝟐 = 𝟐.   

The exposure-weighted annualized rate is 

 

𝑵𝟏 + 𝑵𝟐
𝟐

𝑻𝟏 + 𝑻𝟐
𝟐

=

𝟐 + 𝟒
𝟐

𝟐
𝟓𝟐

+
𝟏𝟎𝟒
𝟓𝟐

𝟐

=

𝟔
𝟐

𝟏𝟎𝟔
𝟓𝟐
𝟐

=
𝟑

𝟓𝟑
𝟓𝟐

≈ 𝟐. 𝟗𝟒 

i.e. a patient can expect to suffer 3 events relative to the expected survival time of 53 weeks (=53/52=1.02 

years). Equivalently, the exposure-weighted annualized rate can also be expressed as  

𝟏

𝟐
(

𝑻𝟏

𝑻𝟏 + 𝑻𝟐
𝟐

 ×  𝑹𝟏 +
𝑻𝟐

𝑻𝟏 + 𝑻𝟐
𝟐

 × 𝑹𝟐) =
𝟏

𝟐
(

𝟐

𝟓𝟑
× 𝟓𝟐 +

𝟏𝟎𝟒

𝟓𝟑
× 𝟐) ≈ 𝟐. 𝟗𝟒 

which highlights the different weights that are assigned relative to the length of the follow-up time. 
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In contrast, the equal-weighted annualized rate is 

𝑹𝟏 + 𝑹𝟐

𝟐
=

𝟓𝟐 + 𝟐

𝟐
= 𝟐𝟕 

i.e. a patient can expect to be hospitalized 27 times per calendar year s/he is alive.    

In summary, the exposure-weighted and equal-weighted annualized rates lead to very different answers for 

toy example B, which have to be interpreted with considerable care.  

In a third toy example C, we consider a population of 𝑚 = 3000 patients and we run a study over 3 years.  

 Patient 1 – Patient 2990 experience no HHF and do not die within the study period of 3 years, i.e. 

𝑵𝒊 = 𝟎 HHFs and 𝑻𝒊 = 𝟑 years for 𝑖 ∈  {1, … , 2990} i.e. the individual annualized rate while alive 𝑹𝒊 

for Patient 1 to Patient 2990 is 𝟎.    

 Patient 2991 – Patient 3000 experience 𝑵𝒋 = 𝟏 HHFs and die after one day (𝑻𝒋 =
𝟏

𝟑𝟔𝟒
 year1) for 

𝑗 ∈ {2991, … , 3000}, i.e. the individual rate while alive for these patients is 
𝟏 𝑯𝑯𝑭
𝟏 

𝟑𝟔𝟒
 𝒚𝒆𝒂𝒓

 which corresponds 

to one event per day alive and an individual annualized rate while alive of 𝑹𝒋 = 𝟑𝟔𝟒.    

The exposure-weighted annualized rate is 

 

𝑵𝟏 + ⋯ + 𝑵𝟑𝟎𝟎𝟎
𝟑𝟎𝟎𝟎

𝑻𝟏 + ⋯ + 𝑻𝟑𝟎𝟎𝟎
𝟑𝟎𝟎𝟎

=

𝟐𝟗𝟗𝟎 × 𝟎 + 𝟏𝟎 × 𝟏
𝟑𝟎𝟎𝟎

𝟐𝟗𝟗𝟎 ×
𝟏𝟓𝟔
𝟓𝟐

+ 𝟏𝟎 ×
𝟏

𝟕⁄

𝟓𝟐
𝟑𝟎𝟎𝟎

≈
𝟎. 𝟎𝟎𝟑

𝟐. 𝟗𝟗
≈ 𝟎. 𝟎𝟎𝟏 

i.e. a patient can expect to suffer 0.003 events relative to the expected survival time of 2.99 years. 

In contrast, the equal-weighted annualized rate is 

𝑹𝟏 + ⋯ + 𝑹𝟑𝟎𝟎𝟎

𝟑𝟎𝟎𝟎
=

𝟐𝟗𝟗𝟎 × 𝟎 + 𝟏𝟎 × 𝟑𝟔𝟒

𝟑𝟎𝟎𝟎
≈ 𝟏. 𝟐𝟏 

i.e. a patient can expect to be hospitalized 1.21 times per calendar year s/he is alive.    

Arguably, the toy examples B and C are based on somewhat extreme scenarios. However, they illustrate that 

the distribution of the individual rates while alive (i.e. 𝑹𝒊) can be highly skewed leading to considerable 

differences between the exposure-weighted and equal-weighted rates. This skewness is caused by a few 

patients that suffer HHFs early and die early. While the weights for the patients are equal, a few such patients 

will have a big influence on the equal-weighted rate. The proportion of such patients will generally be larger 

when considering the number of bad events, i.e. the composite for HHFs and CVD, as every patient that dies 

early will have a relatively large individual rate while alive (i.e. 𝑹𝒊).  

It is therefore questionable that an average of the individual rates (i.e. the equal-weighted rate) forms the 

basis for a meaningful and interpretable summary measure and ultimately estimand. There are at least two 

additional reasons in support of this statement:  

                                                           
1
 We consider a year to have 52 weeks and therefore 7×52=364 days. 
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 For the considered application of heart failure trials most patients (about 60-80% in previous trials) do 

not experience any bad event. The individual rates for all these patients are 0, regardless of their 

length of follow-up. Thus, important information on follow-up times is disregarded. 

 The fact that patients with relatively short follow-up times can have a relatively large influence 

suggests that the equal-weighted rate can also be highly sensitive to time-changing rates.  For 

example, if the event rate is high early in the trial, this early high rate would have a large influence on 

the estimand value through these patients. 

As illustrated through the toy examples, the exposure-weighted rate appears to have a meaningful and 

transparent interpretation. It is not highly influenced through patients with short follow-up times and it 

captures relevant information on follow-up times for all patients. None of these points can be made in favour 

of the equal-weighted rate. These considerations provide the reason for our preference of exposure-weighted 

rates over equal-weighted rates, and why we used the exposure-weighted rate in the original request 

document.    

 

b) Please repeat the simulations looking at the performance characteristics of recurrent event analysis 

methods using estimates of estimand 1 and 2 calculated on a per patient basis, and discuss whether this 

reduces the issue of the estimated treatment effect on HHR being impacted by the treatment effect on 

CVD. 

The simulations presented in the original request document focused on various estimators that are well-

established in the literature. One of the aims of the simulation study was to investigate whether these 

estimators target the estimands of interest across a range of plausible scenarios.  

To our knowledge neither estimators nor statistical tests for estimands based on equal-weighted rates are 

discussed in the scientific literature. In a simulation we investigate whether the equal-weighted rate based 

estimand is targeted by any of the established statistical methods which were investigated in the original 

request document. Results for a selection of scenarios are shown in Table A and reveal that none of the 

established approaches targets the equal-weighted rate based estimand. In contrast, the results provide 

reassurance that LWYY, see Appendix A.2.3.1 in the original request document, targets the exposure-weighted 

rate based estimand for all considered scenarios. Note that the true estimand values were derived based on 

approximate calculations for a population of size 𝑚 = 100.000.  Focusing on the true estimand values, we 

notice the large values for the equal-weighted rate based composite estimand of HHF and CVD which are 

caused by patients that die relatively early. These conclusions also apply to all additional scenarios considered 

in the original request document.2   

While no established estimator is readily available for the equal-weighted rate based estimand one could in 

principle use a plug-in estimator, i.e. non-parametric estimates for 𝑹𝒊 are plugged into the formula that is used 

for the estimand derivation, see Equation (2). Associated confidence intervals and hypothesis tests could then 

be based on bootstrap approaches and permutation tests, respectively. To get a glimpse into the operating 

characteristics of such an estimator we performed an additional simulation where we investigate the 

variability of the plug-in estimators for both the exposure-weighted and equal-weighted rate based estimands. 

                                                           
2
 Tables summarizing the findings for the additional scenarios are omitted but can be shared in case of interest. 
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Table A: Terminal event case: True estimand values for four scenarios, as well as the treatment effect estimates based on 

five established approaches. Simulated data for 100.000 patients are generated with 𝑅𝑅𝐻𝐻𝐹 = 0.7, 𝐻𝑅𝐶𝑉 =

0.8; 1.0; 1.25.     

       
*In the original request document, this estimand was called Estimand 1 (HHF) and Estimand 2 (HHF+CVD), respectively. 

We focus on the same scenarios as presented for Table A and a sample size of 4350. For the exposure-

weighted rate based estimand the plug-in estimator is derived by plugging non-parametric estimates for 𝔼(𝑁) 

and 𝔼(𝑇) into Equation (1). The resulting rate ratio estimates are presented in Table B. In order to appreciate 

the variability of the plug-in estimators we report the standard deviation (SD) based on the 1000 clinical trial 

simulations as well as the minimum (min) and maximum (max) estimates. 

Table B: Terminal event case: Treatment effect estimates (i.e. rate ratios) based on the plug-in estimators for the 

exposure-weighted and equal-weighted rate based estimands. Results are based on 1000 simulations, sample 

size 𝑁 =  4350, 𝑅𝑅𝐻𝐻𝐹 = 0.7, 𝐻𝑅𝐶𝑉 = 0.8; 1.0; 1.25.     

  
*In the original request document, this estimand was called Estimand 1 (HHF) and Estimand 2 (HHF+CVD), respectively. 
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The following observations can be made: 

 When focusing on HHF only, the SD for the equal-weighted rate based plug-in estimator is increased 

by a factor of 1.5 to 2.1 compared to the SD for the exposure-weighted rate based plug-in estimator. 

This implies that the sample size needed to show the same effect size based on the equal-weighted 

rate based estimand also increases by a factor of 2.25 to 4.41 compared to that needed based on an 

exposure-weighted rate based estimand.    

 The increase in SD is more dramatic in case of the composite of bad events, i.e. HHF+CVD.   

 When focusing on HHF only, the estimated rate ratios based on the equal-weighted rate based 

estimators are relatively stable across different treatment effects on CVD. In contrast, the estimated 

rate ratios based on the exposure-weighted rate based estimators are more sensitive to changes in 

the treatment effect on CVD. More specifically, the treatment effect on the rate ratio gets larger 

with worse effects on CVD, see also the discussion during the Meeting on July 10th, 2018.  

 For the composite of HHF+ CVD, the plug-in estimators for the equal-weighted rate based estimand 

are highly influenced by the skewed distribution of the individual rates while alive. In our 

simulations we observed estimated rate ratios as large as 2372 bad events per calendar year alive.   

The performed simulations highlight that  

 none of the established approaches targets the equal-weighted rate based estimand; 

 the plug-in estimator for the equal-weighted rate based estimand has a substantially larger variability 

than that for the exposure-weighted counterpart.  

Taking these findings together with the lack of a transparent and meaningful interpretation of the equal-

weighted rate as expressed in the response to Question 1a) further supports our preference for the exposure-

weighted rate based estimand. 
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Response:  

Our response will focus on the comparison of sample size and power between time-to-first-event analysis and 

recurrent event analysis for the chronic heart failure scenario. Time-to-first-event analysis has been commonly 

used as primary analysis method for the composite event of heart failure hospitalization (HHF) and 

cardiovascular death (CVD). Thus for the comparison of time-to-first-event analysis and recurrent event 

analysis, our response will focus on Estimand 2, i.e. the exposure-weighted rate based estimand for the 

composite of a recurrent HHF and CVD. We are not performing a comparison of power and sample size for 

methods estimating Estimand 1, i.e. exposure-weighted rate based estimand for HHF, because Estimand 1 is 

considered only appropriate in cases with negligible death rates or where it can be reasonably assumed that 

there is no treatment effect on the terminal event. 

We will address this question in two parts. Firstly, we compare the sample size and the power of recurrent 

event analyses with a time–to-first-event analysis based on the base case scenarios with non-informative 

treatment discontinuation, which we described in Section 5.2.1 of the original request document. Secondly, 

power and sample size of the different methods are compared based on data from the Val-HeFT study (Cohn 

et al., 2001) since the Val-HeFT study was also considered in Section 4.2 of the original request document. 

Sample size comparison for the base case scenario  

For the first part, the sample size required to achieve 80 % and 90 % power, respectively, for a time-to-first-

event analysis (Cox regression) and two recurrent event methods (negative binomial (NB) model, see 

Appendix A.2.2.4 in original request document,  and LWYY model) are discussed based on the base case 

scenario. Different treatment effects on recurrent HHF (RRHHF) and on CVD (HRCV) are considered, assuming 

that the treatment effect on CVD was neutral or positive (i.e. 𝐻𝑅𝐶𝑉 ≤  1), and also equal or smaller (i.e. closer 

to 1) than the treatment effect on heart failure hospitalizations. These are reasonable planning assumptions 

based on the effects observed in previous heart failure trials.3 We do not consider scenarios involving 

detrimental effects on CVD, i.e.   𝐻𝑅𝐶𝑉 > 1, since a trial would not be conducted if there was good reason to 

assume a detrimental CVD effect. Furthermore, the results based on non-informative and informative 

treatment discontinuations are very similar. We thus only present the former results.  

The required sample size is computed based on the simulation model that was also used for the original 

request document, see Section E.2. The power is simulated on a grid of sample size values (N=2000 to N=6000 

in steps of 50 and N=6100 to N=8000 in steps of 100). In Table C we present the minimum sample size 

required to achieve the target power level. For each scenario, 10.000 simulation runs are performed. In case 

the required sample size exceeds 8000, the observed power for N=8000 is provided. Note that in sample size 

planning for time-to-first-event analyses, patient specific frailties are usually not considered. However, these 

                                                           
3
 See also the presentation slides for the additional question 3 presented at the discussion meeting on July 10

th
, 2018. 

Question 2:  

Please provide sample size calculations to show how the sample size and power vary when recurrent event 

analysis is used as primary compared to time to event analysis in differing scenarios, some of which should 

be based on past clinical trials. 
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have been included here, as they allow controlling the ratio of all events to first events as well as creating a 

linkage between HHF process and CVD process – two important features relevant for recurrent event sample 

size planning. Without frailties, the ratio of all events to first events would not be in the order observed in 

previous trials and the CVD process would be independent of the HHF process, which does not seem 

reasonable. Including these patient specific frailties also for the time-to-first-event analysis allows for a fair 

comparison between time-to-first and recurrent event methods, even though typical time-to-first-event 

sample size calculations would assume no patient-specific frailties but smaller treatment effects to be 

detected.    

The simulation results are presented in Table C. As expected, the required sample size to achieve the target 

power is reduced when using recurrent event methods as compared to a time-to-first-event analysis. 

However, sample sizes for recurrent events would still require several thousand patients.  

Table C Required sample size to achieve target power for recurrent event methods and time-to-first composite event

 analysis based on the base case scenario with non-informative treatment discontinuation.                                  

 
*Observed power for the given sample size. 

**Observed power for N=8000. 

With respect to the two recurrent events methods, we can see that while the sample size required for LWYY is 

roughly stable across different HRCV values, the sample size required for the NB model changes with changing 

treatment effect on CVD. When the treatment effect on CVD is large (i.e. 𝐻𝑅𝐶𝑉 ≤  0.8), the sample size 

required for the NB model is smaller than that required for the LWYY model to achieve the same power, 

whereas when the treatment effect on CVD is small (i.e. 𝐻𝑅𝐶𝑉 = 0.9 𝑜𝑟 1.0),  the required sample size for the 

LWYY model is smaller. These observations are in line with those made previously for the mean estimated 

treatment effect and power, see e.g. Table 9 and Figure 10 of the original request document. 

Furthermore, when the effect on CVD is large (i.e. 𝐻𝑅𝐶𝑉 ≤  0.8), the sample size to achieve 80% power using a 

time-to-first-event analysis roughly results in 90 % power or more when using a recurrent event method. For 

example, for 𝑅𝑅𝐻𝐻𝐹 = 0.7 and 𝐻𝑅𝐶𝑉 = 0.7 we require 𝑁 = 4100 patients to achieve 80 % power using the 

Cox model, while only 3150 and 2400 patients are required for the LWYY and the NB model, respectively. The 

4100 patients needed for the Cox model, however, would give close to 90 % power using the LWYY model 
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(n=4200 patients required), and more than 90 % using the NB model (n=3200 patients required for 90% 

power). Therefore, in terms of study planning, one could consider to plan a study with 80 % power for a time-

to-first-event analysis but use a recurrent event analysis for a primary recurrent event estimand, while keeping 

the time-to-first-event analysis as secondary time-to-first-event estimand. This would ensure that enough 

power is available for the traditional time-to-first-event analysis and allows gaining more insights into 

mortality effects. When the effect on CVD is assumed to be small (i.e. 𝐻𝑅𝐶𝑉 = 0.9 𝑜𝑟 1.0), planning a study 

with recurrent event estimands remains feasible, while a time-to-first-event estimand would result in studies 

with a sample size larger than 7000. However, a treatment with a large effect on recurrent HHF and a small 

effect on CV death could still be of interest for patients and thus could be investigated via a recurrent event 

estimand.  

Finally, the decision to perform a recurrent event analysis instead of a time-to-first-event analysis should of 

course not be guided only by the resulting lower sample size needed. Instead, the decision should be based on 

discussions around the fact that a recurrent event estimand might characterize the disease under investigation 

better than a time-to-first-event estimand. 

Sample size comparison based on Val-HeFT study 

In the second part of the response, we compare the recurrent event with time-to-first-event analysis methods 

concerning sample size and power based on data from the Val-HeFT study. This was a parallel group, placebo-

controlled, double blind clinical trial with 5010 patients suffering from CHF of New York Heart Association 

(NYHA) class II, III or IV that were randomly assigned to receive test treatment valsartan or placebo in a 1:1 

ratio. The trial was designed with two primary endpoints: time to all-cause mortality and time to a combined 

endpoint of mortality and morbidity, defined as the incidence of cardiac arrest with resuscitation, HHF or 

receipt of intravenous inotropic or vasodilator therapy for at least four hours. The trial results showed that 

overall mortality was similar in the two groups. The risk of the combined endpoint, however, was 13.2% lower 

with test treatment than with placebo (HR = 0.87; 97.5% confidence interval, 0.77 to 0.97; p-value: 0.009), 

predominantly because of a lower number of patients hospitalized for HF: 455 (18.2%) on placebo and 346 

(13.8%) on test treatment (p-value < 0.001). The comparison of both endpoints between test treatment and 

placebo was performed using a log-rank test. 

The comparison of recurrent event with time-to-first-event analysis methods is performed by resampling data 

from the Val-HeFT study. The resampling scheme is illustrated in Figure 2.  

In detail, a random bootstrap sample of size 𝑚 is drawn from the Val-HeFT data (𝑛 = 5010).  In our 

investigations, the sample size 𝑚 is varied between 𝑚 = 2000 and 𝑚 = 10500 in steps of size 100. The data 

for the treatment group of the random sample is drawn from the treatment group of the Val-HeFT data and 

the data for the control group of the random sample is drawn from the control group of the Val-HeFT data. 

The drawn sample is then analyzed. The analysis methods of interest are a time-to-first composite event 

analysis (Cox regression) and two recurrent event methods (negative binomial model and LWYY model). For 

each method, no covariate other than treatment is considered. In the negative binomial model, the logarithm 

of the time to study termination is considered as an offset.  This process of randomly drawing a sample and 

analyzing it is repeated 𝑏 = 10000 times. Based on the 𝑏 = 10000 analyzed random samples of size 𝑚 from 

the Val-HeFT data, the power for the analysis methods of interest for a given sample size 𝑚 is then calculated.  
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Figure 2 Schematic illustration of bootstrapping of Val-HeFT data.   

 

 

 

           

Figure 3 Power of recurrent event analyses (negative binomial, LWYY) and time-to-first composite event  

  analysis based on resampled data from the Val-HeFT study. 

 

Figure 3 shows that based on the Val-HeFT data, the recurrent event methods have a higher power than a 

time-to-first composite event analysis based on the Cox regression. Moreover, the LWYY method requires the 



 

14 
 

smallest sample size among all considered methods. The NB method requires a larger sample size than the 

LWYY method, but a smaller sample size than the Cox regression. As Table D highlights, the sample size 

required for the time-to-first-event method to achieve a power of 80% or 90% is clearly larger than the sample 

size required for the recurrent events methods. The sample sizes shown in Table D where determined based 

on a grid search with step size 100. 

Table D Required sample size to achieve target power for recurrent event methods and time-to-first composite event

 analysis based on resampled data from the Val-HeFT study. 

 

Method 

Total sample size required to achieve target power 

Power=80% Power=90% 

Cox  7600 10200 

LWYY 3900 5300 

NB 5000 6800 

 

The differences in power and sample size between the recurrent event methods and time to event method 

based on the Val-HeFT data are in alignment with the results shown in the first part of our response to 

Question 2. In detail, the time-to-first-event method needs a much higher sample size than the recurrent 

event methods and the NB method requires a higher sample size than the LWYY method for scenarios in 

which there is a small or neutral effect on CVD, which was the case in the Val-HeFT study.  
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Response:   

We split our response into three parts. In the first part, we discuss disease aspects that would result in 

changing event rates. In the second part of our response, we address the first part of the question about the 

performance characteristics of recurrent event methods when the event rate changes over time. This is done 

based on both theoretical considerations as well as simulation results presented in the original request 

document. Finally, we respond to the second part of the question by discussing whether completed studies in 

multiple sclerosis and heart failure indicate a changing event rate over time.  

Disease aspects resulting in changing event rates over time 

When discussing changing event rates over time, it is crucial to differentiate between changes of the event 

rate on the population level and on the patient level. The population-level event rate is the number of events, 

which are expected to occur in the population within one time unit. The patient-level event rate is the number 

of events per unit time which a patient is expected to experience. Below we describe two examples of patient 

level changes over time: 

1. The patient-level event rate might change over time because of the underlying disease process or the 

definition of the inclusion and exclusion criteria. For instance, if patients are included into a clinical 

trial in a vulnerable phase (e.g. shortly after a worsening of clinical conditions) the event rate could be 

high at baseline and decrease thereafter.  

2. The event rate could change every time an event occurs because of disease progression. For example, 

every time a patient is hospitalized for worsening heart failure it might be reasonable to assume that 

after the hospitalization, the risk of having another hospitalization increases due to the permanent 

deterioration of the patient’s health.  

These two patient-level changes in the event rate also directly translate into event rate changes on the 

population level. In addition to changes on a patient level, changes in the population-level event rate can be 

due to a selection process in the population. For instance, due to the positive correlation between CVD and 

HHF, the survivors tend to have lower HHF rates. 

Performance characteristics of recurrent event methods when event rates change over time 

In what follows, we discuss the performance of two recurrent events methods, i.e. the LWYY model and the 

negative binomial (NB) model, in settings where the patient-level event rate changes over time. The LWYY 

method assumes that all subjects share the same unspecified baseline rate function. Therefore, as long as the 

proportional rates assumption is fulfilled, scenarios with changing patient-level event rate do not violate the 

assumptions of the LWYY model. In contrast to the LWYY model, the standard NB model makes the 

Question 3:  

Please discuss the performance characteristics of recurrent event methods in scenarios where the HHR 

changes over time, i.e. the HHR generally increases over time. Do (or do not) completed clinical trials in 

different therapeutic areas indicate changing event rate over time in survivors? 
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assumption of a constant patient-level rate. However, when all patients have the same follow-up time, the 

number of events at the end of the trial still follows a NB distribution even if the patient-level event rate 

changes over time. In this case, the rate estimated by the NB model is equal to the cumulative event rate.  

The above mentioned considerations are supported by the different simulations we provided in our original 

request document. For the setting without terminal events we investigated a non-homogeneous Poisson 

process (cf. example 1 of patient-level changes mentioned above) with patient-specific frailties and a 

decreasing intensity function.4 The results did not differ systematically from those presented for the base case 

simulations, i.e. both the LWYY model and the NB model preserved the type I error rate for practically relevant 

sample sizes.5 With regard to power, only in situations when the annualized relapse rate in the first year was 

substantially higher than in the second year (ratio of 1.63 in our simulations) the power was about 10-15% 

lower than in the constant event rate case.6 For the setting with terminal events, we investigated an increasing 

autoregressive event rate (cf. example 2 of patient-level changes mentioned above) as variation of the base 

case.7 Under the global null hypothesis, i.e. 𝐻𝑅𝐶𝑉 = 𝑅𝑅𝐻𝐻𝐹 = 1, the LWYY model preserved the type I error 

rate, while there was an increased type I error rate for the NB model. With regard to power, the relative 

performance of all methods was similar to that observed for the base case, but the power of all methods was 

slightly increased.8 Note that all scenarios for the terminal event case also include a population-level change 

due to linkage of CVD and HHF frailties.  

Indications about changing event rates over time in completed clinical trials  

The second part of the question focuses on event rate changes observed in completed clinical trials in 

different therapeutic areas. For multiple sclerosis we would like to refer to the systematic review by Nicholas 

et al. (2012). In a meta-analysis including the information from 13 clinical trials in relapsing multiple sclerosis, 

Nicholas et al. (2012) showed that the annualized relapse rate is decreasing over time. As the above 

mentioned selection process is negligible in multiple sclerosis trials, i.e. the rate of disease-related death is 

very low, this finding indicates a decreasing event rate on the patient level. This was also the motivation for 

including a non-homogeneous Poisson process as one variation of the base case for the simulations in the 

setting without terminal events.  

For heart failure, we are not aware of any similar investigation of the patient-level event rate. However, the 

mean cumulative functions (MCFs) presented for various heart failure studies (see Figure 4) indicate that in 

most of the studies there seem to be only minor changes in the event rate over time on the population level, 

an exception being the CHARM-Alternative study. It should be noted here that a linear MCF would indicate a 

constant population-level event rate. For the CHARM-Alternative study the MCF seems to indicate an event 

rate which decreases over time, which might be due to the selection effect described above, i.e. patients with 

a high rate of HHF die earlier so that the tail of the MCF is primarily driven by the patients with a low rate of 

HHF. However, this might also be due to a decreasing event rate on the patient level. For the other studies the 

deviations from linearity are only relatively small, mostly indicating a slightly decreasing population-level 

event rate. The only study which has some indication of a slightly increasing population-level event rate is 

                                                           
4
 See Appendix D.1 in the original request document. 

5
 See Tables 49-52 and Tables 57-60 in Akacha et al., 2017. 

6
 See for example Table 1 and Table 41 in Akacha et al., 2017. 

7
 See Chapter E.5.2 in the original request document. 

8
 See for example Figure 9 and Figure 21 in the original request document. 
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ValHeft. As there could be different sources for a population-level change that even act in different directions, 

the interpretation of the MCFs in regards to patient-level changes is inconclusive. 
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Figure 4: Estimated mean cumulative functions for hospitalizations for heart failure from various publications of heart failure studies. The blue straight lines      

have been manually added as a visual aid to roughly judge deviations from linearity. 
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Response:   

In clinical trials, it seems appropriate for Estimand 2 (exposure-weighted bad event rate) to count only one 

bad event in case death occurs shortly after hospitalization (e.g. less than 24h after admission), and otherwise 

two bad events. This specification would also be consistent with Hicks et al. (2014), which specify: 

“Hospitalization is defined as an admission to an inpatient unit or a visit to an emergency department that 

results in at least a 24 hour stay (or a change in calendar date if the hospital admission or discharge times are 

not available).” Hence if a patient dies less than 24h after hospital admission, this would not count as a 

hospitalization, but as a death without hospitalization (i.e. one bad event). If a patient dies at least 24 hours 

after admission, this could legitimately be considered an additional disease-related bad event. This is also the 

approach taken in the PARAGON-HF trial (Solomon et al., 2017). 

The alternative of always only counting one bad event for death during hospitalization has also been used 

(Rogers et al., 2014). Here, death may be seen as the worst possible hospitalization.  

In the simulation studies presented in the original request document, we used the simplified setting where 

hospitalization is an instantaneous event without duration, and hence death after hospitalization was always 

counted as two events. 

We think that the interpretation of Estimand 2 (exposure-weighted bad event rate) would not fundamentally 

change, regardless of which specific definition for bad event counts would be used.  

 

 

 

 

 

 

 

 

 

 

Question 4:  

For estimand 2 please clarify how events are counted when a patient is hospitalised and then dies while 

hospitalised. Would this be counted as one event or two? Please further discuss the clinical interpretation 

of results on estimand 2. 
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