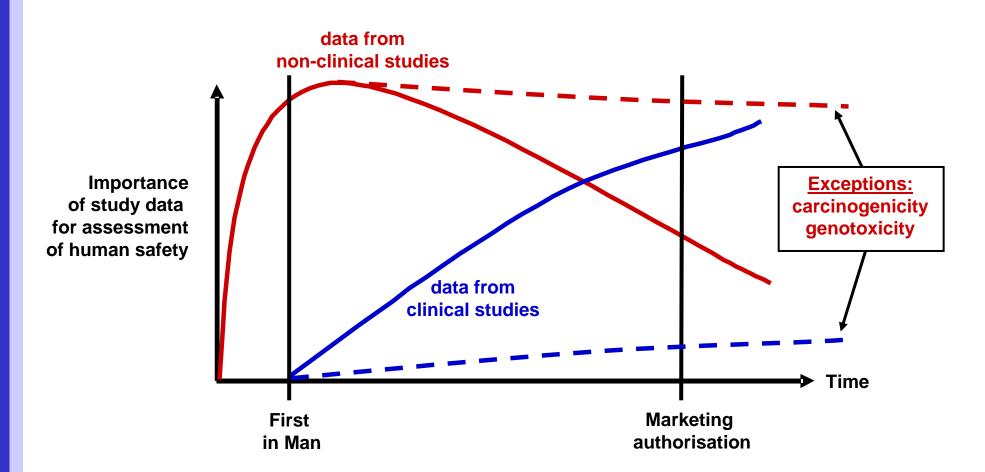


3rd EMEA Workshop for Micro, Small and Medium-Sized Enterprises (SMEs) *"Focus on Non-clinical Aspects"* 2 February 2009 – London, UK

Meeting Requirements for EU Marketing Authorization: Genotoxicity and Carcinogenicity



Role of non-clinical data through the drug development process: Genotoxicity/carcinogenicity data are special!

Basic testing requirements

Genotoxicity Testing

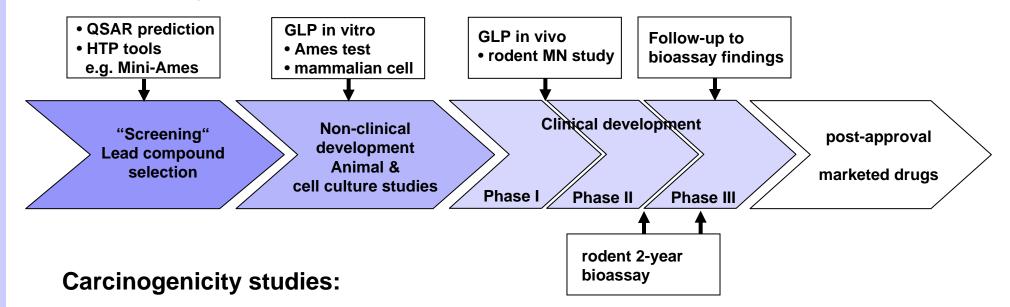
- small molecules
 - ICH S2B (under revision)
 - "standard battery"
- biopharmaceuticals
 - ICH S6 (under revision)
 - (standard) testing generally not needed
 - "cause for concern"

Carcinogenicity Testing

- small molecules
 - ICH S1A/B/C
 - rodent cancer bioassay in 2 species
- biopharmaceuticals
 - ICH S6 (under revision)
 - standard rodent bioassay not useful
 - "alternative approaches"

Genotoxicity / Carcinogenicity Testing: The standard approaches for "small molecules"

- Genetic Toxicology (ICH S2B, under revision)
 - gene mutation in bacteria (Ames test)
 - in vitro chromosome aberration or mouse lymphoma *tk* assay
 - in vivo test for chromosomal damage in rodent hematopoietic cells (rodent bone marrow micronucleus)
- Carcinogenicity (ICH S1B)
 - 2 year rat bioassay
 - 2 year mouse bioassay or medium-term transgenic mouse model


Role of genetic toxicity data in relation to carcinogenicity

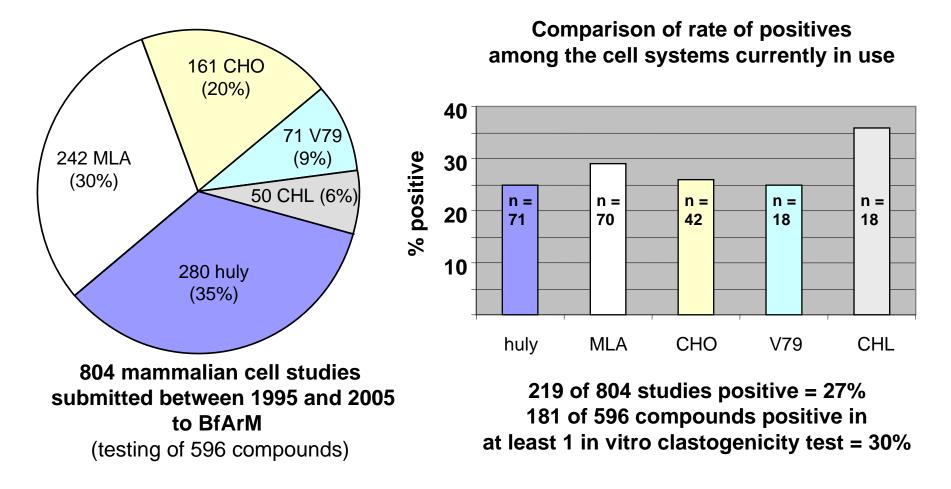
- in the absence of carcinogenicity data: for prediction of carcinogenic potential (e.g. when starting first clinical trials)
- in the presence of carcinogenicity findings: as part of the weight of evidence in <u>cancer</u> <u>risk assessment</u>

Timing of genotoxicity / carcinogenicity studies during drug development

Genotoxicity studies:

Role of genetic toxicity data in relation to carcinogenicity

- in the absence of carcinogenicity data: for prediction of carcinogenic potential (e.g. when starting first clinical trials)
- in the presence of carcinogenicity findings: as part of the weight of evidence in <u>cancer</u> <u>risk assessment</u>



Impact of positive genotoxicity findings

- Ames test
 - rare event; triggers termination of development
- in vivo rodent bone marrow study
 - rare; usually termination of development (or mechanistic data to demonstrate lack of clinical relevance)
- in vitro mammalian cell test
 - frequent; additional studies to clarify relevance

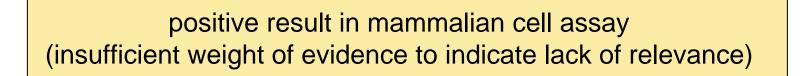
Mammalian cell assays: Use in regulatory testing and rates of positives

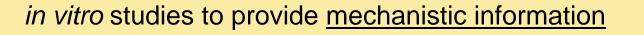
Proposed ICH S2 revisions Avoidance of non-relevant in vitro positives

- In vitro mammalian cell assay
 - top concentration: reduced from 10 to 1 mM
 - cytotoxicity limits: more clearly defined
 - testing into precipitating range: no longer required
- option to avoid *in vitro* mammalian cell test in standard testing battery

Revised testing battery: 2 Options!

Current (S2B)	Revised S2	
	Option 1	Option 2
Bacterial gene mutation (with repeat)	Bacterial gene mutation (no repeat)	Bacterial gene mutation (no repeat)
In vitro mammalian cell test: Chromosome aberrations <u>OR</u> : mouse lymphoma assay	In vitro mammalian cell test: Chromosome aberrations <u>OR</u> : mouse lymphoma assay <u>OR</u> : micronucleus assay	NOin vitro assay in mammalian cells!
 → 10 mM top conc → > 50/80 % cyotoxicity 	 → 1 mM top conc → at most 50/80 % cytotoxicity 	
In vivo micronucleus test	In vivo micronucleus test	In vivo micronucleus test 2 nd in vivo endpoint/tissue
(acute stand alone test)	(preferably integrated into rodent toxicity study)	(preferably integrated into rodent toxicity study)




Dose acceptance criteria in general toxicity study for genotoxicity evaluation (ICH S2 R1)

- Maximum feasible dose
- Limit dose (2000 mg/kg for ≥ 14 days)
- Maximal possible exposure:
 - plateau/saturation in exposure
 - compound accumulation
- Top dose is ≥ 50% of top dose that would be used for acute administration
- If none of the criteria are met do study with acute administration

Proposed ICH S2 revisions Follow-up of *in vitro* positives

or

two appropriate *in vivo* assays, usually with different tissues, and with supporting demonstration of exposure

Role of genetic toxicity data in relation to carcinogenicity

- in the absence of carcinogenicity data: for prediction of carcinogenic potential (e.g. when starting first clinical trials)
- in the presence of carcinogenicity findings: as part of the weight of evidence in <u>cancer</u> <u>risk assessment</u>

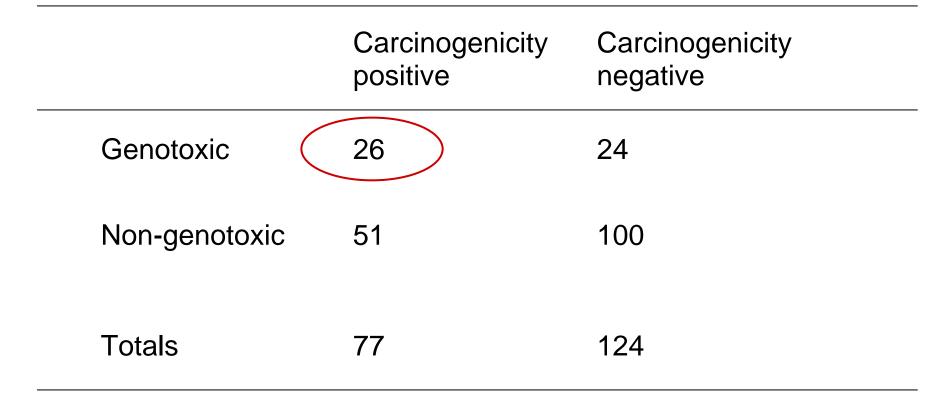
Impact of <u>positive</u> carcinogenicity findings (from rodent bioassays)

Two important questions

- What is the carcinogenic mode of action (MoA) in animals
- Is this MoA relevant to humans / to the conditions of (much lower) human exposure

Carcinogenic MoA analysis

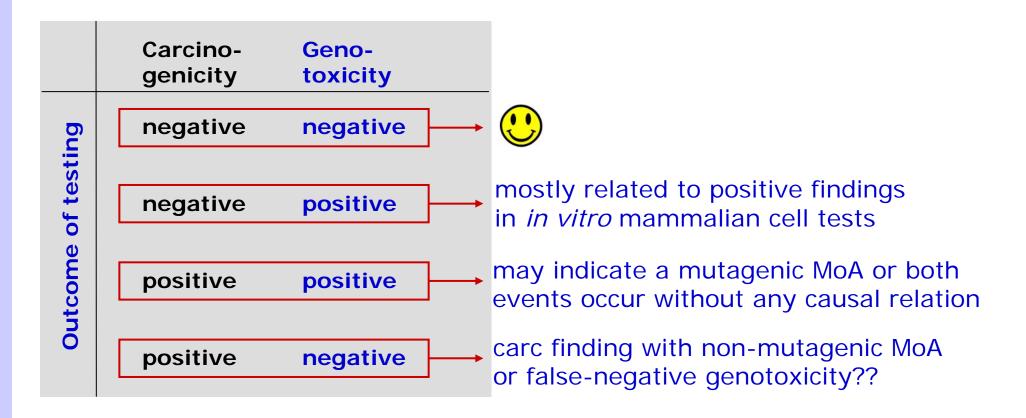
- additional mechanistic studies may be needed
- if data are insufficient to characterize MoA, animal findings are assumed to be relevant to humans by default
- presence of positive genotoxicity findings can be critical (often divergent interpretations of inconsistent data sets)
- mutagenic MoA = linear extrapolation at low doses


positive genotoxicity finding + positive rodent carcinogenicity

genotoxic carcinogen (mutagenic MoA)??

Carcinogenicity/genotoxicity results with pharmaceuticals

(Snyder & Green, 2001: Review of data of <u>marketed pharmaceuticals</u> in the Physician's Desk Reference and published literature)



High probability of positive genotoxicity and/or carcinogenicity findings during drug development process!

Correlation of carcinogenicity/genotoxicity results

non-genotoxic carcinogenic MoA

- chronic cell injury with regenerative cell proliferation
- immunosuppression
- increased secretion of trophic hormones
- receptor activation
- other (e.g. CYP 450 induction)
- In many cases rodent-specific or high-dose specific effects (no relevance for clinical conditions)

Is the rodent lifetime bioassay really a "golden" standard?

- Clear lack of accuracy for predicting human carcinogenicity (high number of false positives)
- Transgenic models haven't improved the situation
- Hot research topic:
 - Biomarker for non-genotoxic carcinogenesis
 - US C-Path PSTC
 - EU Improved Medicine Initiative IMI
- Need revision of ICH S1B But when??

Summary

- Data from genotoxicity and carcinogenicity studies are a pivotal part in MAA
- Assessment of gentox & carc is based solely on non-clinical data
- (Some) test models currently in use have poor specificity (high rate of irrelevant positives)
- Positive findings need usually extensive follow-up work
- Improvements expected with revision of ICH S2 (genotoxicity)
- Carcinogenicity testing approach (ICH S1B) needs revision too!
- For the time being WE have to interprete (the human relevance of) the frequent rodent tumor findings with great caution