

niversité

Inserm

Optimal design for trials with discrete longitudinal studies, with uncertainty on model and parameters

France Mentré, Florence Loingeville, Marie Karelle Rivière, Thu Thuy Nguyen

INSERM and University Paris Diderot EMA, London – March 30, 2017

FP7 HEALTH 2013 - 602552

DESIGNS IN NLMEM

- Several methods/software for maximum likelihood estimation in Non Linear Mixed Effects Models (NLMEM) for analysis of longitudinal continuous or discrete data
- Problem beforehand: choice of design
 - get precise estimates / adequate power
 - number of individuals?
 - number of sampling times/ individuals?
 - sampling times?
 - other design variables (doses, etc...)
 - Simulation (CTS): time consuming

Asymptotic theory: expected Fisher Information Matrix (Mentré, Mallet, Baccar, *Biometrika*, 1997)

Evaluation of Fisher matrix for discrete and time to event longitudinal data

- Computation of the FIM for NLMEM for continuous or discrete longitudinal data without linearization of the model
 - 1. Using Monte Carlo and Hamiltonian Monte Carlo (HMC) (Rivière, Ueckert, Mentré, *Biostatistics*, 2016)
 - 2. Using Monte Carlo and Adaptive Gaussian Procedure (Ueckert, Mentré, *CSDA*, 2017)

- Both methods evaluated and compared to CTS
 - 4 data types: continuous, binary, **count**, time to event

Extension for robust designs in NLMEM with discrete data

- Optimal design depends on knowledge on model and parameters
 - Local planification: model and a priori values for parameter are given
 - Widely used criterion: D-optimality (determinant of FIM)

• Alternative: Robust designs

- Take into account uncertainty on parameters (prior distribution)
- Over a set of candidate models (as in MCP-MOD)
- Using HMC in Stan

Application to robust designs for repeated count data

- Exemple: Daily count of events that we want to prevent
- Poisson model for repeated count response $P(y = k|b) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Each patient observed at 3 dose levels (one placebo) during x days

- Several candidate models for the link between $log(\lambda)$ and dose
- λ: mean number of events / day

Five models of effect of dose on decreasing Poisson parameter

Design optimisation

Methods							
Constraints	Number of subjects	N = 60					
	Number of days	n = 10 days / dose					
	Number of doses	3 doses / patients					
	Choice of doses	$d_1 = 0$ (placebo) d_2 , d_3 from 0.1 to 1 (step 0.1, no replication)					
Combinatorial Optimization	Evaluation of FIM for all possible designs	5000 MC 200 HMC					
	For each model	DE-criterion on robust FIM (averaging for uncertainty on parameters)					
	Over 5 models	Compound DE-criterion (averaging for uncertainty on models and parameters)					

Results: robust optimal design for each model

Results: loss of efficiency if wrong model

	M1 Full Emax	M2 Linear	M3 Log-Linear	M4 Emax	M5 Quadratic
ξ _{M1} =(0,0.2,0.4)	100%	47%	57%	78%	24%
ξ _{M2} =(0,0.9,1)	73%	100%	100%	44%	87%
ξ _{M3} =(0,0.9,1)	73%	100%	100%	44%	87%
ξ _{M4} =(0,0.1,0.7)	89%	68%	74%	100%	51%
ξ _{M5} =(0,0.5,1)	83%	88%	90%	59%	100%
ξ _{all} =(0,0.2,1)	91%	84%	84%	85%	83%

Efficiency greater than 80% for all models

တ

Optimal design over 5 models $\xi_{all}=(0,0.2,1)$

Discussion

Example on count data

- Important loss of efficiency when the model is not correctly prespecified
- Good performance of the compound DE-optimal design (robust on parameters and models)

New methods for Robust designs

- Extension of R package *MIXFIM* to compute the robust FIM using HMC (connexion with Rstan)
- Compound optimality criterion to combine several candidate models

Perspectives

- Model based adaptive optimal designs (MBAOD)
- With or without uncertainty during first cohort(s)

Design trials where analysis of longitudinal data is pre-specified

Model parameters

	Prior guess: ψ*				A priori distribution: p(ψ)					
	µ1*	µ2*	μ ₃ *	ω1*	ω2*	μ ₁	μ ₂	μ ₃	ω ₁	ω ₂
M1	1	0.5		0.3	0.3	1	LN(-0.89,0.63)		0.3	LN(-1.50,0.77)
M2	1	0.67		0.3	0.3	1	LN(-0.60,0.63)		0.3	LN(-1.50,0.77)
M3	1	0.96		0.3	0.3	1	LN(-0.24,0.63)		0.3	LN(-1.50,0.77)
M4	1	0.2	0.8	0.3	0.3	1	LN(-1.81,0.63)	0.8	0.3	LN(-1.50,0.77)
M5	1	0.8	0.13	0.3	0.3	1	LN(-0.60,0.63)	0.13	0.3	LN(-1.50,0.77)

E(μ₂)=μ₂*; E(ω₂)= ω₂* CV(μ₂)=70%; CV(ω₂)=90%

Using MCMC for robust designs in NLMEM

Robustness w.r.t. a set of *M* candidate models

• D-criterion for optimization of design $\Xi_{D,m}$

 $\Phi_{D,m}(\Xi) = \det \left(\mathsf{M}(\psi_m^*, \Xi) \right)^{1/P_m}$

 P_m : number of population parameters of model m

Compound D-criterion^{1,2} for common optimal design Ξ_{CD}

$$\Phi_{_{CD}}(\Xi) = \prod_{m=1}^{M} \Phi_{D,m}(\Xi)^{\alpha_m}$$

 α_m : weight quantifying the balance between the *M* models: $\sum_m \alpha_m = 1$

Robustness w.r.t. parameters and models

Compound DE-criterion for common optimal design Ξ_{CDE}

$$\Phi_{CDE}(\Xi) = \prod_{m=1}^{M} \Phi_{DE,m}(\Xi)^{\alpha_{m}}$$

 $\Phi_{DE,m}$: DE-criterion evaluated for each model *m*

¹ Atkinson et al. *J Stat Plan Inference*, 2008. ² Nguyen et al. *Pharm Stat*, 2016.