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Exploratory subgroup analysis

Guideline-driven and principle-driven approaches

Key principles of subgroup identification

Analytic subgroup search procedures, complexity
control, adjustment for selection bias, biomarker
screening, reproducibility assessment

Case study

Phase III development program in patients with
nosocomial pneumonia



Exploratory subgroup analysis



Subgroup analysis
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Subgroup analysis approaches

Several classification schemes proposed in
clinical trial literature (Varadhan et al., 2013;
Lipkovich and Dmitrienko, 2014b)

Simplified classification scheme

Confirmatory subgroup analysis relies on a small
set of well defined patient subgroups

Exploratory subgroup analysis focuses on a large
set of loosely defined patient subgroups



Applications of exploratory subgroup analysis
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Scenario 1 (positive trial)

Assess consistency of treatment effects across
key subgroups

Scenario 2 (positive trial)

Analyze subgroups in a post-hoc manner to (1)
exclude a subgroup due to lack of efficacy or (2)
focus on a subgroup without safety issues

Add a subgroup with enhanced treatment effect

Scenario 3 (negative trial)

Discover subgroups with enhanced efficacy profile



Applications of exploratory subgroup analysis
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Scenario 1 (positive trial)

Consistency assessment

Scenario 2 (positive trial)

Post-hoc subgroup identification

Scenario 3 (negative trial)

Post-hoc subgroup identification



Post-hoc subgroup identification
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Guideline-driven approaches

Multiple sets of guidelines attempt to improve
credibility of exploratory subgroup analysis

Checklist with 25 rules (Brookes et al., 2001),
checklist with 21 rules (Rothwell, 2005), checklist
with 11 rules (Sun et al., 2010)

Main rule: Proceed with caution

Principle-driven approaches

Subgroup identification ought to be based on
specific operationalizable principles



Post-hoc subgroup identification
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Key idea

Utilize recent developments in machine learning
and data mining to pre-specify a subgroup
exploration strategy

Principles of subgroup identification

Define an analytic subgroup search procedure

Control complexity of search space

Perform reliable inferences in selected subgroups



Key principles of subgroup identification
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Analytic subgroup search procedures

Haphazard/unplanned subgroup exploration leads
to spurious results

Tools used in subgroup search algorithms

Recursive partitioning algorithms with
pre-specified rules for subgroup generation to
select the most relevant subgroups (e.g.,
partitioning rules based on maximum differential
treatment effect)



Key principles of subgroup identification
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Complexity control

Unconstrained (greedy) subgroup search creates
a very large search space, which hinders the
assessment of clinical relevance

Tools for reducing the size of search space

Efficient subgroup pruning rules to choose child
subgroups in recursive partitioning algorithms



Key principles of subgroup identification
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Reliable inferences and interpretation

Unadjusted treatment effects in subgroups are
misleading due to “optimism bias”

Tools for performing reliable inferences

Resampling- or cross-validation-based
adjustments (p-value adjustment and “honest”
treatment effect estimates) to perform reliable
inferences in subgroups



Subgroup identification methods
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Global outcome modeling

Virtual Twins method (Foster et al., 2011),
Bayesian subgroup search (Xu et al., 2014)

Global treatment effect modeling

CART-based (Classification And Regression
Trees) methods, e.g., Interaction Trees method
(Su et al., 2009)

Local modeling

Responder Identification method (Kehl and Ulm,
2006), SIDES method (Lipkovich et al., 2011)



Local modeling
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Subgroup Identification based on Differential
Effect Search (SIDES)

Recursive partitioning-based subgroup
identification method which provides a
multivariate assessment of biomarkers, employs
complexity control and accounts for selection bias

SIDEScreen method

Extension of original SIDES method with efficient
biomarker screening for complex settings, e.g.,
> 100 biomarkers (Lipkovich and Dmitrienko,
2014a)



Case study



Phase III program in pneumonia patients
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Clinical trial database

Total sample size: 1289 patients

Primary endpoint: All-cause mortality at 28 days

Overall outcome: Slightly negative treatment
effect in overall patient population

Exploratory objective

Identify biomarkers that help predict positive
treatment response

Reference

Dmitrienko et al. (2014)



Phase III program in pneumonia patients

EMA Workshop 2014 Alex Dmitrienko (Quintiles) Slide 16

Main challenge

Candidate set included 26 biomarkers (mostly
demographic and clinical variables)

Large set of candidate biomarkers created a vast
search space

SIDES-based subgroup search

Aggressive pruning rules to reduce the search
space

Biomarker screens to filter out non-informative
(noise) biomarkers and focus on best predictors
of treatment response



Greedy subgroup search (390 subgroups)
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Efficient subgroup search (3 subgroups)

0 350 700 1050 1400
Subgroup size

Tr
ea

tm
en

t e
ffe

ct
 p

−
va

lu
e

p=0.1

p=0.01

p=0.001

p=0.0001

Black dot: Overall patient population

Red dots: Patient subgroups



Phase III program in pneumonia patients
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Selected patient subgroup

Serum creatinine clearance > 67 mL/min

Sample size: 352 patients

Raw treatment effect p-value: p = 0.0077

Adjustment for selection bias

Adjusted treatment effect p-values were
computed using a resampling-based method



Treatment effect p-values
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due to reduced search space



Additional important considerations
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Adjustment for optimism bias

Cross-validation to derive honest (bias-adjusted)
estimates of treatment effects in selected patient
subgroups

Reproducibility assessment

“Learn and confirm” method to assess the
likelihood of replicating results in another clinical
trial



Summary



Summary
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Principled-based approach to post-hoc
subgroup identification

Analytic subgroup search procedures for
examining all relevant patient subgroups to find
subsets of overall population with desirable
characteristics

Statistical methods

Multiple methods have been developed with
available software implementation

Web site: http://biopharmnet.com/wiki/
Subgroup Analysis
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