Natural History of SMA and Impact of Standards of Care on Survival and Motor Function

EMA SMA Workshop London 11 November 2016

Richard S. Finkel, MD Nemours Children's Hospital University of Central Florida College of Medicine Pediatric Neuromuscular Clinical Research Network for SMA

Disclosures, SMA-related

- Grant support: Cure SMA, NIH, SMA Foundation, Ionis, Biogen
- Advisory: Ionis, Biogen, Roche, Novartis, AveXis, CureSMA, SMA Europe, SMA Reach, MDA
- DSMB: Roche, AveXis

Spinal Muscular Atrophy

Kolb and Kissel, Arch Neurol 2011

The Clinical Spectrum of SMA

Туре	Age a	at Symptom Onset	Incidence %	Prevalence %	Maximum Motor Function	SMN2 copy number	Life expectancy
0		Fetal	<1	0	Nil	1	Days -Weeks
1	< 6 Months	1A: B-2 Weeks 1B: <3 Months 1C: >3 Months	60	15	Never sits	1, 2, 3	< 2 years
2	6-18 Months		25	70	Never walks	2, 3 ,4	20-40 years
3	1.5-10 Years	3A: <3 Years 3B: > 3 Years	15	15	Walks Rregression	3 , 4 , 5	normal
4	>35 Years		<1	1	Slow decline	4, 5,6	normal

SMA, Type 1 Infantile form, "Werdnig-Hoffmann Disease"

3 years SMN2CN = 2

Typical type 1 SMA infant at age 4 months

Early Natural History Studies not genetically confirmed, no supportive care

Werdnig description 1891 1901 1911 1921 19	Kugelberg/ Welander description 1956 31 1941 1951	Standard 3 Groups 3 Type of care outlined classification document 1967 1971 1981 2007 1971 1981 2001 2011
Lead Author, Year Published Years when data were collected Country, number reported (n)	Survival time Months (m) Years (y)	Age at death (months): Mean (M) and median (m) (range)
Brandt, 1950 Denmark, n=76		56% died by 12M of age 80% died by 4 years of age
Byers, 1961 1950-61, USA N=52	2 survivors, M=17 m	Symptom onset < 2 months (Types IA and IB): 23/25 died, 2 sat, M=10 (0.5-52) Symptom onset 2-12 months (Types IC and II): 5 of 19 died, M=25 (7-73)
Pearn, 1973 1961-70, England, n=76	None live >3 years	M=5.9, m= 7 95% died by 18 months
Thomas, 1994 1982-90 England, n=36	"few live beyond 2 years"	(n=29) M=9.6 , m=7 (1-24) Symptom onset <2 months: m=5.5 Symptom onset > 2 months: m=17
Ignatius, 1994 1960-88 Finland, n=71	Uniformly poor if symptoms onset < 2m, variable if onset 2-6m	(n=69) M=8.75, m=7. Age at symptom onset and median age at death: birth, m=4; 1-2 mos, m=7.5; 4-6 mos, m=17.5
Zerres, 1995 1985-95 Germany, n=197+90	2 years=32% 4 years=18% 10 years=8% 20 years =0	
Borkowska, 2002 Poland and Germany, n=349	10% lived >5 years	(n=18) M=11 (3.4) years (5-24 years)

Contemporary Natural History Studies genetically confirmed, some supportive care

Werdnig description 1891 1901 1911 192	Kugelbe Weland descript 1 1931 1941 1951	rg/ Standard er 3 Groups 3 Type of care ion outlined classification document 1967 1991 2007 1971 1981 2001 2011
Lead Author, Year Published Years when data were collected Country, number reported (n)	Survival time Months (m) Years (y)	Age at death (months): Mean (M) and median (m) (range)
loos, 2004 France, n=68 (1B=33, 1C=35)	IB: 18% alive with TV (8-17Y) IC: 74% alive (? range)	IB: (n=27 of 33, 82% mortality), M=18 (29) IC: (n=9 of 35, 26% mortality), M=4 Years (3.75Y)
Bach, 2007 1996-2006; USA, n=74+18	82% alive at M=66.1±44.8m	Unsupported (n= 18), M=9.6±4.0 Supported (n=74), 13 died: M=32.9±50.4, one at 270
Oskoui 2007, USA mainly 1980-1994 (n=65) 1995-2006 (n-78)	m=8.5m m=indeterminate	M=19.1, m=7.3 (1.0-193.5) M=22.1,m=10.0 m (2.5-112.0)
Rudnik-Schöneborn, 2009 2000-05 diagnosis Germany, n=66	Alive at 2Y: Overall: 6% SMN2CN2: 2% SMN2CN3: 67%	Mortality in 57 (86.3%): All patients: M=9.9 (few days 55 months), m=6.7 SMN2NC=2 (n=57): M=7.8, m=6.5 (0.5-30) SMN2CN=3 (n=5): W=28.9, m=19 (10.1-55.1)
Lemoine, 2012 2002-09 USA, n=49	4 year survival: Proactive: 72% Supportive: 33%	Proactive care (n=23; 6 deaths): m=7.6 (IQR 6.5,10.5) Supportive care (n=26; 16 deaths), m=8.8 (IQR 4.7, 23.7).
Finkel. 2014 (2005-09 enrolment) followed for up to 3Y USA, n=34	Combined endpoint: Type IB, m=11.9 Type IC, m=13.6	Death (n=9): m=9 (2-14) Death or requiring >16 hours of BiPAP/day: Overall group: 13.5 m (IQR: 8.1-22) SNM2CN = 2: 10.5 m (IQR: 8.1-13.6 m)

Kaplan-Meier curves for SMA-I. (A) Probability of survival with advancing age by SMA-I subtype (type IB, n = 18; type IC, n = 16). (B) Probability of not reaching the combined endpoint of death or the need for a minimum of 16 hours/day of noninvasive ventilation support for a minimum of 14 continuous days, in the absence of an acute reversible illness or perioperatively, with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (C) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I subtype. (D) Probability of not reaching the combined endpoint with advancing age by SMA-I s

Natural History of SMA Type 1

More than 90% of SMA Type 1 patients will not survive or will need permanent ventilation support by age 2

4 Clinical Domains of SMA

Management Issues for Type 1 SMA

Evolving Topics

- Diagnosis
- Nutritional
- Respiratory
- Orthopaedic
- Acute care
- Physiotherapy/Rehabilitation

Consensus Statement for Standard of Care in Spinal Muscular Atrophy

Journal of Child Neurology / Vol. 22, No. 8, August 2007

Active Discussion

- Maximize motor function
- Enable communication
- Comfort care
- Ethics
- Quality of Life
- Access to new treatments

Updated Standard-of-Care guidelines are being finalized

Comfort Care

- Palliative care focus
 - Oral secretions
 - Breathing comfort
 - Nutrition comfort
 - Activity options, e.g. hydrotherapy

Impact of Enhanced SOC

- Better nutrition and ventilation often leads to improved survival
- No improvement in motor function, however.
- Improved quality of life?

- Infants with SMA type 1 present with typical pattern of weakness and breathing impairment
- After an initial precipitous decline there may be a plateau phase with slower decline
- Survival depends upon age of presentation, SMN2 copy number, avoidance of pulmonary infections and extent of supportive care
- Motor function does not improve from the time of diagnosis.

