

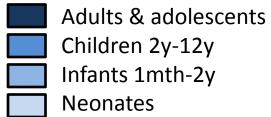
POS (Partial onset seizures) & Brain Extrapolation from adults to children Clinical setting

Catherine CHIRON*, MD, PhD
& Gerard PONS**, MD, PhD
INSERM U1129 and University Paris-Descartes, &
*Necker Hospital, Paris, France
** Chair Extrapolation WG – EMA, London, UK

Extrapolation framework (focussed on **efficacy**)

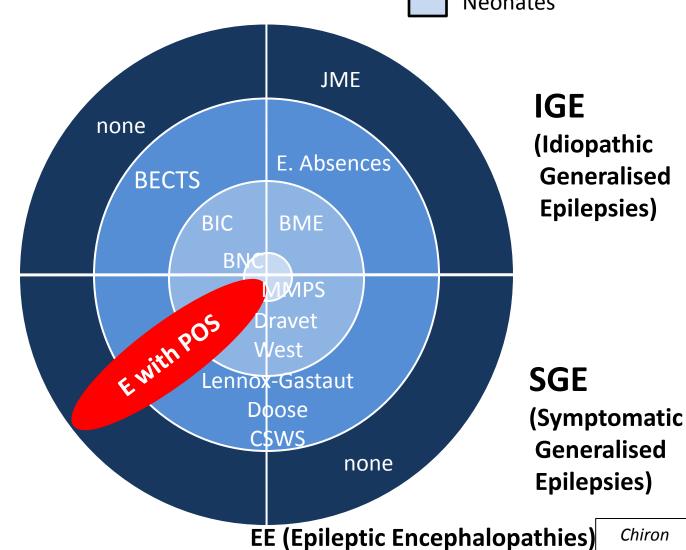
Rationale for Extrapolation in POS in children (focussed on efficacy)

• Similarities of disease children/adults:


- age of onset
- aetiology
- pathophysiology

Similarities of clinical response to treatment

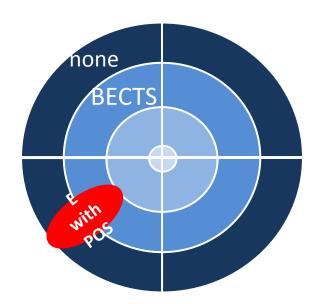
- clinical endpoint
- no biomarker available
- related compounds: response rate in children similar to adults

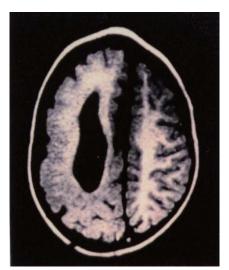

I. Disease: E. with POS

1. Age of onset

IPE (Idiopathic **Partial Epilepsies**)

SPE (Symptomatic **Partial Epilepsies**)

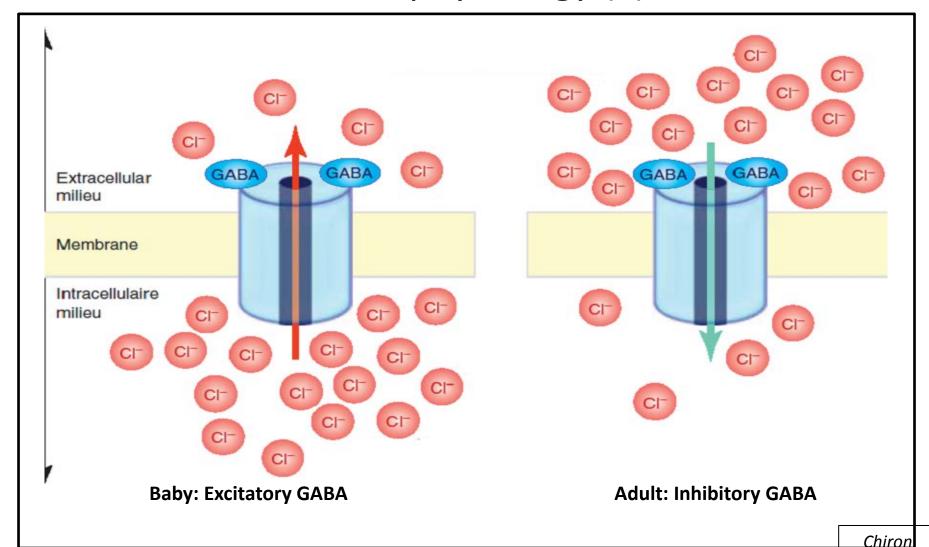



Chiron EMA 2016

I. Disease: E. with POS2. Etiology

Adults & adolescents
Children 2y-12y
Infants 1mth-2y
Neonates

- Same as adults
 - Children 2y-18y with POS
- Different from adults
 - Children with BECTS (Benign Epilepsy with Centro Temporal Spikes)
 no lesion, no pharmacoresistance
 - Infants with E with POS
 more extended lesions (unilateral)
 malformations ++
 - Neonates with POS
 more diffuse lesions (bilateral)
 anoxo-ischemic ++



I. Disease: E.with POS/POS3. Pathophysiology (i)

- Same as in adults: POS in mature brain
 - Children 2y-18y (rat models >P21)
- Different from adults: POS in immature brain
 - Immature brain is more epileptogenic that mature brain, under 2y (rat models <P21)
 - Epilepsy more frequent, seizures more numerous (Wasterlain, BenAri, reviews 2013)
 - Seizures induce neuroplasticity, « seizures beget seizures », more pharmacoresistance (Berg 2001)
 - In neonates, GABA is excitatory instead of inhibitory

I. Disease: E.with POS/POS

3. Pathophysiology (ii)

II. Clinical response: Seizures (POS)1. The efficacy endpoint

- Endpoint used in adults and children, at any age
- Quantified end-point (seizure frequency)
 - Efficacy = more than 50% decrease in POS frequency
- Objective endpoint (electro-clinical event) subjectively reported (could eventually be improved using video recording)
- Electrical component record (EEG discharge) is the same as in adults and children, at any age

II. Clinical response/efficacy: POS2. Clinical symptoms

There are age-related differences

- In children 2y-18y
 same clinical seizures as in adults
- In infants 1mth-2y
 clinical seizures often more subtle than over 2y
- In neonates
 seizures often non-motor (« minor seizures »)
 seizures often infraclinical (only EEG discharge)

II. Clinical response: Efficacy POS3. Treatment data

- The controlled data available are RCT with new AEDs as adjunctive therapy versus placebo
- There are age-related differences
 - In children 2y-18y: same results as in adults
 - In infants 1mth-2y: some differences with adults and children >2y
 - In neonates: no RCT versus placebo available

Comparing efficacy between adults and children in Epilepsy with POS

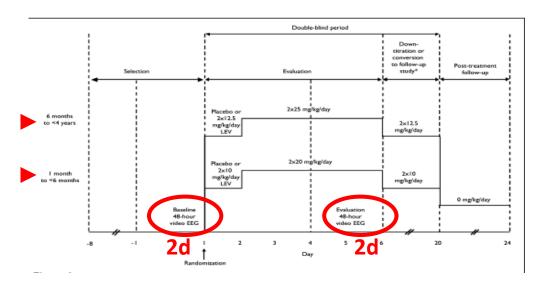
	RCT as adjunctive therapy <i>versus</i> placebo	Nb of trials	Nb patients (major trial) & ages	Decreased seiz. frequency (Placebo)
TPM	Adults (Faught 1996)	7	749 (181)	30% (13%)* p<.05
	Children (Elterman 1999)	1	86 / 2-16y	33% (11%) p=.03
LTG	Adults (Matsuo 1993)	11	571 (191)	36% (8%) p=.008
	Children (Duchowny 99)	1	199 / <mark>2-16y</mark>	36% (7%) p=.007
OXC	Adults (Barcs 2000)	1	694	40% (8%)** p=.0001
	Children (Glauser 2000)	1	267 / 3-17y	35% (9%) p=.0001
GBP	Adults (US study 1993)	3	416 (306)	18% (8%)° p<.05
	Children (Appleton 1999)	1	247 / <mark>3-12y</mark>	17% (7%) p<.05
LVT	Adults (Cereghino 2000)	1	268	40% (11%) p<.001
	Children (Glauser 2006)	1	198 / <mark>4-16y</mark>	43% (16%) p<.001

^{* 200}mg, ** 1200mg, ° 1200mg, °° 3000mg

Chiron et al, Drugs 2008

Comparing efficacy between adults, children & infants in Epilepsy with POS

	RCT as adjunctive therapy versus placebo	Nb of trials	Nb patients (major trial)	Decrease seiz. number (Placebo)	
TPM	Adults (Faught et al 1996)	7	749 (181)	30% (13%) p<0.05	
	Children (Elterman et al 1999)	1	86 / 2-16y	33% (11%) p=0.03	
	Infants (Novotny et al 2010)	1	149 / 1m-2y	10% (16%)° NS	
LTG	Adults (Matsuo et al 1993)	11	571 (191)	36% (8%) p=0.007	
	Children (Duchowny et al 99)	1	199 / 2-16y	36% (7%) p=0.008	enrichment
	Infants (Pina-Garza et al 2008)	1	38 / 1m-2y	escape 58% (94%) NS	withdrawal
OXC	Adults (Barcs et al 2000)	1	694	40% (8%) p=0.0001	
	Children (Glauser et al 2000)	1	267 / 3-17y	35% (9%) p=0.0001	pseudo-
	Infants (Pina-Garza et al 2005)	1	128 / 1m-4y	83% (46%) p<0.05	placebo
LVT	Adults (Cereghino et al 00)	1	268	40% (11%) p<0.001	
	Children (Glauser et al 06)	1	198 / 4-16y	43% (16%) p<0.001	/
	Infants (Pina-Garza et al 2009)	1	116 / 1m-4y	44% (7%) p<0.001	/

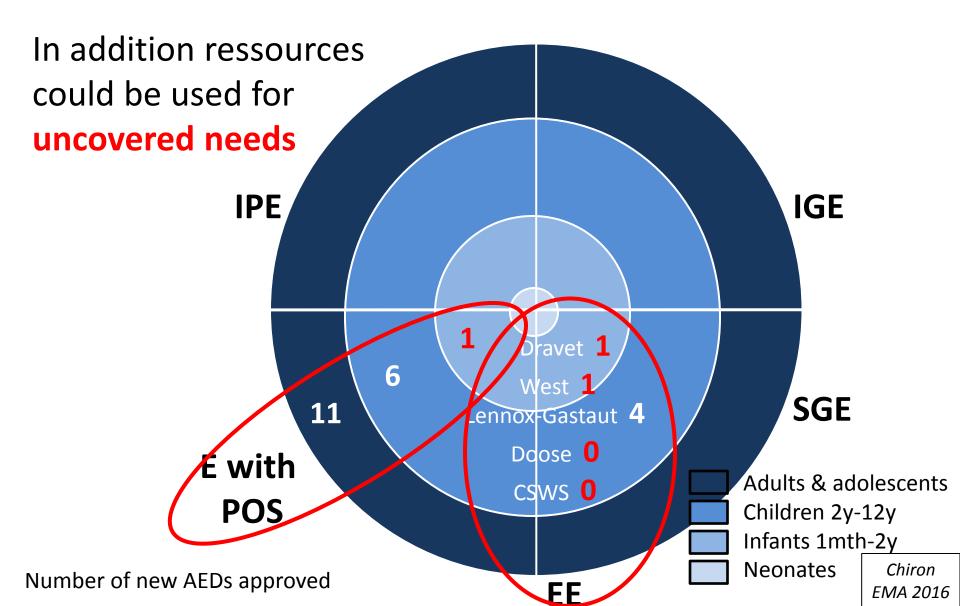

^{° 25}mg/kg/d

III. Extrapolation: benefits for paediatric patients with epilepsy (1)

- Extrapolating from adult with POS (source population) would avoid unnecessary trials in the target population:
 - Epilepsy with POS (non idiopathic)
 - Children aged 2y-18y
 - For efficacy as adjunctive therapy
- The concept is already **20 year-old**:
 - Sheridan et al, Epilepsy Res 1996 (NIH working group)
 - Chiron & Pons, Drugs 2008 (Eilat VII conference 2004)
 - EMA 2009 Paediatric epilepsy experts group meeting (Guidelines EMA/153272/2010)
 - Pellock et al, Neurology 2012
 - EMA 2012-2016 Extrapolation WG, concept/reflection papers

III. Extrapolation: benefits for paediatric patients with epilepsy (2)

- Efficacy RCT in POS could therefore be performed in infants only (1mth-2y) (Neonates to be looked at separately)
- Adapted designs are needed


Adjunctive levetiracetam for POS in children aged 1mth-4y Pina-Garza et al 2009

Recruitment difficulties

- Not because of too few patients (networks, associations)
- Not because of placebo (adapted designs)
- But because of designs unsuited to infants (too long duration, too many visits, unnecessary biology samples, ..)

Chiron EMA 2016

III. Extrapolation: benefits for paediatric patients with epilepsy (3)

Conclusion: the current strategy is the contrary

	<u>AED</u>	<u>App</u>	<u>roval</u>
•	Vigabatrin (Sabril°)	any age	IS (orphan)
•	Levetiracetam (Keppra°)	> 1mth	POS
•	Stiripentol (Diacomit°)	> 1y	Dravet (orphan)
•	Lamotrigine (Lamictal°)	> 2 y	POS + LGS + IGE
•	Topiramate (Epitomax°)	> 2y	POS + LGS
•	Felbamate (Taloxa°)	> 4y	LGS
•	Rufinamide (Inovelon°)	> 4y	LGS (orphan)
•	Gabapentin (Neurontin°)	> 6y	POS
•	Oxcarbazepine (Trileptal°)	> 6y	POS
•	Perampanel (Fycompa°)	> 12y	POS
		-	RCT performed
•	Pregabalin (Lyrica°)	adult POS	POS 2y-18y
•	Zonisamide (Zonigran°)	adult POS	POS 2y-18y
•	Eslicarbazepine (Zebinix°)	adult POS	POS 2y-18y
•	Lacosamide (Vimpat°)	adult POS	POS 2y-18y
•	Retigabine (Trobalt°)	adult POS	POS 2y-18y

Chiron EMA 2016

Key Messages (Epilepsy)

- 1- Developmental physiology may modify the effect of drugs in children: GABA may be excitatory instead of inhibitory in neonates
- 2- Most pediatric epilepsy syndromes do not exist in adults precluding extrapolation
- 3- POS is an exception with similarities in the disease profile and therapeutic responses
- 4- There are other examples that may enlarge the field of extrapolation in epilepsy syndromes: Lennox-Gastaut syndrome, idiopathic generalised epilepsies
- 5- There is no biomarker available yet to be used in for epilepsy in pharmacometrics
- 6- Pharmacometrics cannot yet cover most of the epilepsy syndromes as there are no pharmacodynamic models to describe each of them
- 7- This is presently a limitation for extrapolation showing the way for future research. More research is needed on pathophysiology and modeling of pharmacodynamics.