$\frac{\mathbf{C} \ \mathbf{B} \ \mathbf{G}}{M E^{B}}$

How to use prior knowledge in defining a control strategy?

– Some Regulatory Reflections

R. Martijn van der Plas

Sr. Assessor CBG-MEB (NL)

Disclaimers apply

Critical Quality Attributes

- Critical Quality Attribute:
 - A physical, chemical, biological or microbiological <u>property</u> or characteristic that should be within an <u>appropriate limit</u>, <u>range</u>, or <u>distribution</u> to <u>ensure</u> the desired product quality.
- Control Strategy:
 - A planned set of controls (..) that ensures (..) product quality.
- Which properties (quality attributes)?
 - CQA identification, product characterisation
- What limit (acceptance criterion)?
 - ICH Q6A/B
- How to ensure this?
 - Specification vs control strategy

Specifications – which acceptance criteria?

- ICH Q6A: Fairly detailed guidance
 - See decision tree #1
 - Supported by Ph. Eur. concept of identification/qualification limits (typically 0.1%)
 - Ph.Eur. 5.10 ('Control of impurities'): **Qualification**: the process of acquiring and evaluating data that establishes the biological safety of an individual impurity or a given impurity profile at the level(s) specified.
- ICH Q6B: based on lots used in preclinical and/or clinical studies, data from lots used for demonstration of manufacturing consistency and data from stability studies, and relevant development data
 - Reflects that biologicals are complex mixtures

Regulatory concerns (biologicals)

- Outcome EMA Industry workshop 2011:
- Specifications should ensure that the product is safe and efficacious and representative of batches used in clinical trials
- Clinical qualification are considered the most important aspect when setting the acceptance criteria.
 - Acceptance criteria applied for critical attributes should normally not be wider than what has been clinically qualified.
 - Note added: Not necessarily restricted to levels used in clinical trials
 - Acceptance criteria for non-critical attributes can be based on process capability allowing wider limits than what have been used in the clinical trial

Clinical relevance (focus biologicals)

- Clinical qualification of specifications/acceptance criteria for biologicals is desired goal
- However, this goal is elusive, lack of (product-specific) evidence-based data:
 - Actual number of patients really subjected to a certain level of impurities; vis a vis
 - The sensitivity to pick up rare (like immunogenicity) or small (minor shifts in PK/PD) clinical effects.
 - Actual Product Quality may be 'too good', but it is difficult to be sure -remember Eprex.
- Prior knowledge to the rescue!

Clinical relevance (focus biologicals)

- Keep in mind the pharmacovigilance findings of Thijs
 Giezen et al.:'The safety of biologicals is mainly
 determined by exaggerated pharmacology; additionally
 immunogenicity.'
- Evidence based proof will be difficult to obtain
 - Not feasible to produce/use impaired (artificially degraded) batches (aged?).
 - Sufficiently powered studies (number of patients/subjects, duration)
 - Animal models rarely predictive
 - Which standard of proof is feasible/acceptable?

A real life example

- "For monomeric IgG, the lower tolerance limit at the drug substance end of shelf life is ≥97.75%. This tolerance limit supports the proposed acceptance criterion of ≥96.0% for drug product release. Taking into account the expected decrease in monomeric IgG over 2 years from the date of manufacture yields an adjusted lower tolerance limit of ≥97.35%. This tolerance limit and the limited data set support the proposed acceptance criterion of ≥95.0% at the end of drug product shelf life."
- Clinical batches at release ≥ 98,7 % monomers, following 36 M storage all results ≥ 98,3%

Table 3.2.P.5.6.11-2 Statistical Analysis Summary – Purity and Potency ^a

	Parameter		DS Substance End of Shelf- life and DP Starting Tolerance Limits Tolerance Limits (%) a	Proposed Drug Product Release Acceptance Criteria	Drug P Change on Stability b	Adjusted Tolerance Limits	Proposed Drug Product End of Shelf-life Acceptance Criteria
	Size Exclusion	% Monomeric IgG	≥97.75	≥96.0	-0.407	≥97.35	≥95.0
	HPLC	% HMWS	≤1.06	≤2.0	0.046	≤1.10	≤2.0
R. Martijn van	der Plas	% LMWS	≤1.39	⊊.0	0.344	≤1.73	≤3.0

A real life example -Prior Knowledge issues

- Why is this (purity, presence of dimers/fragments) a CQA?
 Why is it routinely tested for all MAbs?
 - Immunogenicity? How big (or small?) is the risk?
 - Common industry practice.
- What is an acceptable limit?
 - Prior knowledge: 95-99% ballpark?
 - Clinical qualification based on broad prior knowledge (broad experience, many Mabs)?
 - Cf. Ph. Eur. <0918> (Igiv); SE-HPLC purity: 'sum of monomer and dimer not less than 90%; sum of polymers and aggregates not more than 3%' (dose: 0.2 2.0 g/kg)

There's more than MAbs...

- Enzyme Replacement Therapy
 - Importance of cellular uptake, mannose-6-phosphate glycosylation levels
- Coagulation factor analogues
 - Issues related to standardisation of biological activity testing
- Host Cell Proteins (process related impurity)
 - Observed specification levels vary two orders of magnitude

Where we are now

- Broad prior knowledge database crucial for robust (regulatory) decision making
- Prior knowledge provides additional reassurance beyond product specific data
- Prior knowledge often used implicitly
 - What's a CQA?
 - What to test?
 - Which acceptance criterion/limit?
- Necessary to identify the prior knowledge more explicitly
 - Transparency
 - Codification? How?
 - Open literature?

Questions to address

- What is (and isn't) prior knowledge in the context of defining a control strategy?
- How can it be used for defining a control strategy?
- How to justify its use when defining a control strategy?
- How and where to present it in the dossier to support a control strategy?
- (How) can prior knowledge be used for justification of specifications exceeding clinical exposure and in support of safety threshold (across families of products)

Four case studies

- Nancy Cauwenberghs (MSD)
 - Multivalent vaccines using prior knowledge from monovalent vaccines
- Rachel Orr (GSK)
 - Oligonucleotides as a specific class with associated prior knowledge
- Darrin Cowley (Amgen)
 - Monoclonal Antibodies
- Thomas Stangler (Novartis)
 - Monoclonal Antibodies/biosimilars

$$\frac{\mathbf{C} \quad \mathbf{B} \quad \mathbf{G}}{M \quad E^{B}}$$