

Reproductive Toxicity

An introduction to regulatory aspects on detection of toxicity to reproduction for medicinal products

Günter Waxenecker SME Workshop London Oct 3rd, 2016

Unique aspects of reproductive toxicity

- ➤ any substance can be teratogenic if given to the right species, at the right stage in development (Karnofsky's Law) also organ- and dose-specific, and exposure-dependent
- we know a lot more about animal reprotoxicity (animal to human and animal to animal concordance)
- Animal testing is required for predicting human toxicity

 Relevance of findings for humans needs to be assessed

 Mechanistic studies required to demonstrate irrelevance of findings
- Significance of findings

Background incidence, categorization and hierarchy of findings, terminology

Clinical relevance of reprotoxicity

- 10–14% of all clinically recognized pregnancies result in spontaneous abortion
 - the actual rate of pregnancy loss, as shown with the use of biochemical assays, is actually two to five times higher.
- the mean age of women at childbirth is 30 or above (and increases)
 - older maternal age is one consistent risk factor causing early pregnancy loss
 - Strong age profile of people using medicines
- France: more than 1/3 pregnancies are **unintended**, although the rate of contraceptive use is high.

OECD Family database Chan et al 2010 Diamond-Smith et al 2014

General principles of teratology

- 1. The final manifestations of abnormal development are **death**, **malformation**, **growth retardation and functional disorder**.
- 2. Susceptibility of the conceptus to teratogenic agents varies with the developmental stage at the time of exposure (**Critical periods of development**)
- Teratogenic agents act via specific pathways
- 4. Manifestations of abnormal development increase in degree from the no-effect to the totally lethal level as dosage increases. (**Dose-related effect Threshold**)
- 5. The access of adverse environmental influences to developing tissues depends on the **nature of the agent**.
- 6. Susceptibility to a teratogen depends on the **genotype** and on the **interaction** with the environment (mother/embryo metabolism/PK)

Re(volution)

Reproductive toxicity testing is the only area in experimental toxicity test settings, where there is a strict before and after – the difference being thalidomide: revolution without evolution

Rat & rabbit testing became gold standard for EFD studies

Initial ICH activities on S5 were driven by a strong need for harmonization

Bass R. et al in Global Approach in Safety Testing, 2013

ICH HARMONISED TRIPARTITE GUIDELINE

DETECTION OF TOXICITY TO REPRODUCTION FOR MEDICINAL PRODUCTS & TOXICITY TO MALE FERTILITY S5(R2)

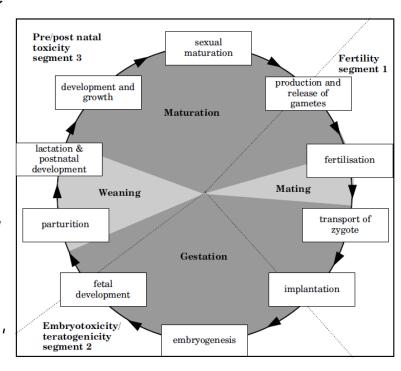
→ chemicals

Aim of reproduction toxicity studies....

... is to reveal <u>any</u> effect of one or more active substance(s) on <u>mammalian</u> reproduction:

effects on the reproductive competence of adult animals (<u>parents</u>) effects induced or manifested in the <u>embryonic</u> or <u>fetal</u> period and those induced or manifested <u>postnatally</u> (e.g. behaviour, lactation - Development of its offspring, developmental toxicity)

The combination of studies selected should allow <u>exposure</u> of mature adults and at <u>all stages of development</u> from conception to sexual maturity.


To allow detection of immediate and latent effects of exposure, <u>observations</u> should be continued through one complete life cycle, i.e. <u>from conception</u> in one generation <u>through conception in the following</u> generation.

ICH S5(R2)

Stages of a reproductive life cycle AGES

- A. Premating to conception (adult male and female reproductive functions, development and maturation of gametes, mating behavior, fertilisation).
- B. Conception to implantation (adult female reproductive functions, preimplantation development, implantation).
- C. Implantation to closure of the hard palate (adult female reproductive functions, embryonic development, major organ formation).
- D. Closure of the hard palate to the end of pregnancy (adult female reproductive functions, fetal development and growth, organ development and growth).
- E. Birth to weaning (adult female reproductive functions, neonate adaptation to extrauterine life, preweaning development and growth).
- F. Weaning to sexual maturity (postweaning development and growth, adaptation to independent life, attainment of full sexual function).

ICH S5(R2) and Spielmann 2009

Selection and number of species

- ...use mammalian species.
 - desirable to use the same species and strain as in other toxicological studies.
 - Rats predominant: practicality, background knowledge.
- In embryotoxicity studies only, a second mammalian species <u>traditionally</u> has been required, the rabbit being the preferred choice as a "non-rodent"...background knowledge, availability and practicality.
- Note 5 (2.1) Selection of species and strains
 - All species have their disadvantages, for example...
 - ... If it can be shown by means of kinetic, pharmacological and toxicological data that the species selected is a relevant model for the human, a single species can be sufficient.

Other test systems

- In short, there are no alternative test systems to whole animals currently available for reproduction toxicity testing with the aims set out in the introduction (Note 6).
- Uses of other test systems than whole animals
 - Other test systems have been developed and used in preliminary investigations ("pre-screening" or priority selection) and secondary testing.

ICH S5(R2) Section 2

Many alternative systems show high sensitivity (true positive rate)

Barrow P. 2016

Dosing and maternal toxicity

Dosages:

- Choice of the high dose... based on data from all available studies
- Some minimal toxicity (reduced bw gain...) is expected in the high dose dams
- 1 g/kg/day should be an adequate limit dose (Note 7)
- But: Dose-response relationship: wide dose intervals would be inadvisable (Note 8)
- results should be direct effects of the compound (not due to maternal toxicity!)

ICH S5(R2) Section 3.1

Maternal toxicity:

- Potential significant confounding factor in data interpretation.
- Also distinguish "true" maternal toxicity from exaggerated pharmacology.

Beyer et al. 2011: ILSI/HESI Maternal toxicity workshop

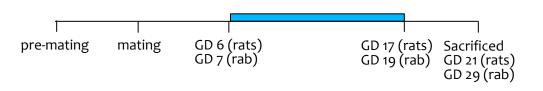
Kinetics

The exposure in pregnant animals of the compound and/or metabolites should be assessed measure systemic exposure for verification purposes and to relate to human exposure

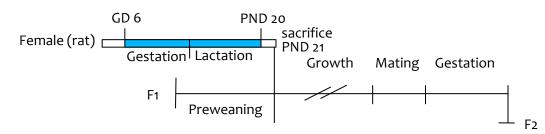
- Plateau in plasma concentration?
- > Frq differences bw pregnant and non-pregnant
- consider preliminary studies!

EMEA/CHMP/203927/2005 Risk Assessment of Medicinal Products on Human Reproduction and Lactation: From Data to Labelling ICH S5(R2) Section 3

Proposed study designs


- Decision on the most appropriate strategy and choice of study design:
 - use ALL available data:
 - o pharmacological
 - toxicological
 - o kinetic data of the compound
 - o class effects
- Group sizes:
 - should allow meaningful interpretation of data, educated guess bw 16 to 20 litters for rodents and rabbits should be evaluable (Note 13)

Consider a 3-study design ("The most probable option")



 4.1.1. Fertility + EED (Stage A-B (pre-mating, conception, implantation) Segment I)

 4.1.3. EFD Toxicity study (Stage C-D; implantation, closure of hard palate, Seg II, Teratology study)

 4.1.2. Peri/postnatal study (Stage C-F, Seg III)

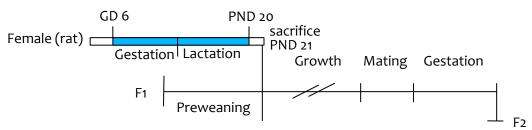
- But other strategies could be as valid (2- and 1-study design)
- leave no gaps between stages
- In case of signals, information on the mechanism is desirable.

ICH S5(R2) Section 4 EMEA/CHMP/203927/2005 13

Fertility and Early Embryonic Development

- Stage A-B (or pre-mating, conception and implantation); Segment I
- Design guided by results of RDTSs: separate or combined male and female study
- Administration period:
 - Provided no effects have been found in RDTSs of at least one month duration that preclude this, a
 premating treatment interval of 2 weeks for females and 4 weeks for males can be used (Note 12).
 addendum allows for 2 weeks prior to mating
- Evaluation of
 - maturation of gametes,
 - mating behavior,
 - fertility,
 - preimplantation stages of the embryo,
 - Implantation of the embryo into the uterus.
- At least one species, preferably rats.

Embryo-fetal development toxicity study



- Stages C-D; Seg II, Teratology study
- · Aim:
 - To detect adverse effects on the pregnant female and development of the embryo and fetus consequent to exposure of the female from implantation to closure of the hard palate
- Administration period
 - The treatment period extends from implantation to the closure of the hard palate
- Evaluation of
 - enhanced toxicity relative to that in non-pregnant females,
 - embryofetal death,
 - altered growth
 - structural changes.
- Two species (preferably rat) and one non-rodent (preferably rabbit)

Pre- and postnatal development, including maternal function

- Stage C-F, Seg III
- Aim:
 - To detect adverse effects on the pregnant/lactating female and on development of the conceptus and the offspring following exposure of the female from implantation through weaning.
 - observations should be continued through sexual maturity
- Administration period:
 - Females exposed to the test substance from implantation to the end of lactation (i.e. stages C to E)
- Evaluation of
 - enhanced toxicity relative to that in non-pregnant females,
 - pre- and postnatal death of offspring,
 - altered growth and development,
 - functional deficits in offspring, including behavior, maturation (puberty) and reproduction (F1).
- At least one species, preferably rats;

Statistics and Data presentations AGES

• Statistics:

- the basic unit of comparison is the mating pair or litter, not the foetus or neonate
- interpretation based on biological plausibility

Data presentations

- should be able to follow the history of any individual animal
- Group summary values should be presented in a form that is biologically plausible

Reprotox testing with Biologicals

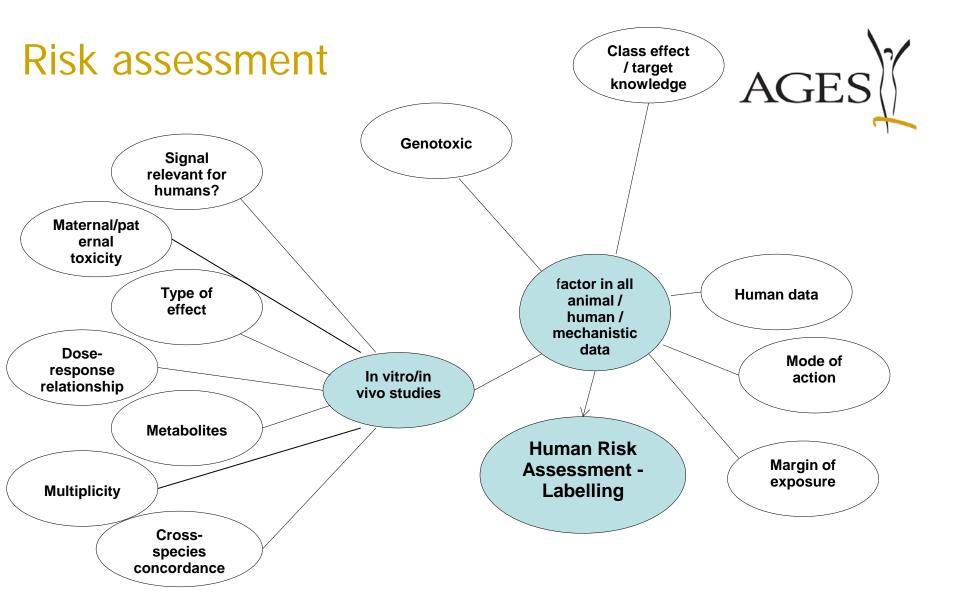
For biotechnology-derived pharmaceuticals

- the evaluation of toxicity to reproduction should be conducted only in <u>pharmacologically relevant</u> species.
- Developmental toxicity studies in NHPs can only provide hazard identification.
- If relevant only in NHPs, there is still a preference to test the clinical candidate.
- When the <u>weight of evidence</u> suggests that there will be an AE on fertility or pregnancy outcome ...additional nonclinical studies might not be warranted.
- More flexible, but science-based approach

ICH S6(R1)

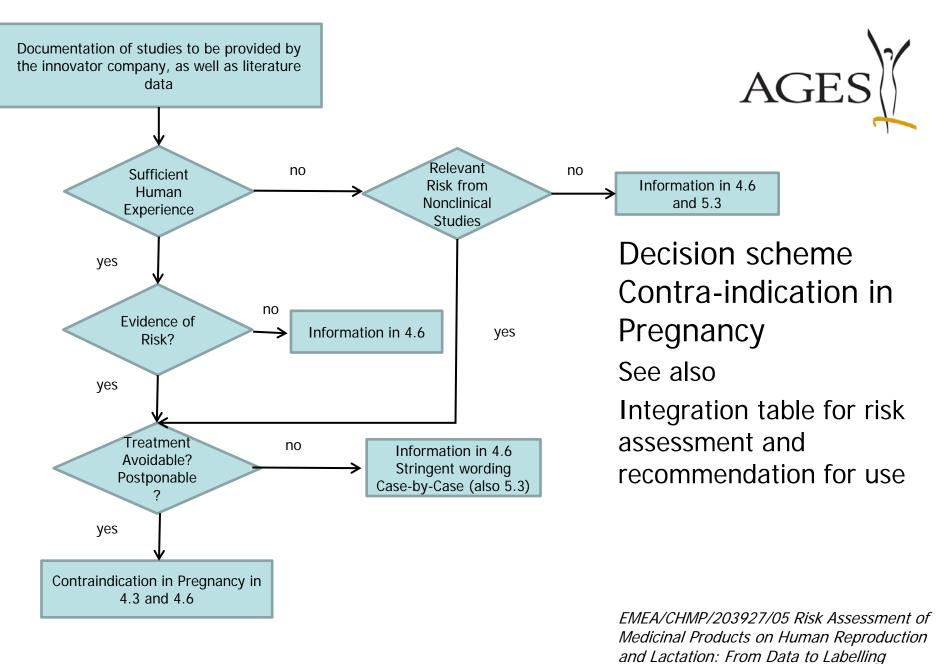
Patients with advanced cancer

- EFD Toxicity study for MAA,
 - Not for CTs
 - Not if compound is genotoxic and targets rapidly dividing cells or belong to a class known to cause developmental toxicity
 - For small molecules, if EF lethality or teratogenicity is shown, second species testing is not warranted
 - For biopharmaceuticals one relevant species is usually sufficient
- A study of fertility and early embryonic development and a PPND study is generally not warranted to support CTs or for MAA of pharmaceuticals intended for the treatment of <u>patients with advanced cancer</u>.


ICH S9 ICH S9 Q&A (draft)

Timing of studies

- Based on evaluation of reproductive organs in the RDTSs
 - Male fertility studies not needed for Ph I and II trials
 - Women not of childbearing potential can be included in clinical trials
- For WOCBP <u>not</u> using <u>highly effective birth control</u> or whose pregnancy status is unknown all female reproduction toxicity studies and the standard battery of genotoxicity tests should be completed before inclusion in any clinical trial.
- Inclusion of <150 WOCBP, treatment for a relatively short duration: <u>preliminary EFD</u> studies from two mammalian species required
- Inclusion of >150 WOCBP: definitive EFD studies, 2 species
- Submit PPND data for Marketing authorisation


ICH M3(R2)

significance (biological/statistical)

> strength of signal

EMEA/CHMP/203927/05 Risk Assessment of Medicinal Products on Human Reproduction and Lactation: From Data to Labelling

ICH S5: From R2 to R3 Revision ongoing

Current Step 4 version
Parent Guideline dated 24 June 1993
(Addendum dated 9 November 2000 incorporated in November 2005)

Excellent safety track record developmental toxicity, but

- The S5(R2) Guideline on Reproductive Toxicity was written **over 20 years ago**.
- Scientific, technological and regulatory knowledge has significantly evolved
- Opportunities exist to reduce animal use

Guidelines

- ICH S5(R2) Reproductive toxicology: detection of toxicity to reproduction for medicinal products including toxicity to male fertility (CPMP/ICH/386/95)
- ICH M3(R2) (CPMP/ICH/286/95): non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals – Questions & Answers!
- EMEA/CHMP/203927/05 Risk Assessment of Medicinal Products on Human Reproduction and Lactation: From Data to Labelling
- ICH S3A (CPMP/ICH/384/95) Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies
- ICH S6(R1) (EMA/CHMP/ICH/731268/1998): Preclinical safety evaluation of biotechnology derived pharmaceuticals
- Recommendations related to contraception and pregnancy testing in clinical trials, September 2014;
 CTFG
- CPMP/SWP/2600/01 PtC on the Need for assessment of reproduction toxicity of human insulin analogues
- Q&A on the withdrawal of the CPMP Note for guidance on preclinical pharmacological and toxicological testing of vaccines (CPMP/SWP/465)
- Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines, WHO 2013
- EMEA/CHMP/313666/2005 Exposure to Medicinal Products during Pregnancy: Need for Post-Authorisation Data
- CHMP/SWP/169215/05 Need for Non-Clinical Testing in Juvenile Animals on Human Pharmaceuticals for Paediatric Indications

Thanks!

