

Selection and estimation in exploratory subgroup analyses – a proposal

Gerd Rosenkranz, Novartis Pharma AG, Basel, Switzerland EMA Workshop, London, 07-Nov-2014

Purpose of this presentation

- Proposal for exploratory subgroup analyses
 - Favoring estimation over tests and/or p-values
- Identification of subgroups with differing efficacy ('predictive subgroups') as an integral part of analysis
 - Accounting for subgroup selection uncertainty and selection bias
- Discussion of properties, limitations and extensions
- General remark: The potential of any method of subgroup analysis is limited by the information content of the data

Definition of Subgroups

Draft EMA Guideline on Subgroups in confirmatory trials, Section 4.1

- A subgroup can be defined as any subset of the recruited patient population that fall into the same category (level) with regard to one or more descriptive factors prior to randomization
- Factors may relate to
 - Demographic characterstics (e.g., age, gender, race)
 - Disease characteristics (e.g., time of diagnosis, severity)
 - Clinical considerations (e.g., region, concomitant medication)
- Subgroups defined by different factors may overlap
- Sufficient to consider subgroups based on a single factor in most cases

Consistency

- Evidence for lack of consistency if at least one subgroup can be identified where the effect of test treatment over control differs
 - from the overall effect or, equivalently,
 - between subgroup and its complement
- How to identify subgroups without too much risk of chance findings or incorrect selections?
- How to estimate the effect in the identified subgroups without too much bias?
- What constitutes sufficient evidence of consistency is less obvious

A modeling approach for subgroup identification

- Assume subgroups can be defined in terms of factors with two levels, that is, each factor divides the patient population into two subgroups like
 - Gender: male, female
 - Age group: $\le 65y$, > 65y
- List of candidate factors available
- Turn subgroup identification into model selection
 - For each candidate factor, fit a statistical model including a term that reflects the amount by which the difference in treatment arms is influenced by the factor
 - Select the model providing the best fit and estimate the amount by which the difference in treatment arms is influenced by the factor

A modeling approach for subgroup identification

Drawbacks

- Does not account for model selection uncertainty
- May result in biased estimates (driven by search for the best fit)
- Small changes of data may result in substantially different results
- Better but expensive approach:
 - Identify factor corresponding to best fit in a series of studies
 - Note how often different factors are identified
 - Aggregate estimates across studies
- Consider re-sampling instead

A modeling approach for subgroup identification

- Sample with replacement (by treatment) from original data
- 2. Identify model with best fit to sample
- 3. Obtain estimates from that model
- 4. Repeat steps 1 3 above many times
- 5. Select the factor belonging to the most frequently selected model ('voting')
- 6. Obtain (biased-reduced) parameter estimates for that selection from the samples

Simulations

Assumptions

- Normally distributed data with $\sigma = 1$
- Overall difference between test and control: 0.5
- 90% power, $\alpha = 0.00125$ (two trials in one)
- 1:1 randomization
- 166 subjects per treatment
- Two predictive factors: 'gender' and 'age group', such that each gender – age group combination accounts for 25% of subjects
- Three unpredictive factors called random1, random2, random3 that mark subgroups randomly
- Effect of control = 0 (regardless of subgroups)
- Effect of test treatment in subgroups on following slides
- 500 simulated studies with 200 re-samples each

Simulation results

Consistent effects

Consistent mean effect of test treatment		Ger	nder	Marginal	Difference	
		0	1			
Age group	0	0.5	0.5	0.5		
	1	0.5	0.5	0.5	0.0	
Marginal		0.5	0.5	0.5		
Difference		0.0				

Factor	Frequency of selection (%)	True marginal difference	Estimator	Bias-reduced estimator
Age group	21.0	0.0	-0.02(0.35)	-0.02(0.25)
Gender	18.0	0.0	-0.06(0.29)	-0.05(0.21)
Random 1	19.8	0.0	0.07(0.34)	0.04(0.21)
Random 2	19.0	0.0	0.02(0.38)	0.02(0.27)
Random 3	22.2	0.0	0.01(0.40)	0.02(0.28)

Simulation results

Inconsistent effects

Inconsistent mean effect of test treatment		Ger	nder	Marginal	Difference	
		0	1			
Age group	0	0.2	0.4	0.3	04	
	1	0.5	0.9	0.7	0.4	
Marginal		0.35	0.65	0.5		
Difference		0.3				

Factor	Frequency of selection (%)		True marginal difference	Estimate	Bias-reduced estimate	
Disease status		61.6		0.4	0.48(0.21)	0.41(0.21)
Gender		27.0		0.3	0.45(0.25)	0.37(0.23)
Random 1		3.8		0.0	-0.03(0.45)	-0.01(0.35)
Random 2		2.8		0.0	-0.15(0.39)	-0.12(0.30)
Random 3		4.8		0.0	0.03(0.55)	0.02(0.42)

Remarks

- Approach can be extended to
 - Binary and (ordered) categorical endpoints
 - Continuous factors (covariates)
- Need to account for subgroups defined by more than one factor if effect in a subgroup strongly affected by another factor:

Inconsistent mean effect of test treatment		Ger	nder	Marginal	Difference	
		0	1			
Age group	0	0.3	0.7	0.5	0.0	
	1	0.7	0.3	0.5	0.0	
Marginal		0.5	0.5	0.5		
Difference		0	.0			

Outlook

- Proposed method can be further extended to derive a predictor for the effect of treatment in a future patient
- Can use the factor values directly no need to artificially dichotomize numerical factors (like age, BMI) to define subgroups with all its disadvantages
- Predicted effect size under alternative treatments and measure of prediction uncertainty can support physician's decision on how to treat a patient

