SOURCE DATA Modellers perspectives

Session 2:

Structure, methods and decision criteria for extrapolation (planning) Mapping of the extrapolation with the common framework to clinicians, modelling and stats

Extrapolation workshop; 30/9-2015

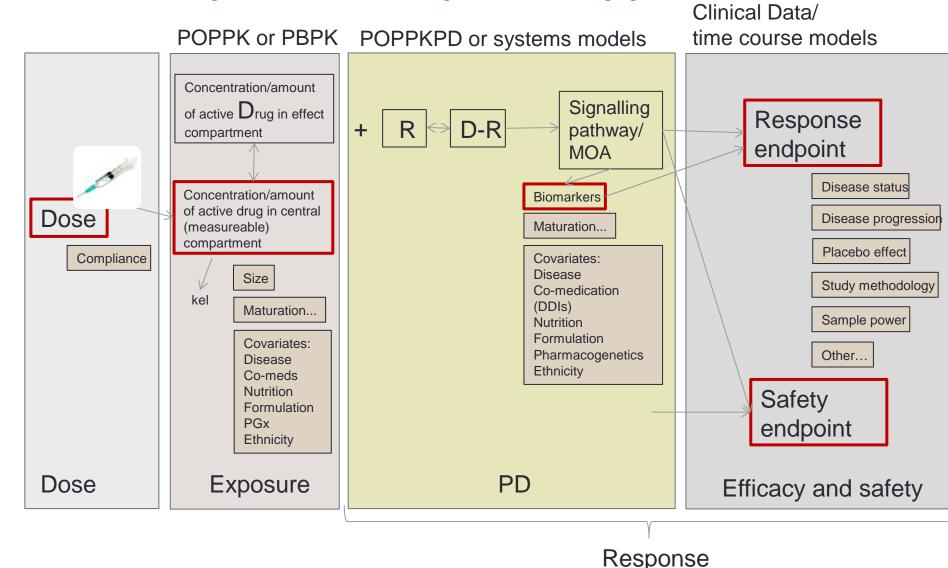
Sources of data

In general; all data relevant for describing the interplay between the drug, organism and disease ("systems data")

Useful sources of data include

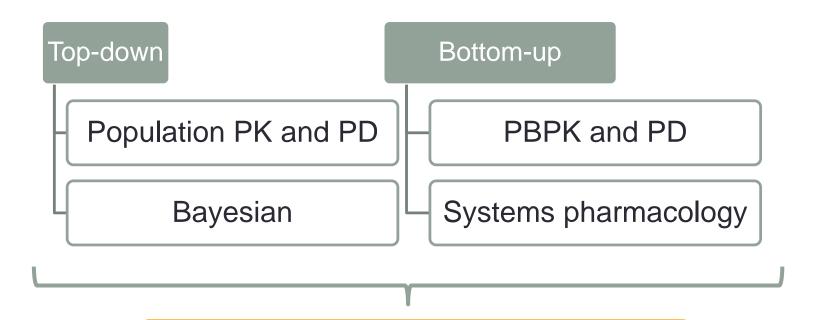
- Clinical data
 - Adult clinical data on drug in question
 - Paediatric clinical data on drug in question
 - Clinical data on same drug in other conditions
 - Clinical data from other similar drugs in same condition.
- Non clinical data
- In vitro data/ Physiochemical drug data
- Data on biology, physiology, pathophysiology etc

The sources needed will generally depend on the approaches taken


- Need to outline the potential sources per approach?
- Is there a need to set general requirements?

Inform transitions

Relevant levels of transition in paediatric developments:


- Inform clinical study design or replace a study
- Source to target population
 - adult to children
 - between children of different age groups
 - animal to human
 - physiochemical and in vitro to in vivo
- Dose to Exposure
- Exposure to Response
 - exposure to PD endpoint/biomarker
 - PD endpoint/biomarker to clinical efficacy and safety endpoints

Dose Exposure Response approaches

Different data sources and confidence in the data.

Tool box for pharmacological M&S

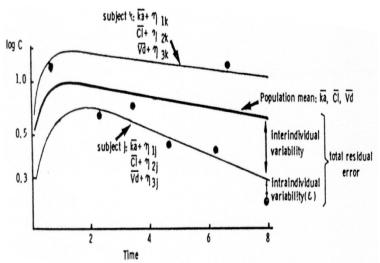
Combine methods to use all existing knowledge

Clinical trial simulations to optimize trial design

Population PKPD- Data sources

Primary data source:

Clinical data:


Pharmacokinetics

Pharmacodynamics

Covariate data

Supporting data:

Physiological data: on clearance, Vd and F to support PK model Systems data/ in vitro data to support PKPD model Factors linked to variability Assumptions Uncertainty

Possible determinants of Inter-subject variability:

> Age, Body Weight or Surface Area, gender, race Genetic: CYP2D6, CYP2C19 Renal (Creatinine Clearance) or Hepatic impairment, Disease State Concomitant Drugs Other Factors: Diet, Circadian

Variation, Formulations

PBPK/System modelling

System model

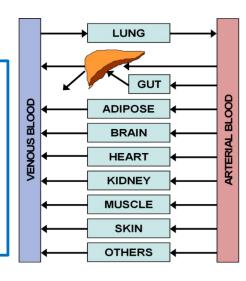
Anatomy Biology

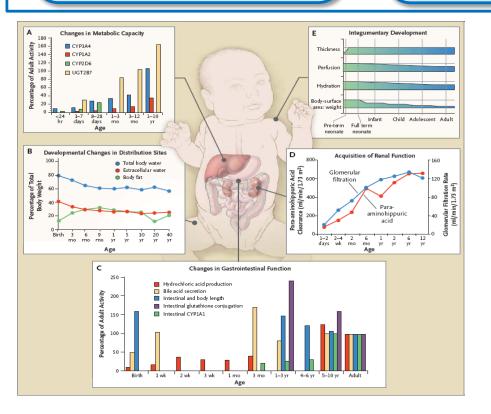
Physiology

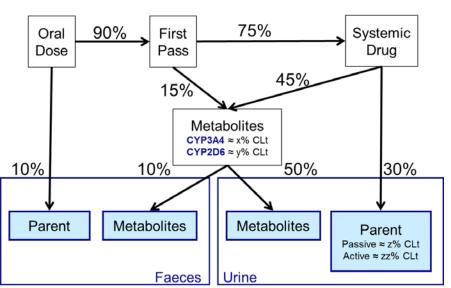
Pathophysiology

Patient/disease extrinsic factors

Drug specific parameters ADME, PK, PD and MOA


Metabolism


Active transport/Passive diffusion


Protein binding

Drug-drug interactions

Receptor binding

Systems models - data sources

Physiological data

- Variety of sources
- Historical
- Data often lacking
- Populations in software reflect variability in physiology/ enzymology.

Drug dependent parameters

- Variety of sources
- Non standardised in vitro assays
- No incorporation of variability
- Complex pathways

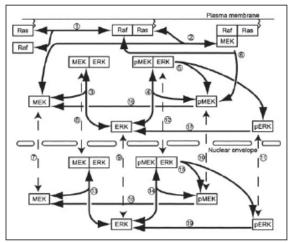


FIGURE 6. Minimum essential model of the Pas/ERK MAPK cascade. The cascade starts from Ras, which is arbitrarily set to reproduce the EGF-induced activation. The arrows represent the reactions specified in the supplemental material, p, phospho-

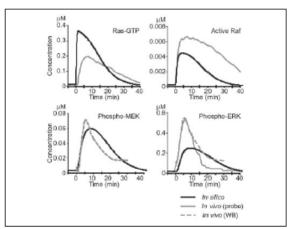
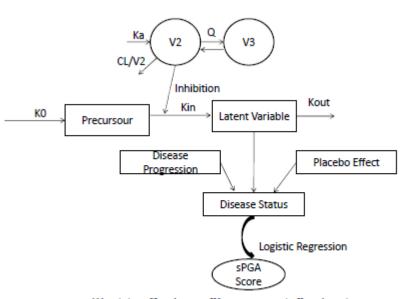
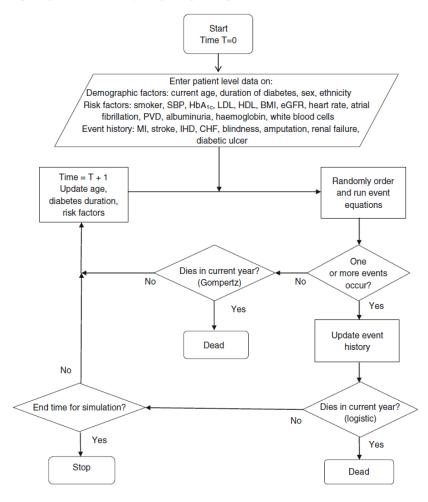



FIGURE7. Kinetics of the components of the Pas/ERKMAPK cascade. The activation of Ras, Raf, and ERK was monitored in vivo by FRET imaging (probe) and/or Western blotting (VI8). The kinetics of MEKand ERKactivation were from Fig. 2.

Property	In silico	In vitro	In vivo
Drug and dose form pro	perties	I	
Log D	V	√	V
Acid or base	V	√	
pKa	V	√	
Solubility	V	√	√
Drug distribution param	neters	<u>.</u> !	
Plasma protein binding	V	√	
Blood/Plasma partitioning	1	V	
Microsome binding	√	√	
Permeability	V	√	√
Tissue Kp's	V	√	√
Pharmacokinetic parame	eters	<u> </u>	
Volume of distribution	V	√	√
Plasma clearance	√	√	V
Clearance (renal)		√	√
Clearance (metabolic)		√	√
Clearance (active)		√	√
Oral bioavailability	√	√	√
Gut extraction	√	√	√
First pass hepatic extraction	√	1	1
Pharmacodyamics- Mult	tiple pathway	S	
Vmax	√	√	√
Km	√	√	√
Time dependancy	V	V	V

Extended time course models



Abbreviations: CL = clearance; K0 = precursor rate in; Ka = absorption rate constant, Kin = latent-variable rate in; Kout = latent variable dissipation rate constant; V2 = central volume; V3 = peripheral volume; Q = inter-compartmental clearance.

Figure 8.23. Schematic representation of the sPGA time course model.

Limited longer term clinical data:

- 1358 patients at 12 weeks
- 270 patients at 60 weeks

Extensive clinical data

- 5102 patients
- 89,760 patient years of data

Conclusions

- The source of data depends on the transition being made and the approach being used.
- All data should be considered that describes the interplay between the drug, the subject and the disease.
- Requirement for transparency about the source of the data.
- Systems modelling is important for a thorough mechanistic understanding but uncertainty around many parameters.