

EMEA Workshop on Biosimilar Monoclonal Antibodies, 2 July 2009

Session 2: Non-Clinical Issues Innovator Industry Presentation

Danuta Herzyk, PhD

Role of non-clinical assessment of biosimilar mAbs

 Non-clinical pharmacology, pharmacokinetic and toxicology studies are key components of integrated assessment of comparability between the innovator and biosimilar products.

Comparative Pharmacology

- Equivalence of biological endpoints in response to both products needs to be demonstrated (*in vitro* potency assays at functional level)
 - Ligand binding (ELISA, Biacore)
 - Fc receptor binding
 - Cell based assays (mitogenesis, flow cytometry, apoptosis)
 - Bioassays / in vivo animal models (e.g., murine xenografts, transgenics)
 - Assay formats should be based on current state-of-the-art considerations

Comparative Pharmacokinetics

 Equivalence of PK parameters for both products in relevant animal species needs to be demonstrated

Comparative Toxicology

 Lack of toxicologically meaningful differences between the toxicity observed for the biosimilar and the toxicity profile of the innovator needs to be demonstrated

- Q2.1: To what extent do we ask for non-clinical studies in relevant species, given that the relevant species is often non-human primates (NHP) and thus the number of animals per group is limited?
- As for other biosimilar products, comparative data (PK/PD) obtained in a relevant species should be mandatory
 - PK and PD are critical factors for demonstration of similarity, in particular given the complexity of these large molecules
 - Where possible, PK, PK/PD (including dose response) studies should be combined to reduce the number of animals used
 - A head-to-head comparative PK/PD evaluation in adequate animal model (if feasable) to understand how *in vitro* PD results translate into *in vivo*

The extent and design of toxicology studies

- Should include one repeat dose study of minimal but sufficient duration to evaluate the toxicity profile in relationship to that known for the innovator
- Need for head-to-head comparative toxicity studies ?
 - In principle, comparator arm should be included unless the exclusion is justified
 - Need to balance the extensive (terminal) animal use in comparative studies (e.g., 54 NHPs/study) and the ability to detect potential unexpected toxicity of a biosimilar based on the described toxicity (or lack of) for the innovator product

- Q2.1: To what extent do we ask for non-clinical studies in relevant species, given that the relevant species is often NHP and thus the number of animals per group is limited? *cont'd*
- Repeat dose toxicity study (typically in NHP) including PD markers (if feasable)
 - Treatment duration
 - Adequate to detect potential differences between the biosimilar and the established toxicity profile for the innovator
 - Recovery groups
 - Generally should be included (control and high dose recovery groups generally sufficient); however, where the toxicity is known to be reversible, not need to evaluate
 - ✤ Immunogenicity
 - Should be included to explain potential unexpected PK/PD profile and/or toxicity
 - Safety Pharmacology
 - Case-by-case, e.g. CV endpoints to be included in repeat dose toxicology
 - ✤ Local tolerance
 - To evaluate injection sites see Q2.4

- Q2.2: How could PD measures ("fingerprinting") be supplementary to quality development
- PD markers for biosimilar should be chosen appropriately to demonstrate equivalent target binding/capture and other relevant functional endpoints
 - Important to consider the analytical format for characterisation of PK, PD and immunogenicity and how these inter-relate to each other
 - PK-PD characterisation may utilise downstream markers from primary target binding (mechanism of action) based on known relevant biology
 - Either single or multiple PD markers (fingerprint) may be relevant to profile the biosimilar; however, broad spectrum –omics approaches should only be considered as exploratory

- Q2.3: For anti-tumoural mAbs, to what level would a comparison of the functional activity beside ADCC/CDC (if relevant) be required? What level is feasible (e.g., signalling events)?
- Comprehensive comparative (head-to-head) functional (anti-tumour) activity in vitro characterisation is needed
- Need for comparative (head-to-head) in vivo anti-tumour activity (in animal tumour models) should be considered based on results of in vitro characterisation and PK profile of biosimilar mAbs
 - When ADCC/CDC comparison results in significant differences and/or the impact of the differences is not understood
 - ✤ PK profiles and *in vivo* findings in non-tumour animal models are significantly different
- Feasibility of the evaluation of anti-tumour MOA-related endpoints, e.g., target dependent signaling pathways, is product dependent
- Any relevant endpoints in pharmacology studies generated with newly emerging methodology should be considered to enhance comparative evaluation

- Q2.4: What is the impact of formulation on in vivo behaviour (injection site and infusion rate comparability)? How could it best be studied?
- Pivotal non-clinical study for a biosimilar should mimic injection site and infusion rate* intended to be used in clinical studies

* - NB infusion rate used in non-clinical studies is often much greater than that used clinically. The converse should be carefully justified.

 If injection site and/or infusion rate for biosimilar is different from innovator then this should be studied clinically

Summary – Non-Clinical Issues

- Non-clinical pharmacology, pharmacokinetic and toxicology studies for biosimilar mAbs need to be adequately designed to detect potential relevant differences in therapeutic and safety profiles
- Assessment criteria should be product specific and formulated in context of full understanding of its structural, biochemical and bioactivity attributes (potency, PK/PD relationship, safety)
- The extent of the non-clinical studies will be dependent on the nature of the pharmacology as well as the nature of (severity, reversibility and monitorability) and dose-response relationship for (known) adverse effects
- Some aspects of biosimilarity (e.g., product label statements regarding immunogenicity) can currently only be addressed in properly designed clinical studies

Back up Slides

- Q2.5: Is there any rationale for conducting reproductive and developmental toxicity studies with biosimilar mAbs, given the existing human experience and that the relevant species is often NHP?
- It is not appropriate to conduct repro-toxicology studies for biosimilar mAbs if expected PK/PD and toxicity profiles in early non-clinical and clinical development are confirmed
 - Comparable biological activity in pharmacology studies
 - No unique toxicity detectable in adequate toxicity studies supporting clinical trials
- The same principle should apply even when some structural differences (e.g., glycosylation) but no biological differences (PK/PD, toxicity profile) in biosimilar mAbs are described
 - No evidence that potential small differences in the quality and/or biological activity of a product could result in a detectable difference in risk of reproductive, developmental and/or embryo-fetal toxicity (unlike risk of immunogenicity)
 - There is negligible IgG placental transfer during the period of organogenesis
 - These studies require significant animal use to generate data and yet data for biologicals are not robust
 - It is unlikely that new data from animal studies with biosimilar mAbs would change the warnings established for their original products