

1 17 January 2013 2 3 EMEA/CHMP/BMV

EMEA/CHMP/BMWP/118264/2007 Rev. 1

Committee for Medicinal products for Human (CHMP)

4 5

- 6 Guideline on non-clinical and clinical development of
- 7 similar biological medicinal products containing low-
- 8 molecular-weight-heparins
- 9 Draft

10

| Draft agreed by Biosimilar Medicinal Products Working Party (BMWP) | April 2008      |
|--------------------------------------------------------------------|-----------------|
| Adopted by CHMP for release for consultation                       | April 2008      |
| End of consultation (deadline for comments)                        | October 2008    |
| Draft agreed by BMWP                                               | February 2009   |
| Adopted by CHMP                                                    | October 2009    |
| Draft revision agreed by BMWP                                      | November 2012   |
| Adopted by CHMP for release for consultation                       | 17 January 2013 |
| Start of public consultation                                       | 31 January 2013 |
| End of consultation (deadline for comments)                        | 31 July 2013    |

11

12

- This guideline replaces 'Guideline on non-clinical and clinical development of similar biological
- medicinal products containing low-molecular-weight-heparins' (EMEA/CHMP/BMWP/118264/2007).

14

Comments should be provided using this <u>template</u>. The completed comments form should be sent to BMWP.secretariat@ema.europa.eu

15 16



| KEYWORDS: | Low-molecular-weight heparins, similar biological medicinal products, |  |
|-----------|-----------------------------------------------------------------------|--|
|           | comparability, non-clinical studies, clinical studies, indication,    |  |
|           | extrapolation                                                         |  |

| 18<br>19 | Guideline on non-clinical and clinical development of similar biological medicinal products containing low- |   |
|----------|-------------------------------------------------------------------------------------------------------------|---|
| 20       | molecular-weight-heparins                                                                                   |   |
| 21       | Table of contents                                                                                           |   |
| 22       | Executive summary                                                                                           | 4 |
| 23       | 1. Introduction                                                                                             | 4 |
| 24       | 2. Scope                                                                                                    | 5 |
| 25       | 3. Legal basis and relevant guidelines                                                                      | 5 |
| 26       | 4. Non-clinical studies                                                                                     | 6 |
| 27       | 5. Clinical studies                                                                                         | 7 |
| 28       | 6. Pharmacovigilance plan                                                                                   | 9 |
| 29       | 7. Extrapolation of indication                                                                              | 9 |
| 30       |                                                                                                             |   |
| 31       |                                                                                                             |   |
|          |                                                                                                             |   |

# 32 **Executive summary**

- 33 This guideline lays down the non-clinical and clinical requirements for low molecular weight heparins
- 34 (LMWHs, low molecular mass heparins, LMMH) containing medicinal products claiming to be similar to
- 35 another one already marketed. The non-clinical section addresses the pharmaco-toxicological
- 36 requirements and the clinical section the requirements for pharmacokinetic, pharmacodynamic,
- 37 efficacy and safety studies as well as pharmacovigilance aspects.

## 1. Introduction

- 39 Heparin is a highly sulphated and heterogeneous member of the glycosaminoglycan family of
- 40 carbohydrates consisting of various disaccharide units. The most common disaccharide unit is
- 41 composed of a 2-O-sulfated  $\alpha$ -L-iduronic acid and 6-O-sulfated, N-sulfated  $\alpha$ -D-glucosamine, IdoA(2S)-
- 42 GlcNS(6S). Endogenous heparin is synthesised in the granules of mast cells and possesses the highest
- 43 negative charge density of all known biological molecules.
- 44 Heparin used for therapeutic purposes is sourced from domestic animals, mainly from porcine intestinal
- 45 mucosa.

38

- 46 Heparin catalyzes the inhibition of several serine proteases of the plasmatic coagulation system by
- 47 antithrombin (AT). For the binding of heparin to AT, a pentasaccharide sequence, which contains a 3-
- 48 O-sulphated glucosamine residue, is important. Upon binding to the enzyme inhibitor antithrombin,
- 49 heparin causes a conformational change in the antithrombin molecule which results in its active site
- 50 being exposed for inhibition of activated coagulation factors. Furthermore, heparin acts as a catalytic
- 51 template to which the inhibitor and activated serine proteases such as thrombin and factors (F) IXa
- 52 and XIa bind. This effect depends essentially on the number of monosaccharides in the heparin
- 53 molecule. Heparin molecules containing fewer than 18 monosaccharides do not catalyze inhibition of
- 54 thrombin but still inactivate factor Xa (FXa). Heparin enhances the rate of thrombin-antithrombin
- 55 reaction at least a thousand-fold resulting in a stable 1:1 complex after the serine-protease attacks a
- 56 specific Arg-Ser peptide bond in the reactive site of antithrombin.
- 57 In addition, heparin has numerous other plasmatic and cellular interactions, but overall, in comparison
- 58 with the anticoagulatory effect, the clinical relevance of these interactions is uncertain and
- 59 insufficiently investigated.
- Heparin is administered parenterally, as it is degraded when taken orally. It can be injected
- 61 intravenously, intra-arterially or subcutaneously, whereas intramuscular injections should be avoided
- because of the risk of inducing hematomas.
- 63 Low molecular weight heparins (LMWHs) are prepared from unfractionated heparin by various chemical
- or enzymatic depolymerisation processes. Thus, the starting material of LMWHs is of biological origin
- and the manufacturing process defines the characteristics of the drug substance.
- 66 The complexity of LMWH results largely from the nature of the starting material (unfractionated
- 67 heparin extracted from porcine mucosa or other animal tissues), the extraction, the fractionation and
- 68 the production processes. Several state of the art methods for physico-chemical characterisation of
- 69 LMWH products are available. However, although the inhibition of activated FXa activity and the
- 70 inhibition of thrombin activation reflect the main anticoagulant activities of LMWH, it is presently not
- 71 clear to which extent the multiple different polysaccharides contribute to the clinical effects relevant for
- 72 efficacy and safety of LMWH.

- 73 A specific LMWH differs from unfractionated heparin and may differ from other LMWHs in its
- 74 pharmacokinetic and pharmacodynamic properties. As a result of the depolymerisation process,
- 75 LMWHs are mainly enriched in molecules with less than 18 monosaccharide units. This reduction of
- 76 molecule size is associated with a loss of thrombin inhibition activity in comparison to standard heparin
- and an increased inhibition of FXa.
- Due to difficulties in the physical detection of LMWH, conventional pharmacokinetic studies cannot be
- 79 performed. Instead, the absorption and elimination of LMWHs are studied by using pharmacodynamic
- 80 tests, including the measurement of anti-FXa and anti-FIIa activity.
- 81 There are several authorised LMWHs that differ in their source material, manufacturing process,
- 82 pharmacokinetic/pharmacodynamic properties and therapeutic indications, which include treatment
- 83 and prophylaxis of deep venous thrombosis and prevention of complications of acute coronary
- 84 syndromes (unstable angina, non-ST elevation myocardial infarction (non-STEMI) and myocardial
- 85 infarction with ST elevation (STEMI)).
- 86 The most common adverse reactions induced by heparins are bleedings, whilst the most serious one is
- 87 the rarely observed Heparin-induced thrombocytopenia type II (HIT II). This antibody-mediated
- 88 process is triggered by the induction of antibodies directed against neoantigens of platelet-factor 4
- 89 (PF4)-heparin complexes. Binding of those antibody-PF4-heparin complexes may activate platelets and
- 90 generate thrombogenic platelet microaggregates. Patients developing thrombocytopenia are in danger
- 91 of arterial and venous thromboembolic complications (heparin-induced thrombocytopenia and
- 92 thrombosis, HITT). Although the risk of these adverse reactions appears to be reduced in comparison
- 93 to unfractionated heparin, it is obligatory to monitor the platelet count regularly in all patients using
- 94 LMWH and to test for PF4-heparin complex-antibodies in those who develop thrombocytopenia or
- 95 thromboembolic complications during heparin treatment.
- 96 In conclusion, the heterogeneity of LMWH is high, the structure-effect relationship is presently not fully
- 97 elucidated and the PD markers anti-FXa and anti-FIIa activity may not fully reflect/predict efficacy.
- 98 Thus, clinical trials will usually be necessary to address remaining uncertainties resulting from the
- 99 physicochemical and biological comparison.

## 2. Scope

100

110

113

- 101 The 'Guideline on similar biological medicinal products containing biotechnology-derived proteins as
- active substance: non-clinical and clinical issues (EMEA/CHMP/BMWP/42832/2005)' lays down the
- 103 general requirements for demonstration of the similar nature of two biological products in terms of
- 104 safety and efficacy.
- This product specific guideline complements the above guideline and presents the current view of the
- 106 CHMP on the non-clinical and clinical requirements for demonstration of comparability of two LMWH-
- 107 containing medicinal products.
- 108 This Guideline should be read in conjunction with the requirements laid down in the EU Pharmaceutical
- legislation and with relevant CHMP guidelines (see 2. Legal Basis and relevant guidelines).

# 3. Legal basis and relevant guidelines

- Directive 2001/83/EC, as amended, in particular in Directive 2001/83/EC Art 10(4) and Part II of the Annex I of Directive 2001/83/EC, as amended.
  - Guideline on similar biological medicinal products (CHMP/437/04)

- Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues (EMEA/CHMP/BMWP/42832/2005).
- Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: Quality issues (EMEA/CHMP/BWP/49348/2005 and
- 118 EMA/CHMP/BWP/247713/2012)
- ICH guideline S 6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals (EMA/CHMP/ICH/731268/1998)
- Guideline on clinical investigation of medicinal products for prophylaxis of high intra and postoperative venous thromboembolic risk (CPMP/EWP/707/98)
- Guideline on Immunogenicity Assessment of Biotechnology-derived Therapeutic Proteins (EMEA/CHMP/BMWP/14327/2006)
- Guideline on good pharmacovigilance practices (EMA/500020/2012)
- Guideline on good pharmacovigilance practices, Module V Risk management systems (EMA/838713/2011)

### 4. Non-clinical studies

- 129 Non-clinical studies should be performed before initiating clinical trials. The studies should be
- comparative in nature and should be designed to detect differences in the response between the
- biosimilar and the reference LMWH and not just assess the response per se. The approach taken will
- need to be fully justified in the non-clinical overview.

## Pharmacodynamic studies

134 In vitro studies:

128

133

- 135 In order to compare pharmacodynamic activity of the biosimilar and the reference LMWH, data from a
- number of comparative bioassays (based on state of the art knowledge about clinically relevant
- pharmacodynamic effects of LMWH and including, at least, evaluations of anti-FXa and anti-FIIa
- activity) should be provided. If available, standardised assays (e.g. in accordance with the European
- 139 Pharmacopoeia) should be used to measure activity. Such data may already be available from
- bioassays submitted as part of the quality dossier.
- 141 In vivo studies:
- 142 If physicochemical and biological characterisation of the biosimilar and the reference LMWH has been
- performed with a high level of resolution and convincingly demonstrated close similarity, in vivo
- studies are not required as part of the comparability exercise.
- Otherwise, the *in vivo* pharmacodynamic activity of the biosimilar and the reference LMWH should be
- 146 quantitatively compared in:
- An appropriate *in vivo* pharmacodynamic model, which takes into account state of the art knowledge about clinically relevant pharmacodynamic effects of LMWH and includes, at least, an evaluation of anti-FXa, and anti-FIIa activity and of release of tissue factor pathway inhibitor.
- 150 and/or

153

• In accordance with the intended clinical indication(s), either a suitable animal venous or an arterial thrombosis model.

### Toxicological studies

- 154 Generally, separate repeated dose toxicity studies are not required.
- In specific cases, e.g. when novel or less well studied excipients are introduced, the need for additional
- 156 toxicology studies should be considered.
- 157 The conduct of toxicity studies to assess unspecific toxicity only, based on impurities is not
- 158 recommended. A priori biosimilar and reference product are expected to be highly similar, which
- should be demonstrated with physicochemical methods. Impurities, such as proteins should be kept at
- a minimum in accordance with pharmacopoeial monographs, which is the best strategy to minimise
- 161 any associated risk.

166

167

- 162 Studies regarding safety pharmacology, and reproduction toxicology, are not required for non-clinical
- testing of a biosimilar containing LMWH. Studies on local tolerance are not required unless excipients
- are introduced for which there is no or little experience with the intended route of administration. If
- other *in vivo* studies are performed, local tolerance may be evaluated as part of these studies.

### 5. Clinical studies

### Pharmacokinetic/Pharmacodynamic studies

- Due to the heterogeneity of LMWHs conventional pharmacokinetic studies cannot be performed.
- 169 Instead, the absorption and elimination characteristics of LMWHs should be compared by determining
- 170 pharmacodynamic activities (including anti FXa and anti-FIIa), as surrogate markers for their
- 171 circulating concentrations. In addition other pharmacodynamic tests such as Tissue Factor Pathway
- 172 Inhibitor (TFPI) activity, as well as the ratio of anti-FXa and anti-FIIa activity should be compared.
- 173 Assessment of these PD parameters will provide an important fingerprint of the polysaccharidic profile.
- 174 These pharmacokinetic/pharmacodynamic properties of the similar biological medicinal product and the
- 175 reference product should be compared in a randomized, single dose two way crossover study in
- 176 healthy volunteers using subcutaneous administration. In case the originator product is also licensed
- for the intravenous or intra-arterial route, an additional comparative study should be performed via the
- 178 intravenous route.
- 179 The selected doses should be in the sensitive part of the dose-response curve and within the
- recommended dose ranges for the different indications.
- 181 Equivalence margins should be pre-specified and appropriately justified.

### 182 Clinical efficacy

- A comparative clinical efficacy trial will usually be required as part of the comparability exercise. Only if
- 184 similar efficacy of the biosimilar and the reference product can be convincingly deduced from the
- comparison of their physicochemical characteristics, biological activity/potency and PD fingerprint
- 186 profiles, based on the use of highly sensitive and specific methods, then a dedicated efficacy trial may
- 187 be waived. It is expected that this is an exceptional scenario since the required amount of reassurance
- from analytical data and bioassays would be considerable.
- Therapeutic equivalence should be demonstrated in an adequately powered, randomised, double-blind,
- 190 parallel group clinical trial. In theory, this could be done either in the setting of prevention of venous or
- arterial thromboembolism, or in the setting of treatment of venous thromboembolism. However, the
- most sensitive model to detect potential differences in efficacy between the biosimilar LMWH and the
- 193 reference product should be selected.
- 194 Surgical patients have the highest prevalence of venous thromboembolism (VTE). Furthermore, the
- vast majority of published trials have been performed in surgical patients with high VTE risk, especially

- in patients with hip and knee surgery, and thus the knowledge about influence of types of surgery,
- duration of trials and risks for bleeding is the most accurate for this patient population.
- 198 Therefore, it is recommended to demonstrate efficacy in the prevention of VTE in patients undergoing
- surgery with high VTE risk. Preferably, the trial should be conducted in major orthopaedic surgery such
- as hip surgery. In this clinical setting, patients with hip fracture should be well represented in the study
- as they have both high thrombotic risk and high perioperative bleeding risk. The posology and
- administration should follow European recommendations for prophylaxis with the reference product in
- 203 patients requiring prolonged VTE prophylaxis. The Guideline on clinical investigation of medicinal
- 204 products for prophylaxis of high intra and post-operative venous thromboembolic risk
- 205 (CPMP/EWP/707/98), although intended for novel medicinal products, may contain useful information
- for the conduct of such a trial. However, for the purpose of investigating potential product-related
- differences in efficacy between the biosimilar and the reference product, the patient population should
- 208 ideally be as homogenous as possible.
- 209 In the VTE-prevention setting, the clinically most relevant composite endpoint consists of proximal
- deep vein thrombosis (DVT), pulmonary embolism (PE) and VTE-related death to demonstrate patient
- 211 benefit. However, for the purpose of biosimilarity testing, a composite endpoint consisting of total
- 212 number of thromboembolic events (total DVTs, including asymptomatic distal DVT, PE and VTE-related
- death) may be used. Adjudication of VTE events should be performed by a central independent and
- 214 blinded committee of experts.
- 215 Equivalence margins have to be defined a priori and appropriately justified, both on statistical and
- 216 clinical grounds. The study should be powered to show therapeutic equivalence on one of the two
- 217 composite endpoints mentioned above.
- 218 State of the art imaging technique should be used for the endpoint assessment. While proximal DVTs
- could be diagnosed with high specificity and sensitivity using ultrasonography, a clear assessment of
- distal DVT is only possible by using bilateral venography. Thus, this invasive diagnostic procedure
- would be mandatory in trials including total DVT in the endpoint.
- The most relevant components of the primary endpoint (in particular proximal DVTs, PE and VTE-
- related deaths) should favourably support the biosimilarity of the two products.
- Assessment of the primary endpoint should be performed at the time of occurrence of symptoms
- suggestive of VTE or, in asymptomatic patients, at end of treatment. The overall follow-up should be at
- least 60 days to detect late thrombotic events.

#### Clinical safety

227

- Human safety data on the biosimilar will usually be needed pre-authorisation, even if similar efficacy
- 229 can be concluded from the comparative data on physicochemical characteristics, biological
- activity/potency and PD fingerprint.
- 231 Comparative safety data from the efficacy trial will be sufficient to provide an adequate pre-marketing
- safety database. Care should be taken to compare the type, frequency and severity of the adverse
- 233 reactions between the similar biological medicinal product and the reference product. Major bleeding
- 234 events and clinically relevant non-major bleeding events should be carefully assessed and
- documented. A consistent and clinically relevant classification of bleedings should be used. Similar to
- the efficacy evaluation, the adjudication of bleeding events by a central independent and blinded
- committee of experts, using pre-specified limits should be performed. Liver function testing is
- 238 recommended.

- Sufficient reassurance will be needed that the biosimilar LMWH is not associated with excessive immunogenicity compared to the reference product. For the detection of the immune-mediated type of Heparin-induced Thrombocytopenia (HIT Type II) monitoring of platelet count and an adequate diagnostic procedure (including determination of PF4-Heparin complex antibodies) in patients developing thrombocytopenia and/or thromboembolism (HITT) during the trial has to be performed. Monitoring of antibodies in all patients participating in the trials is not necessary. Since the frequency
- of immune-mediated HIT II is usually very low (< 0.1%) such events are not usually expected to occur
- in pre-authorisation clinical trials.

247

255

259

# 6. Pharmacovigilance plan

- Within the authorisation procedure the applicant should present a risk management plan in accordance with current EU legislation and pharmacovigilance guidelines. The RMP of the biosimilar should take
- 250 into account identified and potential risks associated with the use of the reference product and, if
- applicable, safety in indications authorised for the reference product that are claimed based on
- 252 extrapolation. Rare serious adverse events known to be associated with LMWHs such as Heparin-
- induced Thrombocytopenia Type II (HIT II, HITT) as well as anaphylactoid and anaphylactic reactions
- should specifically be discussed in the risk management plan.

# 7. Extrapolation of indication

- 256 Demonstration of comparable efficacy and safety in surgical patients at high risk for VTE as
- 257 recommended or by other means as described above may allow extrapolation to other indications of
- 258 the reference medicinal product if appropriately justified by the applicant.