London, 17th September 2009
Doc. Ref. EMEA/CAT/CPWP/288934/2009

COMMITTEE FOR ADVANCED THERAPIES
(CAT)

DRAFT for External Consultation

7

6

8

9 10

REFLECTION PAPER ON

IN-VITRO CULTURED CHONDROCYTE CONTAINING PRODUCTS FOR CARTILAGE REPAIR OF THE KNEE

DRAFT AGREED BY CPWP	July – September 2009
DRAFT AGREED BY CAT	July - September 2009
DRAFT DISCUSSED BY BWP, EWP, SWP, SAWP	September 2009
ADOPTION BY CAT FOR RELEASE FOR CONSULTATION	11 September 2009
END OF CONSULTATION (DEADLINE FOR COMMENTS)	31 December 2009 ¹
AGREED BY <working party="">²</working>	<month year=""></month>
ADOPTION BY CAT	<day month="" year=""> 3</day>

11

Comments should be provided using this template to AdvancedTherapies@emea.europa.eu

12

KEYWORDS	Chondrocytes, Cell therapy, autologous, Advanced Therapies, Cartilage repair,
	Quality, Nonclinical, Clinical

13

¹ Last day of the month concerned

² If other WPs have been involved in discussions this needs to be specified

³ Last day of relevant Committee meeting

14		REFLECTION PAPER ON
15 16	<i>I</i> 7	N-VITRO CULTURED CHONDROCYTE CONTAINING PRODUCTS FOR CARTILAGE REPAIR OF THE KNEE
17		TABLE OF CONTENTS
18	1.	INTRODUCTION3
19	2.	DISCUSSION3
20	3.	CONCLUSION8
21	4.	REFERENCES
22		

1. INTRODUCTION (background)

- 25 This reflection paper addresses specific points related to products containing autologous chondrocytes
- 26 intended for the repair of lesion of cartilage of the knee not discussed in the 'Guideline on human cell-
- 27 based medicinal products' (EMEA/CHMP/410869/2006) and therefore it should be read in
- 28 conjunction with the guideline.

29

2. DISCUSSION

3132

30

CONSIDERATIONS ON QUALITY DATA

- 33 For novel products as well as for products with clinical experience gathered before entry into force of
- Reg. No. (EC) 1394/2007 the same level of quality is expected for a central marketing authorisation
- 35 application.

3637

48

Starting material

- 38 The active substance is based on chondrocytes obtained from a cartilage biopsy. Due to
- 39 dedifferentiation tendency of the chondrocytes when cultured in monolayer, the yield in cell number is
- 40 limited by the size of the biopsy and will limit the size of the defect that can be treated with the
- 41 resulting product. Therefore specific consideration should be given to the amount and quality of the
- 42 starting material to ensure that sufficient cell numbers can be produced for the presented defect to be
- 43 treated.
- 44 The collection of the cartilage biopsy should be standardised in order to minimise possible
- 45 contaminants (fibroblasts) arising from fragments of the synovial membrane. The presence / absence
- of fibroblasts should be controlled through appropriate in-process testing. Acceptance criteria in
- 47 relation to cellular impurities should be set through process validation.

Manufacturing process

- 49 The total number of cells to return to differentiated state depends on the number of duplication in
- 50 monolayer culture, thereby limiting the overall expansion of the biopsy. Therefore adequate limits to
- 51 population doubling / passage number should be set considering appropriate functional markers
- 52 related to the differentiation stage and the resulting cartilage forming capacity of the cells.
- 53 In cases where a 3-dimensional cell culture process in combination with a structural component is
- 54 used, attention should be paid to the functionality and number of cells in the combination product, and
- not only of the cell suspension.
- Process validation is a prerequisite to ensure consistent manufacture. Given the limitations related to
- 57 the cellular material available (especially for autologous products) for process validation, alternative
- material with comparable characteristics could be used e.g. collected from joint replacement surgery.

59 **Potency**

- Two main aspects for the biological characterisation and control of chondrocytes containing products
- are the cartilage forming capacity and stage of differentiation of the cells. Potency can be expressed
- 62 through (a) functional assay(s) established for characterisation of the product and for process
- validation. The functional assay is expected to be suitable to detect changes in the product in relation
- to the aspects described above which may be clinically meaningful.

©EMEA 2009 Page 3/8

- 65 Due to time constraints, for batch release, an assay based on surrogate marker(s) could be envisaged.
- 66 In case mRNA based assays or other surrogate markers are used, their correlation with a functional
- assay is expected.

Quality controls

- 69 Biocompatibility of all materials coming into contact with the cells should be demonstrated. This
- 70 includes not only materials used during the manufacturing process, but also those used as part of the
- 71 application (e.g. membranes for local containment, fibrin glues).

72 73

68

CONSIDERATIONS ON NON-CLINICAL DATA

- 74 Clinical experience gathered prior to entry into force of Reg. No. (EC) 1394/2007 can be considered
- on a case-by-case basis. Clinical experience might substitute for some parts of the non-clinical
- development. However, the acceptability of such approach will clearly depend on the quality of the
- data that have been collected. Such approaches have to be justified by the Applicant and are at the
- Applicant's risk. Of high importance are, as part of such justification, what changes have been made to
- 79 the manufacturing process over time, and what impact these had, i.e. it needs to be justified that the
- 80 data submitted to substitute for non-clinical data are indeed relevant to the product which is applied
- for. In any case, justification for the omission of any non-clinical analyses has to be provided[0].

8283

Pharmacology

- 84 Initial proof of principle studies could be initiated with the use of *in vitro* cell culture methods such as
- 85 3-dimensional cell culture models (i.e. Pellet culture model, 3-dimensional alginate cell culture).
- 86 Attention should be paid to use of the final product in the proof of principle animal studies. This
- 87 includes the use of the proposed cell-device combination and other non-cellular components (e.g.
- membranes, fibrin glues), where appropriate.
- 89 First in vivo proof of principle studies can be conducted in small animal models where, usually, data
- ocan be generated relatively quickly with a larger sample size. An example could be the ECFA model,
- 91 in which human chondrocytes are implanted ectopically in immuno-compromised animals. However,
- 92 such models have limitations, e.g. the different anatomical structure of the knee joint, or difficulties of
- 93 manipulation and mimicking the clinical use.
- As immuno-compromised large animal models are not available it is recommended to use autologous
- 95 animal cells. The pivotal non-clinical study should be conducted in a large animal model to mimic as
- 96 much as possible the situation in humans and to allow for more invasive testing than possible in
- 97 humans. Currently the best available large animal models are goat, horse or sheep. Mouse models will
- 98 normally not be sufficient as a proof of concept. Deviation from these principles should be justified.
- 99 The pivotal non-clinical studies should be long enough to show regeneration and repair and to obtain
- 100 enough evidence for a long term clinical use in humans. These studies could include testing for
- biomechanical properties and tissue integrity (morphological characteristics of the cartilage). The
- number of animals in these studies should allow robust analysis of the data.
- The quality of animal cells should be comparable to the medicinal product for clinical use. The impact
- of deviations in the manufacturing process used for the animal cells on quality should be justified.

Biodistribution

105

- Biodistribution studies in a relevant animal model are considered necessary in cases where the product
- might not be sufficiently physically retained, e.g. by a membrane and/or when a scaffold is not applied
- together with a physical barrier. In any case, potential biodistribution can be of clinical concern, and
- thus the Applicant should justify their approach to show absence or lack of clinical significance of any
- 110 untoward safety issue related to biodistribution.

111 Toxicology

- The necessity of conventional toxicity studies depends on the nature of the product and should follow
- a risk-based approach.

©EMEA 2009 Page 4/8

114 Conventional toxicity studies may not be required for autologous chondrocyte products; safety

endpoints may be incorporated into proof of concept studies in justified cases.

116117

133

134

146

CONSIDERATIONS ON CLINICAL DATA

118 Potential claims.

- The principal aim for autologous chondrocytes containing product is to repair cartilaginous defects
- either from traumatic damage or degenerative disease. The indication could be further defined by
- relevant components, particularly, number of defects treated (multiple or single defect), size of defect,
- localisation of the defect (such as femoral condyle or trochlea), symptomatic or asymptomatic defect,
- grading of the defect (such as ICRS score), and previous failed therapies (such as after failed previous
- therapeutic or surgical intervention). Due to different aetiologies of the lesions, separate safety and
- efficacy studies would be appropriate. For claims of the product as second line treatment, special
- attention should be paid to the characteristics of the previously treated lesion.

127 Subject characteristics and selection of subjects.

- The patient population included in the studies should be selected by relevant criteria like symptoms,
- functionality, localisation, size and depth of the knee defect(s), concomitant joint pathology(ies), and
- previous treatments of the defect. Restriction of target population may increase precision of study
- 131 (such as excluding patients with previous mosaicplasty, advanced osteoarthritis etc.) but also could
- diminish generalisation or benefit of the results (such as limiting the defect size).

Strategy and design of clinical trials.

A. Clinical Pharmacology.

- 135 Pharmacokinetics. As there is no clear common agreement for conventional clinical kinetic data
- 136 needed to be analysed in clinical setting, the majority of the issues regarding clinical pharmacology
- are expected to be addressed during the non-clinical phase. If non-cellular component are present,
- their combination with cells is expected to be assessed clinically for compatibility, degradation rate
- and functionality.
- 140 Pharmacodynamics. Macroscopic, histological and MRI assessment of the repair tissue are
- 141 considered adequate tools for pharmacodynamic assessment of autologous chondrocytes containing
- products. MRI is to date, considered clinically relevant and could be included in trial protocols,
- although it is acknowledged that it is not validated as such in the follow up of the repair tissue.
- 144 Validation of MRI in a large animal (such as horse or sheep) with histopathological investigations
- might yield supportive data to surmount the clinical database (see non-clinical section).

B. Exploratory trials.

- The dose definition should be carefully chosen reflecting both actual numbers of the cells engrafted
- and adjustments for particular defect sizes (e.g. expressed in minimal number of cells/cm²). Parallel
- group, randomised, controlled studies are recommended, where comparative agent could be similar to
- the one used for confirmatory study and concomitant therapy could be a perisurgical, therapeutic,
- rehabilitation together with a follow up regimen acceptable from clinical perspective. The study
- duration is expected to be not less than 2 years for clinical endpoints and not less than 1 year for
- structural endpoints.
- 154 The published data from other relevant studies could be supportive for dose definition, provided that
- the quality of the product is comparable.
- Dose definition could be justified also by unequivocally observed effect size (e.g. more the 10 point
- change in a KOOS subscale) and sufficient safety database.

©EMEA 2009 Page 5/8

- Depending on the amount and quality of clinical data gathered before entry into force of Reg No. (EC)
- 159 1394/2007 exploratory studies might not be required. Justification for the omission of exploratory
- studies should be provided, including evidence that in case of changes in the manufacturing process
- over time these do not affect the clinical development program.
- The clinical data should be sufficient to justify the administration procedure and the design of the
- 163 confirmatory studies.

Exploratory clinical trial endpoints should be suitable to address pharmacodynamics, dose and safety.

C. Confirmatory trials.

- 166 Methods to assess efficacy.
- 167 **Definition of the primary endpoints.** Patient-based outcome data is acceptable as primary endpoint in
- the pivotal study, given the current lack of other outcome measures that are both sensitive and
- objective. For patient-based outcomes, validated methods to assess improvement of function and pain
- should be used (e.g. knee injury and Osteoarthritis Outcome Score (KOOS) or other validated
- outcome measures). Other primary endpoints, including either treatment failure or total joint
- replacement can be used, however these should be validated methods.
- 173 Definition of secondary endpoints. The structural improvement is the main secondary endpoints. The
- suitable structural endpoints could be chosen from blinded standardised MRI with/or without
- histological evaluations. Until validated methods are available, it is the Applicant's responsibility to
- demonstrate that the method is qualified for its intended use. Structural endpoint could also serve as a
- 177 relevant supportive surrogate marker for benefit risk assessment in case of need for long-term efficacy
- that could be performed post-marketing.
- Other specific secondary endpoints could be used e.g. the ones representing clinical / functional
- assessments (such as IKDC subjective scale, Lysholm score, ICRS objective scale, physical findings
- for the knee) or the ones representing structural assessments (such as arthroscopic and X-ray
- assessments).

183 Trial design

- For patients with lesions of less than 4 cm² clinical non-inferiority/superiority with supporting
- structural superiority against currently employed reasonable surgical comparative therapy (such as
- microfracture) is the reasonable option.
- For patients with lesions of more than 4 cm², no standard therapy has shown unequivocal efficacy,
- therefore superiority against best standard of care is the reasonable option. Medicinal product without
- centralised authorisation would not be a valid comparator.
- 190 For the confirmatory trials and due to the nature of the product, blinding of the trial design may be
- difficult to be maintained. For these trials prospective randomised, open label, blinded evaluation is
- 192 recommended.
- 193 Various options can be considered for the design of confirmatory trials, e.g.
- 194 A randomized controlled trial including microfracture as comparator. In this case the
- appropriateness of the microfracture procedure with respect to the lesion size to be treated needs
- to be addressed, since microfracture is only recommended in smaller lesions.
- 197 A randomized controlled trial including an active comparator. If a licensed chondrocyte-
- 198 containing product that has been validated in a randomized controlled trial is used as comparator,
- a non-inferiority design may be considered.

©EMEA 2009 Page 6/8

- A randomized controlled trial including a standardized exercise program as control arm. The standardized exercise program should be suitable to stabilize muscle function and could be viewed as an active placebo control. The design should consider a switch of patients from active placebo to the verum arm according to predefined criteria.
- Any other clinical trial design, when appropriately justified.
- For larger lesions, where there is no established treatment available, a dose response assessment is desirable. This could be done by including the assessment of the dose-response relationship in the confirmatory study, whereby the dose (of chondrocytes) per size (cm2) of the defect would be added as a covariate.
- Study duration. A 3 year follow-up for clinical efficacy evaluation is normally necessary. However, for registration purposes, structural repair by histological / MRI analysis could be acceptable at earlier evaluation timepoints, where appropriately justified. The follow-up period for clinical efficacy could be envisaged post-authorisation (Efficacy follow-up within Art. 14 of Reg. (EC) 1394/2007) provided positive benefit risk profile is obtained.

D. Methodological considerations

- Numerous procedures and treatment related risk factors are emerging and include: (1) *Patient factors*, especially size of the defect. Other reasonable patient factors to be considered are BMI, gender, age,
- sports activity, and defect localisation; (2) *Variability due to other therapies*, such as variability of
- 218 surgical procedures among different centres and surgeons (standardised surgical protocols should be
- done); symptomatic treatment allowed (both as pre-procedurally or peri-procedurally prior the
- implantation), peri-surgical procedures (such as arthroscopy or open surgery procedures prior the
- implantation), rehabilitation protocols and the follow-up programs are reasonable to be considered.
- These considerations demonstrate that a standardized approach might be valuable in order to reduce
- variability between study arms that could render interpretation of data difficult.
- 224 At best the most important factors should be identified beforehand and be taken into consideration by
- proper stratification of the randomisation and/or inclusion of these factors into the analysis model by
- prospectively planned subgroup analyses.

227 Clinical safety evaluation

- 228 General safety issues. The autologous chondrocytes-containing products have been used for more then
- 229 15 years in clinical practice and the experience for this class of products is relevant and has to be
- 230 considered. For the safety assessment, the clinical program could consider results of quality and non-
- clinical investigations as well as unresolved issues that could not have been assessed non-clinically.
- For products for which clinical data has been gathered before entry into force of Reg No. (EC)
- 233 1394/2007, the acceptability of safety data will depend on the quality of the data and their collection
- over the years.

240

214

- 235 Specific safety issues. Special attention has to be paid on long-term structural changes, such as local
- 236 histological or MRI detectable changes, rates of treatment failures, as defined through relevant
- investigation techniques, including re-operation for revision purposes. In cases of treatment failure, a
- 238 root-cause analysis should be performed in order to identify the factors, which gave rise to treatment
- failure (i.e. quality of the product, surgical procedure, patient characteristics).

©EMEA 2009 Page 7/8

3. CONCLUSION

242 **4. REFERENCES**

- 243 <u>Guideline on human cell-based medicinal products</u> (EMEA/CHMP/410869/2006).
- Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007
- on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No
- 246 726/2004 (OJ L 324 of 10.12.2007, p 121)

©EMEA 2009 Page 8/8