

Compound Name: Fluvoxamine

Property	Value
Compound type:	Inhibitor
Prefix:	SV
Species:	Human
File data last updated:	V9: permeability data added.
	V10: SV-file created (ka optimised, V_{ss} optimised,
	oral CL refined, CL_R optimised, hepatic uptake
	added, CYP1A2 Ki optimised)
	V16: Oral CL and hepatic uptake refined. CYP Ki
	values optimised.
	V19: V_{max} and Km elimination parameters
	incorporated to capture non-linear kinetics. Dose
	updated and dose for free base considered.
Performance Verification Population:	Sim-Healthy Volunteer, Sim-Japanese

Simcyp Version this document relates to: V19R1

Prepared: March 2025

The SV-Fluvoxamine model within the Simcyp Compound Database has been developed primarily as an inhibitor of CYP1A2 but also includes the inhibition of CYP2C19, CYP2C9, CYP3A, and CYP2D6 enzymes.

This document provides:

- 1. Examples of model performance
- 2. A summary of the key pharmacokinetic features of Fluvoxamine considered within the model

©Certara UK Ltd. 2001-2025

Copyright in this document belongs to Certara UK Ltd. Contents of this document may not be used, sold, licensed, transferred, copied or reproduced in whole or in any part or in any manner of form without the prior written consent of Certara UK Ltd. The recipient of this material shall undertake to respect and preserve the confidentiality of such

The recipient of this material shall undertake to respect and preserve the confidentiality of suc information.

> Certara UK Ltd. Level 2 - Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom

Please contact support@simcyp.com for more information

Model Performance

SV-Fluvoxamine Model Summary

Parameter	Model	Input
Absorption	First-order absorption	User input fa and ka
Distribution	Minimal PBPK model with SAC	Optimised: Q and V_{sac} , User input V_{ss}
Elimination	Enzyme Kinetics	Recombinant CYP2D6 V_{max} and K_{m} ,
		Additional HLM clearance
Interaction	Competitive Inhibition	CYP1A2, CYP2C9, CYP2C19, CYP2D6,
		CYP3A4, and CYP3A5 K ₁ values

File Refinements for V19

Fluvoxamine is dosed clinically as a maleate salt (100 mg maleate salt = 73.3 mg free base). The free base molecular weight is used for dosing. In V19, CYP2D6 V_{max} and Km elimination parameters were incorporated to capture non-linear kinetics. Distribution parameters were also updated. As most of the DDI studies consider multiple dosing regimens, optimisation focused on recovering the multiple dose profiles.

Optimised Parameters

ka, V_{ss}, V_{sac} and Q, CYP2D6 V_{max}, Additional HLM CL, Hepatic uptake, CL_R, CYP Ki values

Drug characteristics based on the DIDB drug monograph DDI summary

Monographs - Certara Drug Interaction Solutions

Oral Administration Profiles

Single dose concentration-time profiles

Figure 1: Simulated (black line) and observed (data points) mean plasma concentration-time profiles of fluvoxamine after a single oral dose of 100 mg of fluvoxamine maleate (73.3 mg free base). (A) Ten trials of 10 subjects (10% female), 20-25 years were simulated. Observed data were extracted from De Bree *et al.*, 1983. (B) Ten trials of 12 male subjects, 22-41 years were simulated. Observed data were extracted from De Vries *et al.*, 1993. The grey lines represent the predictions from individual trials. Dashed lines represent the 5th and 95th percentile of the total virtual population. Figures A(ii) and B(ii) show the data plotted with the y-axis on a log scale.

Figure 2: Simulated (black line) and observed (data points) mean plasma concentration-time profiles after multiple oral doses of 50 mg fluvoxamine maleate (36.7 mg free base) QD, days 1-3 and 100 mg (73.3 mg free base) QD days 4-10. Ten trials of 20 male subjects, 20-44 years, were simulated. Observed data were extracted from Fleishaker and Hulst, 1994. The grey lines represent the predictions from individual trials. Dashed lines represent the 5th and 95th percentile of the total virtual population. Figs. 2 B and C show the first and last dose with the y-axis plotted on a log scale.

Model Overview

Absorption

Fluvoxamine undergoes extensive absorption after oral administration of 100 mg fluvoxamine maleate (73.3 mg free base) with a C_{max} of 51.7 ± 16.9 ng/ml and reported T_{max} values between 2-8 h (De Bree *et al.* 1983). Food did not affect T_{max} or C_{max} after administration of 50 mg fluvoxamine maleate (36.7 mg free base) in an immediate release hydroxypropyl-methylcellulose (HPMC) capsule, developed to mask the bitter taste of the drug (van Harten *et al.*, 1991). Reported ka values range between 0.19 and 0.92 h⁻¹ (e.g., De Vries *et al.*, 1992). A ka value of 0.7 h⁻¹ was optimised to recover observed C_{max} and T_{max} values (Spigset *et al.*, 1998, Culm-Merdeck *et al.*, 2005); these values were then verified using an independent clinical study (De Bree *et al.*, 1983) (Figures 3 and 4, respectively).

Figure 3: Simulated (°; 10 trials of 10 subjects; 20-25 years; 10% female, fasted state) and observed (•) mean values of T_{max} (± SD) for fluvoxamine after a single oral dose of 100 mg fluvoxamine maleate (73.3 mg free base) in a hard gelatin capsule (subjects fasted overnight but were allowed a light breakfast 30 minutes after the administration of fluvoxamine). Observed data were reported by De Bree *et al.*, 1983.

Figure 4: Simulated (°; 10 trials of 10 subjects; 20-25 years; 10% female) and observed (•) mean values of C_{max} (± SD) for fluvoxamine after a single oral dose of 100 mg fluvoxamine maleate (73.3 mg free base) in a hard gelatin capsule (subjects fasted overnight but were allowed a light breakfast 30 minutes after the administration of fluvoxamine). Observed data were reported by De Bree *et al.*, 1983.

Distribution

Plasma protein binding of fluvoxamine was reported as 86% at a concentration range of 40 to 400 nM (Yao *et al.*, 2001).

Following intravenous administration of 10 and 30 mg fluvoxamine maleate (7.3 and 22 mg free base, respectively), the volume of distribution was reported to be 24 and 23 L/kg, respectively (van Harten *et al.*, 1994). Using the same studies that were used for the optimisation of ka (Spigset *et al.*, 1998, Culm-Merdeck *et al.*, 2005), the distribution parameters were simultaneously optimised by manual sensitivity analysis altering the ka between 0.19 and 0.92 h^{-1} and the V_{ss} between 15 and 26 L/h. Distribution was best described using a SAC compartment within the minimal PBPK model with optimised values of V_{ss} (21 L/kg), V_{sac} (6 L/kg), and Q (0.5 L/h) in the SV-Fluvoxamine file.

Elimination

Fluvoxamine is extensively metabolised in the liver, primarily by CYP2D6 (Miura and Ohkubo, 2007) and exhibits non-linear kinetics (Spigset *et al.*, 1998). *In vitro* inhibition data suggest that the fraction metabolised (fm%) by CYP2D6 is 40% (Miura and Ohkubo, 2007). An *in vitro* recombinant CYP2D6 Km value from Miura and Ohkubo, 2007 was used in the SV-Fluvoxamine file. V_{max} , CL_R, and additional human liver microsomes (HLM) CL_{int} were optimised simultaneously to capture the multiple oral dose study from Spigset *et al.*, 1998. Fluvoxamine undergoes hepatic uptake, thus a generic value based on *in vitro* data was used (Guest, 2011).

Figure 5: Predicted mean contribution of metabolic clearance to the systemic elimination of fluvoxamine using metabolic data assigned to recombinantly expressed CYP2D6. Simulations were conducted in a population of healthy male volunteers (10 trials of 20 subjects, 20-44 years; multiple oral daily doses of 100 mg of fluvoxamine maleate were simulated). The trial design was based on a clinical study by Fleishaker and Hulst, 1994.

©2025 Certara UK Ltd. 6

Figure 6: Simulated (°; 10 trials of 6 subjects; 25-31 years; 50% female; fasted state) and observed (•) mean (\pm SD) values of CL_{po} for fluvoxamine after 50 mg fluvoxamine maleate (36.7 mg free base) oral dose in fasted state every 12 hours for 7 days. Observed data were reported by De Vries *et al.*, 1992.

Figure 7: Simulated (\circ ; 10 trials of 6 subjects; 25-31 years; 50% female; fasted state) and observed (\bullet) mean (\pm SD) values of half-life for fluvoxamine after 50 mg fluvoxamine maleate (36.7 mg free base) oral dose in fasted state every 12 hours for 7 days. Observed data were reported by De Vries *et al.*, 1992.

Interaction

Competitive inhibition of CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, and CYP3A5 by fluvoxamine is considered in the SV-Fluvoxamine model. The CYP1A2 Ki value was optimised to capture the DDI with caffeine reported by Culm-Merdek *et al.*, 2005. Based on a publication by Yao *et al.*, 2001, it is reported that *"the fluvoxamine inhibition potency is about 10-fold greater in vivo than in vitro."* Thus, *in vitro* derived values for all the other enzymes (CYP2C19, CYP2C9, CYP2D6, CYP3A4, and CYP3A5) were scaled down by 10-fold.

CYP1A2 interactions

DDI studies with the CYP1A2 substrates caffeine, theophylline, tizanidine, olanzapine, and duloxetine are shown in Tables 1 and 2. The trial designs used were based on the clinical studies and the dosing regimen for each study is shown in Table 1. All doses of substrates and fluvoxamine were given orally, besides the intravenous application of duloxetine (Lobo *et al.*, 2008). Caffeine and theophylline were default V19 library files, tizanidine was the documented research file on the Simcyp Members Area, duloxetine was based on the compound file reported by Storelli *et al.*, 2019, and Olanzapine was based on the compound file reported by Sun *et al.*, 2020. Simulated and observed C_{max} and AUC ratios are shown in Table 2.

	Study	Substrate dosing	Inhibitor dosing (Fluvoxamine)
1	Culm-Merdek et al.,	Caffeine, 250 mg SD	100 mg (73.3 mg free base)
	2005 [×]	(Day 2)	BID for 2 days (4 doses)
2	Christensen et al., 2002ª	Caffeine, 100 mg SD (Day 6)	10 mg (7.33 mg free base) BID for 6
	CYP2D6 EMs and UMs		days (12 doses)
3	Christensen et al., 2002ª	Caffeine, 100 mg SD (Day 6)	25 mg (18.3 mg free base) BID for 6
	CYP2D6 EMs and UMs		days (12 doses)
4	Jeppesen <i>et al.,</i> 1996°	Caffeine 200 mg SD (Day 8)	50 mg (36.65 mg base) for 4 days
			followed by 100 mg (73.3 mg free
			base) for 8 days
5	Yao e <i>t al.,</i> 2001 ^ь	Theophylline, 250 mg SD	25 mg (18.3 mg free base)
		(Day 8 @8 AM)	QD for 9 days (9 doses)
6	Yao e <i>t al.,</i> 2001 ^ь	Theophylline, 250 mg SD	50 mg (36.7 mg free base) QD on
		(Day 8 @8 AM)	day 1, 75 mg (55 mg free base) QD
			days 2-9 (dosed @4 PM)
7	Orlando <i>et al.,</i> 2006º	Theophylline, 4 mg/kg SD	50 mg (36.7 mg free base) QD days
		(Day 6)	1-2, 50 mg (36.7 mg free base) BID
			days 3-7
8	Rasmussen <i>et al.,</i> 1997* ^{,c}	Theophylline 300 mg (Day 4)	50 mg (36.7 mg free base) on day 1,
			100 mg (73.3 mg free base) QD for
			6 days
9	Gransfors et al., 2004	Tizanidine, 4 mg SD	100 mg (73.3 mg free base)
		(Day 4, 1h after Fluvoxamine)	QD for 4 days
10	Wang et al., 2004	Olanzapine 10 mg SD (Day 4)	100 mg (73.3 mg free base) daily
			for 9 days
11	Lobo e <i>t al.,</i> 2008 [#]	Duloxetine 60 mg oral dose	50 mg on Day 1 followed by 100 mg
		on Day 14 and 20 (7 and 13)	(73.3 mg free base) for 16 days
12	Lobo e <i>t al.,</i> 2008 [#]	Duloxetine 10 mg IV dose on	50 mg on Day 1 followed by 100 mg
		Day 14 and 20 (7 and 13)	(73.3 mg free base) for 16 days

Table 1. Dosing regimens for CYP1A2 DDI studies

^x Used to derive an optimised CYP1A2 Ki value in the Fluvoxamine file.

* Median, # GeoMean, a AUC $_{0\text{-}24h}$, b AUC $_{0\text{-}48h}$, c AUC calculated from CL

Table 2. Observed and predicted mean C_{max} and AUC ratios for fluvoxamine interactions with CYP1A2 substrates. Predicted values show mean and trial range from 10 simulated trials matching the clinical study design.

	Obse	erved	Simulated		Simulated Simu		Simulated Simulated/ Observed	
	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio		
Culm-Merdek <i>et al.,</i> 2005 [×] Caffeine	1.40	13.71	1.34 (1.24 - 1.52)	12.31 (9.53 - 17.12)	0.96	0.90		
Christensen <i>et al.,</i> 2002 ^a Caffeine CYP2D6 EMs and UMs	1.68	2.82	1.30 (1.16 – 1.43)	3.25 (2.13 – 4.55)	0.77	1.15		
Christensen <i>et al.,</i> 2002 ^ª Caffeine CYP2D6 EMs and UMs	2.83	5.23	1.33 (1.17 – 1.46)	3.90 (2.31 – 5.82)	0.46	0.64		
Jeppesen <i>et al.,</i> 1996° Caffeine	-	8.36	-	12.74 (8.52 – 17.29)	-	1.52		
Yao et al., 2001 ^b Theophylline	1.01	1.44	1.07 (1.05 – 1.08)	2.42 (2.17 – 2.84)	1.06	1.68		
Yao et al., 2001 ^b Theophylline	1.20	2.03	1.08 (1.06 – 1.09)	2.87 (2.47 – 3.35)	0.90	1.41		
Orlando e <i>t al.,</i> 2006º Theophylline	1.11	2.66	1.08 (1.05 – 1.10)	4.01 (3.22 – 4.88)	0.97	1.51		
Rasmussen <i>et al.,</i> 1997 ^{*,c} Theophylline	-	3.33	-	3.72 (3.13 – 5.10)	-	1.12		
Gransfors <i>et al.,</i> 2004 Tizanidine	12.09	32.73	9.85 (6.90 – 12.09)	32.4 (24.9 – 41.8)	0.81	0.99		
Wang et al., 2004 Olanzapine	1.49	1.76	1.12 (1.10 – 1.14)	1.54 (1.47 – 1.70)	0.75	0.88		
Lobo <i>et al.,</i> 2008 [#] Duloxetine	2.41	5.60	2.42 (2.28 – 2.74)	5.54 (4.60 – 9.91)	1.00	0.99		
Lobo <i>et al.,</i> 2008 [#] Duloxetine	0.84	2.70	1.01 (1.01 – 1.02)	2.39 (1.94 – 4.06)	1.20	0.89		

^x Used to derive an optimised CYP1A2 Ki value in the Fluvoxamine file.

* Median, * GeoMean, * AUC_{0-24h}, * AUC_{0-48h}, * AUC calculated from CL

CYP2C9 interactions

DDI studies with the CYP2C9 substrate tolbutamide are shown in Tables 3 and 4. The trial designs used were based on the clinical studies and the dosing regimen for each study is shown in Table 3. All doses of substrates and fluvoxamine were given orally. All substrates were default V19 library files. Simulated and observed AUC ratios are shown in Table 4.

Table 3. Dosing regimens for CYP2C	9 DDI studies
------------------------------------	---------------

	Dosage regimen				
Study	Substrate	Inhibitor (Fluvoxamine)			
Madsen <i>et al.,</i> 2001	Tolbutamide, 500 mg SD on day 5 (8.00 am)	75 mg (54.98 mg free base) QD for 5 days (dosed at 8.00 pm)			
Madsen <i>et al.,</i> 2001	Tolbutamide, 500 mg SD on day 5 (8.00 am)	150 mg (109.95 mg free base) QD for 5 days (dosed at 8.00 pm)			

Table 4. Observed and predicted mean AUC ratios for fluvoxamine interactions with the CYP2C9 substrate tolbutamide. Predicted values show geomean and trial range from 10 simulated trials matching the clinical study design

	Observed Si		S	imulated	Simulated/ Observed	
	C _{max} ratio	AUC ratio	C _{max} ratio AUC ratio		C _{max} ratio	AUC ratio
Madsen <i>et al.,</i> 2001	ND	1.23	-	1.37 (1.26 – 1.43)	ND	1.12
Madsen <i>et al.,</i> 2001	ND	1.71	-	1.66 (1.48 – 1.76)	ND	0.97

ND – not determined

CYP2C19 interactions

DDI studies with the CYP2C19 substrates S-mephenytoin, omeprazole, and lansoprazole are shown in Tables 5 and 6. The trial designs used were based on the clinical studies and the dosing regimen for each study is shown in Table 5. All doses of substrates and fluvoxamine were given orally. S-Mephenytoin and omeprazole were default V19 library files, lansoprazole was based on the file described on the Simcyp Members Area. Simulated and observed C_{max} and AUC ratios are shown in Table 6.

	Study	Substrate dosing	Inhibitor dosing (Fluvoxamine)
1	Yao et al., 2003	S-Mephenytoin, 100 mg SD	37.5 mg (27.5 mg free base) QD
		on day 9 (8 AM)	for 11 days (dosed at 4 PM)
2	Yao e <i>t al.,</i> 2003	S-Mephenytoin, 100 mg SD	62.5 mg (45.8 mg free base) QD
		on day 9 (8 AM)	for 11 days (dosed at 4 PM)
3	Yao et al., 2003	S-Mephenytoin, 100 mg SD	50 mg (36.7 mg free base) QD
		on day 9 (8 AM)	(days 1-2),
			87.5 mg (64.1 mg free base) QD
			(days 3-11) (dosed at 4 PM)
4	Christensen et al., 2002	Omeprazole, 20 mg SD	25 mg (18.3 mg free base) BID
	EM	on day7	for 7 days
5	Christensen et al., 2002	Omeprazole, 20 mg SD	25 mg (18.3 mg free base) QD
	PM	on day7	for 7 days
6	Christensen <i>et al.,</i> 2002	Omeprazole, 20 mg SD	10 mg (7.32 mg free base) BID
	EM	on day7	for 7 days
7	Christensen <i>et al.,</i> 2002	Omeprazole, 20 mg SD	10 mg (7.32 mg free base) QD
	PM	on day7	for 7 days
8	Yasui-Furukori <i>et al.,</i>	Omeprazole, 40 mg SD	25 mg BID (12 doses)
-	2004a* EM	on day 6	
9	Yasui-Furukori et al.,	Omeprazole, 40 mg SD	25 mg BID (12 doses)
10	2004a* IM	on day 6	
10	Kamiya <i>et al.,</i> 2019*	Omeprazole, 20 mg SD	25 mg (18.3 mg free base) QD
	noPM	on day 3	for 3 days
11	Kamıya <i>et al.,</i> 2019*	Omeprazole, 20 mg SD	25 mg (18.3 mg free base) QD
	all subjects	on day 3	for 3 days
12	Yasui-Furukori et al.,	Lansoprazole, 40 mg SD	25 mg BID (12 doses)
	2004b* EMs	on day 6	
13	Yasui-Furukori et al.,	Lansoprazole, 40 mg SD	25 mg BID (12 doses)
	2004b* IM1s	on day 6	

* In Japanese

Table 6. Observed and predicted mean C_{max} and AUC ratios for fluvoxamine interactions with CYP2C19 substrates. Predicted values show mean and trial range from 10 simulated trials matching the clinical study design.

	Obse	erved	Simulated		Simu Obse	lated/ erved
	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio
Yao et al., 2003	2.12	4.64	2.15 (1.97 – 2.42)	5.41 (4.66 – 6.90)	1.01	1.17
Yao et al., 2003	2.40	6.70	2.45 (2.20 – 2.82)	8.21 (7.09 – 10.4)	1.02	1.22
Yao et al., 2003	2.42	9.89	2.64 (2.34 – 3.08)	10.99 (9.47 – 13.86)	1.09	1.11
Christensen <i>et al.,</i> 2002* EM	ND	5.46	2.79 (2.09 – 3.75)	4.86 (3.36 – 7.10)	ND	0.89
Christensen et al., 2002* PM	ND	5.85	2.90 (2.09 – 3.80)	5.34 (3.43 – 7.25)	ND	0.91
Christensen <i>et al.,</i> 2002* EM	ND	2.63	2.21 (1.82 – 2.81)	3.15 (2.42 – 4.20)	ND	1.20
Christensen <i>et al.,</i> 2002* PM	ND	2.43	2.32 (1.83 – 2.85)	3.46 (2.63 – 4.29)	ND	1.42
Yasui-Furukori et al., 2004a ^{#, *} EM	3.48	5.34	2.73 (2.28 – 3.26)	5.07 (3.75 – 6.64)	0.78	0.95
Yasui-Furukori et al., 2004a ^{#,} * IM	1.91	2.26	2.23 (1.94 – 2.55)	3.68 (2.80 – 4.58)	1.17	1.63
Kamiya e <i>t al</i> ., 2019 ^{#,} * no PM	1.91	2.73	2.33 (2.18 – 2.72)	3.88 (3.53 – 4.71)	1.18	1.35
Kamiya et al., 2019 ^{#, *} all subjects	1.70	2.26	2.00 (1.58 – 2.34)	3.05 (2.02 – 3.95)	1.18	1.35
Yasui-Furukori et al., 2004b EMs	1.54	3.83	1.68 (1.46 – 1.85)	4.43 (3.52 – 5.83)	1.09	1.16
Yasui-Furukori et <i>al</i> ., 2004b IM1s	1.21	2.50	1.48 (1.36 – 1.57)	3.60 (2.96 – 4.39)	1.22	1.44

[#] GeoMean, * AUC_{0-8h}

CYP2D6 interactions

DDI studies with the CYP2D6 substrates atomoxetine, nebivolol, dextromethorphan, desipramine, and imipramine are shown in Tables 7 and 8. The trial designs used were based on the clinical studies and the dosing regimen for each study is shown in Table 7. All doses of substrates and fluvoxamine were given orally. Atomoxetine, dextromethorphan, and desipramine were default V19 library files. Nebivolol and imipramine were based on the corresponding compound files described on the Simcyp Members Area. Simulated and observed C_{max} and AUC ratios are shown in Table 8.

	Study	Substrate dosing	Inhibitor dosing (Fluvoxamine)
1	Todor et al., 2017~	Atomoxetine, 25 mg (Day 6 at 9.00 am)	50 mg (36.7 mg free base) QD days 1-3, 100 mg (73.3 mg free base) QD days 4-6, at 9.00 am
2	Gheldiu <i>et al.,</i> 2017 EMs and UMs	Nebivolol, 5 mg (4.6 mg free base) on day 8	50 mg (36.7 mg free base) QD days 1-3, 100 mg (73.3 mg free base) QD days 3-7
3	Miura et al., 2021*	Dextromethorphan 30 mg SD day 2	25 mg (18.3 mg free base) BID 3 doses
4	Spina <i>et al.,</i> 1993~	Desipramine 100 mg (82.5 mg free base) SD on day 7 (dosed at 8.00 am)	100 mg (73.3 mg free base) QD for 10 days (dosed at 8.00 pm)
5	Spina <i>et al.,</i> 1993~	Imipramine 50 mg (44.26 mg free base) SD on day 7	100 mg (73.3 mg free base) QD for 10 days (dosed at 8.00 pm)

Table 7. Dosing regimens for CYP2D6 DDI studies

* In Japanese, ~ No CYP2D6 PMs, thus only EMs, IMs, and UMs were simulated.

Table 8. Observed and predicted mean C_{max} and AUC ratios for fluvoxamine interactions with CYP2D6 substrates. Predicted values show mean and trial range from 10 simulated trials matching the clinical study design.

	Obse	erved	Simulated		Simu Obse	lated/ erved
	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio
Todor <i>et al.,</i> 2017~	1.25	1.33	1.27 (1.24 – 1.33)	1.47 (1.40 – 1.53)	1.02	1.10
Gheldiu <i>et al.,</i> 2017 EMs and UMs	1.32	1.57	1.67 (1.61 – 1.73)	1.61 (1.56 – 1.66)	1.27	1.03
Miura e <i>t al.,</i> 2021*	-	1.33	1.31 (1.28 – 1.33)	1.32 (1.29 – 1.34)	-	0.99
Spina et al., 1993~ Desipramine	1.04	1.14	1.30 (1.25 – 1.33)	1.45 (1.40 – 1.53)	1.24	1.27
Spina et al., 1993~ Imipramine [#]	2.27	3.63	1.90 (1.68 – 2.23)	3.20 (2.56 – 4.24)	0.84	0.88

* In Japanese, ~ No CYP2D6 PMs, thus only EMs, IMs, and UMs were simulated, #Additional CYP2C19 inhibition is accounted for, and the metabolite was activated in the simulation.

CYP3A4 interactions

DDI studies with the CYP3A4 substrates alprazolam, midazolam, and quinidine are shown in Tables 9 and 10. The trial designs used were based on the clinical studies and the dosing regimen for each study is shown in Table 9. All doses of substrates and fluvoxamine were given orally. All substrates were default V19 library files. Simulated and observed C_{max} and AUC ratios are shown in Table 10.

	Study	Substrate dosing	Inhibitor dosing	
			(Fluvoxamine maleate)	
1	Fleishaker and Hulst, 1994	Alprazolam 1 mg oral QD from day 7 to day 10, at 8:00, 13:00, 18:00, and 23:00	50 mg (36.65 mg free base) oral QD from day 1 to day 3 at 8:00, and 100 mg (73.33 mg free base) oral QD from day 4 to day 10 at 8:00	
2	Chen <i>et al.,</i> 2006	Midazolam, 0.025 mg/kg SD IV on day 28	150 mg (109.95 mg free base) QD oral for 28 days	
3	Lam <i>et al.,</i> 2003	Midazolam 10 mg SD on day 12 (1h after fluvoxamine)	50 mg (36.65 mg free base) BID days 1-6, 100mg (73.33 mg free base) BID days 7-12	
4	Damkier e <i>t al.,</i> 1999	Quinidine, 166 mg free base, single dose, oral, day 5	100 mg (73.33 mg free base), QD, oral, 6 days	

Table 9. Dosing regimens for CYP3A4 DDI studies

Table 10. Observed and predicted mean C_{max} and AUC ratios for fluvoxamine interactions with CYP3A4 substrates. Predicted values show mean and trial range from 10 simulated trials matching the clinical study design.

	Observed		Simulated		Simulated/ Observed	
	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio	C _{max} ratio	AUC ratio
Fleishaker and Hulst, 1994	1.86	1.96	1.06 (1.05 – 1.08)	1.08 (1.06 – 1.11)	0.57	0.55
Chen <i>et al.,</i> 2006	ND	1.49	1.44 (1.37 – 1.49)	1.57 (1.48 – 1.65)	ND	1.06
Lam <i>et al.,</i> 2003	1.38	1.39	1.21 (1.18 – 1.27)	1.31 (1.23 – 1.41)	0.88	0.94
Damkier <i>et al.,</i> 1999	1.35	1.41	1.08 (1.07 – 1.11)	1.17 (1.13 – 1.22)	0.80	0.83

Input Parameters

Table 11: Input Table

Parameter	Value	Method/Reference
Molecular weight (g /mol)	318.3	PubChem 2019
log P	3	Meta-analysis (El Ela <i>et al.,</i> 2004; CHEAMBL814 AlogP and CX LogP, and PubChem X LogP3-AA)
Compound type	Monoprotic Base	
pK _a	8.7	Foda et al., 1996
B/P	1.5	Simcyp data archive, Consortium member data,
fun	0.14	Yao et al 2001
Main plasma binding protein	Human serum albumin	Simcyp data archive. Consortium member data.
		unpublished measured data on file
fa	1	
Ka (1/h)	0.7	Optimised - see Absorption section for details
fu _{gut}	0.14	Same as fu _p
Q _{gut}	15.87	Predicted (Yang et al., 2007)
Distribution Model	Minimal PBPK model	
V _{ss} (L/kg)	21	Optimised with SAC - see Distribution section
Q (L/h)	0.50	Optimised with SAC - see Distribution section
V _{sac} (L/kg)	6.0	Optimised with SAC - see Distribution section
Enzyme	CYP1A2	
K _i (μM)	0.002	Optimised - strong CYP1A2 Ki. A clinical DDI study
		with caffeine using the fluvoxamine 100 mg BID
		dosage regimen (Culm-Merdek <i>et al.,</i> 2005) was
		used.
Enzyme	CYP2C9	
K _i (μM)	0.126	Optimised - weak CYP2C9 Ki. Original value
		derived from meta-analysis of <i>in vitro</i> HLM data
		(Schmider <i>et al.</i> , 1997; Hemeryck <i>et al.</i> , 1999). The
		value was lowered ten-fold as ten-fold difference
		between in vitro and in vivo Ki for fluvoxamine
	0)/200/0	reported (Yao et al., 2001).
Enzyme	CYP2C19	
К, (μМ)	0.006	Optimised - strong CYP2C19 Ki. Original value
		derived from <i>in vitro</i> HLM data (Yao et al., 2003).
		value lowered ten-fold as ten-fold difference
		reported (Vec et al., 2001)
Enzymo	CVP2D6	
	70	Ontimised - Spigset et al. 1998 multiple oral
	,,,	dose study
Km (uM)	38.6	Miura and Obkubo, 2007
Κ. (μΜ)	0.189	Ontimised - weak CYP2D6 Ki Original value
	0.100	derived from meta-analysis of <i>in vitro</i> HI M data
		(Ball et al., 1997: Belpaire et al., 1998, Crewe et
		al., 1992: Fogelman et al., 1999: Nielsen et al
		1996: Otton <i>et al.</i> , 1993: Otton <i>et al.</i> , 1994: Otton
		<i>et al.</i> , 1996; von Moltke <i>et al.</i> , 1995). Value
		lowered ten-fold as ten-fold difference between in
		vitro and in vivo Ki for fluvoxamine reported (Yao et
		<i>al.,</i> 2001).
CL _{int} (HLM)	14	Optimised - Spigset et al., 1998, multiple oral
(µL/min/mg protein)		dose study

Enzyme	CYP3A4	
Κ, (μΜ)	0.789	Optimised - moderate CYP3A4 Ki. Original value derived from meta-analysis of <i>in vitro</i> data (Iribarne <i>et al.,</i> 1998; von Moltke <i>et al.,</i> 1995; von Moltke <i>et al.,</i> 1996a; von Moltke <i>et al.,</i> 1996b). Value lowered ten-fold as ten-fold difference between <i>in vitro</i> and <i>in vivo</i> Ki for fluvoxamine reported (Yao <i>et al.,</i> 2001).
Enzyme	CYP3A5	
Κ, (μΜ)	5.82	Optimised - moderate CTP3A5 Ki. Ten-fold reduction on <i>in vitro</i> Ki (Yao <i>et al.,</i> 2001).
Active Hepatic Scalar (Net)	3	Guest, 2011

What is not currently considered in the model

• Inhibition of CYP2C8.

It should be noted that none of the substrates evaluated for DDI potential in this compound summary are classified as a CYP2C8 substrate (Certara Dug interaction solutions database).

• Inhibition of P-gp.

It should be noted that none of the substrates evaluated for DDI potential in this compound summary are classified as a P-gp substrate (Certara Dug interaction solutions database).

• The pharmacodynamics of fluvoxamine have not been investigated and incorporated into the file.

References

Ball, S.E., Ahren, D., Scatina, J., Kao, J. (1997). Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. *Br J Clin Pharmacol.* 43(6): 619-26. PMID: 9205822

Belpaire, F.M., Wijnant, P., Temmerman, A., Rasmussen, B.B., Brøsen, K. (1998). The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors. *Eur J Clin Pharmacol*. 54(3):261-4. <u>PMID</u>: 9681670

Chen YC, Gotzkowsky SK, Nafziger AN, Kulawy RW, Rocci ML Jr, Bertino JS Jr, Kashuba AD. (2006) Poor correlation between 6beta-hydroxycortisol:cortisol molar ratios and midazolam clearance as measure of hepatic CYP3A activity. *Br J Clin Pharmacol.* 62(2):187-95. <u>PMID: 16842393</u>

Christensen, M. et al. (2002) Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). *Clin Pharmacol Ther*. 71:141-52. <u>PMID: 11907488</u>

Crewe, H.K., Lennard, M.S., Tucker, G.T., Woods, F.R., Haddock R.E. (1992). The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. *Br J Clin Pharmacol.* 34(3):262-5. <u>PMID: 1389951</u>

Culm-Merdek, K.E., Von Moltke, L.L., Harmatz, J.S. & Greenblatt, D.J. (2005) Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. *Br J Clin Pharmacol*. 60:486-93. <u>PMID: 16236038</u>

Damkier, P., Hansen, L. L., & Brøsen, K. (1999). Effect of fluvoxamine on the pharmacokinetics of quinidine. *Eur J Clin Pharmacol*. 55(6):451–456. <u>PMID: 10492058</u>

De Bree, H., J. B. Van Der Schoot, and L. C. Post (1983). Fluvoxamine maleate; Disposition in man. <u>Eur J Drug Metab Pharmacokin</u> 8:175–179.

De Vries,MH, J Van Harten, P Van Bemmel, and M Raghoebar (1993). Pharmacokinetics of fluvoxamine maleate after increasing single oral doses in healthy subjects. *Biopharm Drug Dispos* 14(4):291–296. <u>PMID: 8499580</u>

De Vries, M. H., M. Raghoebar, I. S. Mathlener, and J. van Harten (1992). Single and multiple oral dose fluvoxamine kinetics in young and elderly subjects. *Ther Drug Monit*. 14(6):493-8. <u>PMID: 1485372</u>

El Ela, A. A., S. Hartter, U. Schmitt, C. Hiemke, H. Spahn-Langguth, and P. Langguth (2004). Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. *J Pharm Pharmacol.* 56(8):967-75 <u>PMID: 15285840</u>

Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. *Eur J Clin Pharmacol*. 1994;46(1):35-9. <u>PMID: 8005185</u>

Foda, N. H., Radwan, M. A., Al Deeb, O. A. (1996) Fluvoxamine maleate. In: Brittain, H. G. *Analytical profiles of drug substances and excipients, volume 24, chapter 4*. Academic Press, p.175.

Fogelman, S.M., Schmider, J., Venkatakrishnan, K., von Moltke, L.L., Harmatz, J.S., Shader, R.J., Greenblatt, D.J. (1999). O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. *Neuropsychopharmacology* 20(5):480-90. <u>PMID: 10192828</u>

Gheldiu, A.-M. et al. (2017) Investigation of a potential pharmacokinetic interaction between nebivolol and fluvoxamine in healthy volunteers. *J Pharm Pharmaceutical Sci.* 20:68-80. <u>PMID: 28459657</u>

Granfors, M.T., Backman, J.T., Neuvonen, M., Ahonen, J. & Neuvonen, P.J. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. *Clin Pharmacol Ther*. 75, 331-41 (2004). <u>PMID: 15060511</u>

Guest, E.J., PhD thesis titled "ASSESSMENT OF ALGORITHMS FOR THE PREDICTION OF METABOLIC DRUG-DRUG INTERACTIONS", University of Manchester, 2011, Pg. 129-130

Hemeryck, A., De Vriendt, C., Belpaire, F.M., (1999). Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. *Eur J Clin Pharmacol*. 54(12):947-51. <u>PMID: 10192756</u>

Iribarne, C., Picart, D., Dreano, Y., Berthou, F. (1998). In vitro interactions between fluoxetine or fluvoxamine and methadone or buprenorphine. *Fundam Clin Pharmacol*. 12(2):194-9. <u>PMID: 9565774</u>

Jeppesen U, Loft S, Poulsen HE, Brśen K. (1996) A fluvoxamine-caffeine interaction study. *Pharmacogenetics*. 6(3):213-22. <u>PMID: 8807660</u>

Kamiya C. et al. (2019). Effect of co-administered inducer or inhibitor on omeprazole pharmacokinetics based on CYP2C19 genotype. *J Pharmacol Sci*. 139(4), 361-366. <u>PMID: 30902567</u>

Lam, Y. W., Alfaro, C. L., Ereshefsky, L., & Miller, M. (2003). Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. *J Clin Pharmacol*. 43(11), 1274–1282. <u>PMID: 14551182</u>

Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, Ring B, Knadler MP. (2008) In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. *Clin Pharmacokinet*. 47(3):191-202. <u>PMID: 18307373</u>

Madsen, H., Enggaard, T.P., Hansen, L.L., Klitgaard, N.A. & Brøsen, K. (2001) Fluvoxamine inhibits the CYP2C9 catalyzed biotransformation of tolbutamide. *Clin Pharmacol Ther.* 69:41-7. <u>PMID: 11180037</u>

Miura, M. and T. Ohkubo (2007). Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. *Xenobiotica*. 37(2):169-79. <u>PMID: 17484519</u>

Miura et al., (2021) Verification of a cocktail approach for quantitative drug–drug interaction assessment: a comparative analysis between the results of a single drug and a cocktail drug. *Xenobiotica*. 51(4):404–412. <u>PMID: 33393430</u>

Nielsen, K.K., Flinois, J.P., Beaune, P., Brøsen, K. (1996). The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. *J Pharmacol Exp Ther*. 277(3): 1659-64. <u>PMID: 8667235</u>

Orlando, R., Padrini, R., Perazzi, M., De Martin, S., Piccoli, P. & Palatini, P. (2006) Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2–mediated theophylline metabolism by fluvoxamine. *Clin Pharmacol Ther*. 79, 489-99. <u>PMID:</u> 16678550

Otton, S.V., Ball, S.E., Cheung, S.W., Tnaba, T., Sellers, E.M. (1994) Comparative inhibition of the polymorphic enzyme CYP2D6 by Venlafaxine (VF) and other 5HT uptake inhibitors. *Clin Pharmacol Ther*. 55 (2), page 141, PI-71.

Otton, S.V., Ball, S.E., Cheung, S.W., Inaba, T., Rudolph, R.L., Sellers, E.M. (1996). Venlafaxine oxidation in vitro is catalysed by CYP2D6. *Br J Clin Pharmacol*. 41(2):149-56. <u>PMID: 8838442</u>

Otton, S.V., Wu, D., Joffe, R.T., Cheung, S.W., Sellers, E.M. (1993). Inhibition by fluoxetine of cytochrome P450 2D6 activity. *Clin Pharmacol Ther*. 53(4):401-9. <u>PMID: 8477556</u>

Rasmussen BB, Jeppesen U, Gaist D, Brøsen K. (1997) Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. *Ther Drug Monit*. 19(1):56-62. <u>PMID:</u> 9029748

Schmider, J., Greenblatt, D. J., von Moltke, L., Karsov, D., Shader, R.I. (1997). Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. *Br J Clin Pharmacol*. 44(5):495-8. <u>PMID: 9384467</u>

Spigset, O., Granberg, K., Hägg, S., Söderström, E., Dahlqvist, R. (1998). Non-linear fluvoxamine disposition. *Br J Clin Pharmacol*. 45(3):257. <u>PMID: 9517369</u>

Spina, E., Pollicino, A.M., Avenoso, A., Campo, G.M., Perucca, E., Caputi, A.P. (1993). Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. *Ther Drug Monit*. 5:243-246. <u>PMID: 8333005</u>

Storelli F., Desmeules J., Daali Y., (2019) Physiologically-based pharmacokinetic modeling for the prediction of CYP2D6-mediated gene-drug-drug-interactions. *CPT Pharmacometrics Syst. Pharmacol.* 8:567-576. <u>PMID: 31268632</u>

Sun L., von Moltke L., Rowland Yeo K., (2020) Physiologically-based pharmacokinetic modelling for predicting drug interactions of a combination of Olanzapine and Samidorphan. *CPT Pharmacometrics Syst. Pharmacol.* 9:106-114. <u>PMID: 31919994</u>

Todor, I. et al. (2017) Evaluation of the potential pharmacokinetic interaction between atomoxetine and fluvoxamine in healthy volunteers. *Pharmacology*. 99:84-8. <u>PMID:</u> 27816979

van Harten, J., Van Bemmel, P., Dobrinska, M. R., Ferguson, R. K., Raghoebar, M. (1991). Bioavailability of fluvoxamine given with and without food. *Biopharm Drug Dispos*. 12(8):571-6. <u>PMID: 1801963</u>

van Harten, J., Lönnebo, A., Grahnén, A. (1994). Pharmacokinetics of Fluvoxamine after Intravenous and Oral Administration. Poster abstract. P-58-44. *Neuropsychopharmacology* (incorrectly spelled as *Neuropschychopharmacology*) 10(3S/Part2):104S.

von Moltke, L.L., Greenblatt, D.J., Court, M.H., Duan, S.X., Harmatz, J.S., Schader, R.I. (1995) Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. *J Clin Psychopharmacol*. 15(2):125-31. <u>PMID: 7782485</u>

von Moltke, L.L., Greenblatt, D.J., Harmatz, J.S., Duan, S.X., Harrel., L.M., Cotreau-Bibba, M.M., Pritchard, G.A., Wright, C.E., Shader, R.I. (1996a). Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. *J Pharmacol Exp Ther*. 276(2):370-9. PMID: 8632299

von Moltke, L.L., Greenblatt, D.J., Duan, S.X., Harmatz, J.S., Wright, C.E., Shader, R.I. (1996b). Inhibition of terfenadine metabolism in vitro by azole antifungal agents and by selective serotonin reuptake inhibitor antidepressants: relation to pharmacokinetic interactions in vivo. *J Clin Psychopharmacol.* 16(2):104-12. <u>PMID: 8690825</u>

Wang, C.Y., Zhang, Z.J., Li, W.B., Zhai, Y.M., Cai, Z.J., Weng, Y.Z., Zhu, R.H., Zhao, J.P., Zhou, H.H. (2004) The differential effects of steady-state fluvoxamine on the pharmacokinetics of olanzapine and clozapine in healthy volunteers. *J Clin Pharmacol*. 44(7):785-92. <u>PMID: 15199083</u>

Yang J, Jamei M, Rowland Yeo K, Tucker GT, Rostami-Hodjegan A. (2007) Prediction of intestinal first-pass drug metabolism. *Curr Drug Metab.* 8(7):676-84. <u>PMID: 17979655</u>

Yao, C. et al. (2001) Fluvoxamine-theophylline interaction: gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. *Clin Pharmacol Ther*. 70, 415-24. <u>PMID: 11719727</u>

Yao, C., Kunze, K.L., Trager, W.F., Kharasch, E.D., Levy, R.H. (2003) Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. *Drug Metab Dispos*. 31:565-71. <u>PMID: 12695344</u>

Yasui-Furukori N. et al. (2004a). Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. *Br J Clin Pharmacol*. 57(4):487-94. <u>PMID:</u> 15025747

Yasui-Furukori N. et al. (2004b). Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. *J Clin Pharmacol*. 44(11):1223-9. <u>PMID: 15496639</u>