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EMA Issue 1 

4 contexts of use (CoU) are defined; however, the analyses are not submitted per CoU. The 

CoUs are defined mechanistically while analyses were shown per enzyme for all 3 CoU together 
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or for all enzymes combined per mechanism of inhibition. Discuss whether pooling of the DDI 

data for the various CYP enzymes is appropriate for each CoU and whether DDI data for the 

two mechanisms of inhibition can be combined per enzyme.  Consider in this discussion that a 

rank order approach may be considered for hepatic reversible inhibition but not for MBI (ICH-

M12), the location of inhibition (only hepatic or hepatic and intestinal) and the verification of 

kdeg values for the various enzymes.  

 

RESPONSE: A fundamental assumption with the use of PBPK models for predicting DDIs by 

reversible inhibition is that the main determinants of any DDI are the fraction of the victim dose 

that is cleared by the pathway that is being inhibited (fm) and the potency of the inhibitor (Ki) 

and the concentration of the inhibitor at the active site of the enzyme ([I]). If a victim drug is 

mainly cleared by a CYP enzyme and a clinical DDI study is conducted with a strong inhibitor 

of the enzyme, it is assumed that this will be the worst-case scenario and the DDI potential with 

weak/moderate inhibitors will be lower.  

 

This concept has been demonstrated in the literature for CYP3A4 compounds based on 

compilation of clinical data (Hisaka et al., 20210). The basic assumption of the in vivo-based 

method is that the magnitude of change in AUC for various DDIs is determined by two 

parameters i.e., CR and IR (Figure 1). The CR is the contribution ratio of the target metabolizing 

enzyme to the clearance of a substrate drug after oral absorption, and the IR is the inhibition 

ratio of the enzyme caused by an inhibitor drug. The clinical data for CYP3A4 shown in the 

figures below [1] indicate that the increase in AUC is associated with a higher CR (equivalent 

to fmCYP3A4) for the substrate and increasing potency of the inhibitor against CYP3A4. In 

Figure 2, predicted fold-increases in AUC for substrates with varying contributions of 

inhibitable pathways (CR) in combination with inhibitors of increasing inhibitory potencies 

(IR) are shown.  
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Figure 1. Impact of inhibitory potency (IR) and contribution of inhibitable pathway (fm) to the 
magnitude of drug interaction  

  

Figure 2. Predicted fold-increase in AUC for substrate and inhibitor combinations. The bars 
with open triangles indicate the studies that were used to construct the substrate and inhibitor 
matrix and the data with closed triangles were used as a verification dataset. 
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The basic assumption of assessing DDI risk is that the inhibitory potency is strong > moderate 

> weak and this holds true regardless of the enzyme involved. A similar approach is adopted in 

the DDI guidelines from various regulatory agencies where static models are used to predict 

the magnitude of competitive inhibition of any enzyme based on fm, appropriate inhibitor 

concentrations and inhibitor potency (FDA Guidance; EMA Guideline). No distinction is made 

as to the identity of the enzyme under consideration. Fundamentally, there is no reason why this 

cannot be the case for PBPK modelling as it is for the static model. 

For any single drug, the most potently inhibited enzyme in vitro should also be the one most 

affected in vivo. Factors that affect our ability to quantitatively predict the magnitude of 

interactions from in vitro potency data should be equivalent irrespective of the enzyme targets 

are being compared. Thus, a rank order approach (ICH-M12 Guideline) should be reliable for 

using in vitro drug inhibition data in the planning of in vivo drug interaction studies. If a clinical 

study is conducted with a sensitive substrate of the enzyme most potently inhibited in vitro, 

then it should be assumed that the worst-case scenario has been determined. Indeed, in a study 

reported by Obach et al. (2005), 21 drugs with an appropriate in vivo DDI data set (at least 3 in 

vivo DDI studies with selective probe substrates for 3 different CYP enzymes) were used to test 

the rank-order approach. It was found that application of the rank order approach would have 

captured most of the observed interactions greater than 2-fold and drug interaction strategies 

would have been appropriately executed for 18 of 21 drugs using the in vitro inhibition data. In 

Table 1, we provide the rank order of in vitro Ki values for a series of perpetrators used by 

Obach et al. [4] in their analysis, some of which are also included in the Simcyp Simulator V19.  

In such cases where a drug inhibits several CYP enzymes and in vitro Ki values are available, 

a reasonable strategy would be to conduct a clinical DDI study using a sensitive substrate for 

the enzyme that is most potently inhibited in vitro. Once a PBPK model has been developed for 

the drug and the clinical DDI with the sensitive substrate accurately predicted, simulations with 

other probe substrates could be run to determine the DDI potential of the drug in vivo for the 

other CYP enzymes using the in vitro Ki values. To demonstrate this, consider fluconazole with 

Ki values of 2.0, 10.7, and 23.0 µM for CYP2C19, CYP3A4, and CYP2C9, respectively. 

Simulations of fluconazole in combination with omeprazole, midazolam, or S-warfarin 

(references within Obach et al., 2005), confirm that the rank order approach applies and 

importantly, that the PBPK models and compound files within the Simcyp Simulator can 

capture the results (Table 2).  Workspaces can be found within “Issue 1” in the main folder 

called “Final Responses”.    

Table 1. Rank order of in vitro Ki values for a series of perpetrators 
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  In vitro rank order (Obach et al., 2005)     Simcyp   

                  

            

Cimetidine 2D6 3A 2C9/1A2   2D6 3A     

            

Citalopram 2D6 3A/2C19 2C9        

            

Clarithromycin 3A 2C19/1A2 2C9   3A     

            

Diltiazem 3A 2C9/2D6 1A2   3A     

            

Erythromycin 3A 1A2/2C9    3A     

            

Fluconazole 2C19/3A/2C9 1A2    2C19 3A 2C9   

            

Fluoxetine 2D6 3A 1A2   2D6 2C19 3A   

            

Fluvoxamine 1A2 2C19 2D6/2C9 3A 1A2 2C19 2D6/2C9 3A 

            

Ketoconazole 3A 2C9/2C19 1A2 2D6 3A 2C8 2C9   

            

Metronidazole 3A 1A2 2C9        

            

Nefazodone 3A 2C9 1A2        

            

Paroxetine 2D6 1A2 2C19/3A 2C9 2D6 3A4  1A2 

            

Propranolol 1A2 3A 2C9   1A2     

            

Ranitidine 3A/2D6 2C9/1A2         

            

Risperidone 2D6 2C19 1A2        

            

Roxithromycin 3A 2C19/1A2/2C9         

            

Sertraline 2D6 3A/1A2 2C9        

            

Terbutaline 2D6 1A2 3A/2C9        

            

Ticlopidine 2C19 1A2 3A   2B6 2C19    

            

Troleandomycin 3A 2C19/1A2             

agrees with rank order approach 

in simcyp but not the rank order approach 

not in simcyp but in rank order approach 

 

Table 2. Simulations of drug interactions with fluconazole – rank order approach 
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Substrate 
Fluconazole Ki 

(M) 

Fluconazole 
dose 

Predicted 
AUCr 

Observed AUC 
ratio 

Omeprazole (2C19) 2.0 100mg QD 6.76 6.29 

Midazolam (3A4) 10.7 200mg QD 3.75 3.75 

S-Warfarin (2C9) 23.0 300mg QD 2.27 2.27 

Theophylline 
(CYP1A2) 

>800 (DIDB); 
800 used in 
simulation 

100mg BD 1.02 1.19 

 

For a qualified PBPK platform, it is expected that successful prediction of a clinical DDI 

between a victim and a strong inhibitor would allow prediction of the magnitude of interaction 

with a moderate and weak inhibitor of the same enzyme. For a specific CYP enzyme, 

demonstrating that strong, moderate and weak inhibition of a particular enzyme (e.g., CYP1A2) 

give correct relative changes in Cmax and AUC ratios for a sensitive substrate should qualify 

the platform for that particular enzyme. If the platform predicts similar changes in Cmax ratio 

and AUC ratio when the substrate metabolic intrinsic clearance (CLint) and inhibitor Ki are 

changed to reflect another enzyme (e.g., CYP2E1), this would demonstrate that the platform is 

behaving appropriately. The main considerations are the relative abundance in the liver (52 

versus 61 pmol/mg protein) and intestine (in this example neither isozyme is expressed in the 

intestine) which for an oral drug will give different levels of AUC and Cmax ratio. However, 

the relationship of strong moderate and weak inhibitors should be maintained for each enzyme. 

This is illustrated below for theophylline which was used as a sensitive substrate of CYP1A2 

and fluvoxamine as a strong inhibitor, propranolol as a moderate inhibitor (240 mg TID) and 

cimetidine as a weak inhibitor of CYP1A2. The substrate model was then changed so that 

theophylline was now metabolised by CYP2E1, and the inhibitor files were amended so that 

the Ki value was now applied to CYP2E1 instead of CYP1A2. The enzyme abundance values 

in the liver (52 pmol/mg for CYP1A2 and 61 pmol/mg for CYP2E1) and gut (0 for both 

isozymes) were the default values in the simulator and were not changed. Given the similarity 

in CYP abundance in liver (impact on fmCYP), the CL/F of the two substrates in the absence 
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of inhibitor was similar (Table 3). Thus, the simulated DDIs for the two scenarios were also 

comparable (Table 4).  

Table 3. Characteristics of the two substrates used in the CYP1A2/2E1 exercise. 

 CYP1A2 CYP2E1 

Fa 0.86 0.86 

Fg 1 1 

FH 0.96 0.96 

Cmax (ng/ml) 6654 6150 

CL (L/h) 4.31 4.57 

 

Table 4. Predicted DDIs of the two substrates used in the CYP1A2/2E1 exercise. 

Enzyme Inhibitor Mean CmaxR Mean AUCR 

CYP1A2 Cimetidine (Weak) 1.31 1.46 

CYP2E1 Cimetidine 1.38 1.56 

CYP1A2 Propranolol (Moderate) 1.03 2.03 

CYP2E1 Propranolol 1.02 2.07 

CYP1A2 Fluvoxamine (Strong) 3.00 3.83 

CYP2E1 Fluvoxamine 4.09 5.35 

 

The concept was extended to CYP3A4 where midazolam (a sensitive CYP3A4 substrate) and 

both competitive and mechanism-based inhibitors (MBI) were used. With MBI there is some 

added complexity as the kdeg value can vary from enzyme to enzyme and for some enzymes 

there are less data available to define kdeg. This is only likely to affect interactions in the liver, 

as the same kdeg value is used for all isozymes in the gut as it is based on the turnover of the 

enterocyte which is faster than the turnover of the individual enzymes.  

To illustrate this concept, the following simulations were run using midazolam with a strong, 

moderate and weak inhibitor. To simplify things, the CYP3A5 component of the midazolam 

file in the Simcyp Simulator V19 was removed – all other parameters were unaltered. DDIs 

with ketoconazole (strong reversible CYP3A4 inhibitor), clarithromycin (strong MBI), 

diltiazem (moderate MBI), fluconazole (moderate competitive) and cimetidine (weak 

competitive) were simulated. The midazolam file was then adapted so that the clearance was 

mediated by CYP2J2 instead of CYP3A4 (Table 5). The DDIs were run with the same inhibitors 
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as used previously – the CYP3A4 inhibition values (Ki or Kinact and KI) were assigned to 

CYP2J2 instead of CYP3A4. Note in these simulations the Vmax for recombinant CYP2J2 was 

increased by 110-fold to account for the differences in abundance of CYP2J2 and CYP3A4. 

Fugut was adjusted so that the Fg in the CYP3A4 and CYP2J2 simulations were in the same 

range. 

Table 5. Characteristics of the two substrates used in the CYP3A4/2J2 exercise. 

 CYP3A4 CYP2J2 

Fa 0.87 0.87 

Fg 0.60 0.56 

FH 0.56 0.61 

Cmax (ng/ml) 25.4 33.0 

CL (L/h) 116 73 

 

The results show that the same pattern is seen for CYP3A4 and CYP2J2 substrates and strong, 

moderate and weak inhibitors when the substrate has a similar CL and fm by the enzyme and 

the inhibitors have the same kinetics and Ki against the relevant enzyme. Clarithromycin-

mediated inhibition of the CYP2J2 substrate gives a lower interaction than the CYP3A4 

substrate if autoinhibition of clarithromycin due to mechanism-based inhibition of CYP3A4 is 

not considered in the simulation. When autoinhibition is considered (higher concentrations of 

clarithromycin) the effect of clarithromycin on the two substrates was similar. 

 

Table 6. Predicted DDIs of the two substrates used in the CYP3A4/CYP2J2 exercise. 

Enzyme Inhibitor Mean CmaxR Mean AUCR 

CYP3A4 Cimetidine 1.24 1.34 

CYP2J2 Cimetidine 1.25 1.36 

CYP3A4 Clarithromycin 2.59 8.96 

CYP2J2 Clarithromycin 2.21 4.32 

CYP2J2 Clarithromycin (inc 

3A4 autoinhibition) 

2.75 8.87 

CYP3A4 Diltiazem 1.92 3.05 

CYP2J2 Diltiazem 1.95 3.45 
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CYP2J2 Diltiazem (inc 3A4 

autoinhibition) 

1.92 3.33 

CYP3A4 Fluconazole 2.11 3.57 

CYP2J2 Fluconazole 2.09 3.72 

CYP3A4 Ketoconazole 3.49 15.25 

CYP2J2 Ketoconazole 3.40 12.94 

 

In conclusion, we think it is entirely appropriate to combine the DDI data for the various 

enzymes for each CoU and also for the two mechanisms of inhibition. 
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EMA Issue 2 

Please discuss your views on the use of AFE and AAFE as performance metrics for assessing 

Simcyp’s overall predictive performance and for detecting bias in specific subgroups within the 

DDI Qualification Matrix. 

 

RESPONSE: These metrics have typically been used to assess the performance of PBPK 

models for predicting PK parameters (Margolskee A et al., 2016). It is perceived that each of 

these metrics provides a different measure and perspective on the performance of the 

simulations. For example, the percentage of predictions within a certain fold error provides a 
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measure of accuracy, while the average fold error (AFE) gives an indication of the bias of the 

predictions. Consider the following:   

If x is a set of observations and px the corresponding set of model predictions, the fold error 

(FE, a vector) and the average fold-error (AFE, a scalar) are defined as in reference (Zuegge et 

al., 2001): 

 𝑭𝑬 = 𝑙𝑜𝑔 (
𝒑𝒙

𝒙
) (1) 

 𝐴𝐹𝐸 = 𝑒𝑥𝑝 (
∑ 𝑭𝑬𝑛

1

𝑛
) (2) 

The AFE is therefore simply the geometric average of the predictions over observation ratios. 

The standard display of AUC ratios from different studies for model validation plots is similar 

to what is shown in Figure . We simulated virtual DDI trials, so there are many more trials than 

usual to get a clearer view; the prediction trial is also larger than usual (200 subjects) for 

increased precision (the R script used is given in Appendix 1, Simulation script 1): 

 

Figure 3: Observed vs. predicted AUC ratios for 10,000 virtual 
clinical studies. In red: identity line; Dashed lines: 1.25-fold errors 
limits. 

It is obvious that the FE values are simply a projection of the points in Figure  on a line 

perpendicular to the diagonal line. It is therefore simply a one-dimensional summary of Figure . 

Figure  is a histogram of FE values: 
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Figure 4: Histogram of the fold-errors (FE) in AUC ratios for 
10,000 virtual clinical studies. In red: 1.25-fold errors limits. AFE is 
just the average of that. 

Figure  can be used to just give us the fraction of points falling outside any fold-error interval, 

but is in fact less informative than Figure , which displays the same information but with the 

added dimension of the AUC values. The AFE value is just the average of the values shown in 

Figure  and is in fact even less informative. Any systematic bias would even be more apparent 

on Figure 3. 

The absolute FE (AFE) measure just folds the left part of Figure  (below zero) on the right part 

(see Figure ) and AAFE gives an average of those deviations. AAFE is a second-order moment 

of the distribution and is not directly related to decisions about risks of over- or under-

estimation of DDIs. As such, it does not seem particularly useful in decision making. 

 

Figure 5: Histogram of the absolute fold-errors (AFE) in AUC ratios for 
10,000 virtual clinical studies. AAFE is just the average of that. 

 

Our conclusion is that evaluations based on plots like Figure , may be more informative 

than AFE and AAFE measures, and that for each drug the predicted/observed fold should 
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be put into context of the therapeutic window. However, as all other PBPK performance 

related studies have used AFE and AAFE as metrics, we think it is still important to 

present them.   
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EMA Issue 3 

Please discuss the relevance of the proposed acceptance criteria (e.g., within 1.25-fold, within 

1.5-fold, within 2-fold, within Guest criterion, misclassification rate) for the context of use 

considering exposure-response and therapeutic window. 

 

RESPONSE: The predictive performance of PBPK models is commonly assessed using a 

comparative approach whereby the accuracy of a particular simulated scenario is represented 

as a ratio of predicted or simulated parameter versus observed parameter which is then 

expressed as a fold. One of the more challenging issues that has been debated over the years is 

what fold (predicted/observed ratio) would constitute a successful prediction? Several factors 

need to be considered in answering this issue, including the intended purpose of the simulation, 

the therapeutic index of the drug or drugs in issue, or steepness of the exposure–response 

relationship.  

If simulations are used to support specific dosing recommendations to be tested in future clinical 

trials or to be incorporated in prescription drug labeling, the proposed dosing recommendations 

should be discussed and justified within the totality of evidence, including the context of known 

exposure-response relationships and the level of confidence in the PBPK model for its intended 

uses.  

In conclusion, whilst we can provide the percentage of predictions falling within 1.25-, 1.5- 

and 2.0-fold of observed data, the acceptance criteria for the drug being investigated 

should be put into context of the dose response curve and therapeutic window.  
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EMA Issue 4 

Please present an analysis of Observed vs. Predicted DDIs strictly adhering to the context of 

use. 

RESPONSE: We have presented the analyses of predicted versus observed DDIs in a number 

of different ways:  

• Each enzyme per mechanism and COU 

• All enzymes per mechanism and COU  

 

It should be noted that for some drug pairs, there are multiple clinical studies. After much 

discussion about applying potential weighting for a drug pair based on the number of subjects, 

it was decided that all studies should be included as different subjects were used in each case 

and different dosage regimens were applied in terms of periods of dosing, time of dosing and 

actual dose, each of which are specified in the clinical trial design sheets. Thus, no weighting 

was applied. The analyses including figures are presented in excel sheets listed below:  

“CYP1A2-ClinicalData_TrialDesignSetting-02”  

“CYP2C8-ClinicalData_TrialDesignSetting-02”  

“CYP2C9-ClinicalData_TrialDesignSetting-02”  

“CYP2C19-ClinicalData_TrialDesignSetting-02” 

“CYP2D6-ClinicalData_TrialDesignSetting-02” 

“CYP3A4-ClinicalData_TrialDesignSetting-02” 

 

Word documents providing a summary of the analyses are available within each enzyme folder.  

An excel sheet called “CYP InhibitionSummaryAllData” and a word document called “CYP 

inhibition summary 202312-allCYP” provide an overview of all the analyses and are available 

within the “Responses folder to submit”. 

Finally, an excel sheet called “COU summary” has been prepared to indicate how predictions 

for drug pairs were assigned to a specific COU.   

Over the next few pages, we show how many DDIs we have now simulated for each enzyme 

and present predicted versus observed ratios for each mechanism (Figure 6 – Competitive 

Inhibition; Figure 7 – MBI).  

 

CYP-inhibition analysis  
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CYP1A2, CYO2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5  

  
  

Enzyme CI MBI ALL 

CYP1A2 42 0 42 

CYP2C8 7 10 17 

CYP2C9 25 3 28 

CYP2C19 15 13 28 

CYP2D6 32 14 46 

CYP3A4/5 66 28 94 
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1) Completive inhibition only 

  

 

2-fold 1.5-fold 1.25-fold  
Cmax Ratio AUC Ratio Cmax Ratio AUC Ratio Cmax Ratio AUC Ratio  

3 3 13 14 37 51 NO 

130 187 130 187 130 187 TOTAL 

97.69 98.40 90.00 92.51 71.54 72.73 % 

ALL - CI

Cmax Ratio AUC Ratio

AFE (bias) 0.95 0.99

AAFE (precision) 1.20 1.19

Number Studies 130 187

V19R1 Built 96
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2) Mechanism-based inhibition only 

  

 

2-fold 1.5-fold 1.25-fold  
Cmax Ratio AUC Ratio Cmax Ratio AUC Ratio Cmax Ratio AUC Ratio  

3 2 8 14 17 21 NO 

60 68 60 68 60 68 TOTAL 

95.00 97.06 86.67 79.41 71.67 69.12 % 

ALL - MBI

Cmax Ratio AUC Ratio

AFE (bias) 1.01 1.02

AAFE (precision) 1.23 1.25

Number Studies 60 68

V19R1 Built 96
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EMA Issue 5 

What is the interstudy variability for the in vivo DDI studies? Please provide the interstudy 

variability for all contexts of use. Please discuss the option to incorporate variability of 

observed and predicted AUCRs in the assessment of performance. 

 

RESPONSE: Inter-study variability is unavoidable but is usually confounded by inter-

individual variability. It can be estimated from data only when several similar studies are 

available for the same combination of drugs, and when individual data are available, at least for 

some studies. We gathered such a data set (see Figure ) (1-14). Joint estimation of the inter-

study variability and inter-individual variability was performed by meta-analysis, using a 

multilevel model. The model was cast in a Bayesian framework and inference was performed 

using MCMC simulations with the R package Nimble (15) (see also code in Appendix, 

Inference script 1). 

The prior for the inter-individual variance of AUC ratios (in log-space) was set to a vague 

truncated normal distribution: 

 𝑉𝑠𝑢𝑏 ~ TN(0, 0.25, 0, 1) (3) 

The same vague distribution was used for the prior on the inter-study variance (in log space 

also): 

  𝑉𝑠𝑡𝑢 ~ TN(0, 0.25, 0, 1) (4) 

A vague uniform prior was used for the mean chemical-pair-specific AUC ratios. For pair i: 

   𝐴𝑈𝐶𝑖 ~ U(1, 50) (5) 

The variance of the observed mean AUC ratios for given chemical-pair i in study j is simply: 

   𝑉𝑖,𝑗 =
𝑉𝑠𝑢𝑏

𝑁𝑖,𝑗
 +  𝑉𝑠𝑡𝑢 (6) 

where Ni,j is the number of subjects in study j for chemical-pair i. 

The observed mean AUC ratios for given chemical-pair i in study j is assumed to be distributed 

lognormally around the interaction-pair-specific mean: 

   𝐴𝑈𝐶𝑖,𝑗 ~ LN(log(𝐴𝑈𝐶𝑖), 𝑉𝑖,𝑗) (7) 

Finally, subject level AUC ratios, for chemical-pair i in study j, subject k, when available, are 

assumed to be also lognormally distributed, with a common inter-individual variance: 
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 𝐴𝑈𝐶𝑖,𝑗,𝑘  ~ LN(log(𝐴𝑈𝐶𝑖,𝑗), 𝑉𝑠𝑢𝑏) (8) 

 

Figure 8: AUC ratios observed in different DDI studies (TC: theophylline-
ciprofloxacin; RG: repaglinide-gemfibrozil; DQ: dextromethorphan-
quinidine; WF: warfarin-fluconazole; FF: flurbiprofen-fluconazole; QC: 
quinidine-cimetidine). For each drugs pair, the results of similar design 
studies are color-coded. Series of points of the same color are individual 
values in the same study. 

 

The MCMC sampling estimates of the model parameters of interest are given in Table . All 

parameters are reasonably well estimated (see also in Appendix, section MCMC posterior plots) 

The main parameters of interest are the inter-study and inter-individual variances (Vstu and Vsub). 

Vstu central estimate is 0.074 (on the logscale, corresponding to an arithmetic CV of 28%) and 

Vsub) central estimate is 0.041 (on the logscale, corresponding to an arithmetic CV of 20%). It 

appears from this analysis, with this small but diverse data set, that both variances are not very 

large and are approximately of the same size. 
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Table 7: Statistical summaries of the posterior distributions of the variance meta-

analysis parameters. �̂� is a convergence diagnostic (16), which should be close to 1, as here. 

Parameter Mean SD 2.5th pctile 50th pctile 97.5th pctile �̂� 

Vstu 0.074 0.042 0.027 0.063 0.193 1.01 

Vsub 0.041 0.013 0.023 0.039 0.075 1.00 

AUC1 1.50 0.22 1.13 1.48 2.00 1.00 

AUC2 7.53 1.05 5.69 7.46 9.87 1.00 

AUC3 27.7 5.3 18.5 27.2 39.8 1.01 

AUC4 2.35 0.34 1.76 2.32 3.11 1.00 

AUC5 1.83 0.37 1.23 1.78 2.68 1.01 

AUC6 1.38 0.28 1.03 1.32 2.07 1.00 

In a separate analysis, we also tried to estimate a set of chemical-pair-specific inter-individual 

variances, but there are not enough data to get a stable inference on them and the inter-study 

variance estimates were the same (data not shown). 

 

Our conclusion is that there are insufficient data to be able to perform an appropriate 

assessment of predicted versus observed variability.  
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EMA Issue 6 

Please discuss the option to perform an in-depth assessment of differences in study design such 

as different doses investigated and exposure time, time between administration of substrate and 
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inhibitor separately. These could allow achieving a better understanding of Simcyp’s predictive 

performance for different dose levels of the same perpetrator or its effect over time. 

 

 

RESPONSE: There are a number of drug combinations that have been used in simulations 

where multiple studies are available. All the predicted versus observed datasets are available 

for closer scrutiny.   

 

 

EMA Issue 7 

Please discuss whether intrinsic variability of compounds had an impact of the performance of 

the predictions. Please comment on separate consideration on orally administered drugs 

compared to IV administration (some compounds have a high inter- and intrasubject variability 

especially after oral administration. Intravenous administration filters some of the variability 

out). 

RESPONSE: Except for CYP3A4, there are few drugs where both IV and oral data are available 

for a specific enzyme. However, to demonstrate the above point, we use midazolam as an 

example. The UOW Drug interaction database was searched in December 2023 for all studies 

that reported either intravenous (IV) or oral pharmacokinetics of midazolam– see excel file 

called “Midazolam PK”. This gave 217 intravenous studies and 827 oral studies. Studies in 

patients and paediatric subjects were excluded and duplicate studies were removed. Thereafter, 

the mean and SD data for clearance were collated or calculated from the information provided 

where possible to show the variability in observed pharmacokinetics. For some studies, only 

mean data (6 IV studies; 23 oral studies) were reported. Where clearance was reported per kg 

body weight, this was corrected for the mean body weight of the subjects reported in the clinical 

study. If body weight was not reported an assumed body weight (usually 78 kg) was used. Thus, 

101 IV studies and 211 oral studies were available for comparison (see below). Simulations of 

IV and Oral midazolam pharmacokinetics were conducted in a population of 1000 healthy 

subjects aged 20-50 and 50% female subjects. The 1000 virtual subjects were assigned to 100 

trials of 10 subjects and the CL (based on AUCinf) was plotted for each trial and compared to 

the clinical data in the figures below.  

The IV data appears to capture the observed mean of the means and the mean SD across studies, 

but clearly, we are missing the inter-study variance (Figure 9). In our simulations, inter-study 

variance can only be SD2/N, where N is the # of subjects, here 10; so, our inter-study variance 

is entirely due to intrinsic inter-subject variability, when it appears that there is a separate study 

effect. For oral, the variability of our means (inter-study variability) appears to better match the 

observed inter-study variability (Figure 10a and b).  
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Figure 9. Simulated (blue) and observed (orange) CL (mean +/- SD) after intravenous dosing 
of midazolam. Each data point is an individual simulated or observed trial. 

 

 

Figure 10a. Simulated (blue) and observed (orange) CL (mean +/- SD) after oral dosing of 
midazolam. Each data point is an individual simulated or observed trial. 
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Figure 10b. Simulated (blue) and observed (orange) CL (mean +/- SD) after oral dosing of 
midazolam. Each data point is an individual simulated or observed trial. The y axis only 
shows data from 0-500 L/h. 

 

To address the issue of intrinsic variability, we performed simulations using a population model. 

We can use the same simulation framework to address this issue. To be precise (see also code 

in Appendix, Simulation script 2): 

At the subject level, the baseline AUC for drug i in subject j is assumed to be lognormally 

distributed around population mean µi (in log space) with population (between-subject 

variability) standard deviation Σ (in log space): 

 𝐴𝑈𝐶𝑖,𝑗 ~ LN (𝜇𝑖 , Σ) (9) 

At the first occasion (single drug administration), the AUC observed for drug i in subject j is 

assumed to be lognormally distributed around the subject baseline value with an occasion 

specific standard deviation σ1: 

 𝐴𝑈𝐶𝑖,𝑗,1 ~ LN (log(𝐴𝑈𝐶𝑖,𝑗), σ1) (10) 

At the second occasion (two interacting drugs administration), the AUC observed for drug i in 

subject j is assumed to be lognormally distributed around the subject baseline value multiplied 

by a factor δi (the interaction effect) with an occasion specific standard deviation σ2: 

 𝐴𝑈𝐶𝑖,𝑗,2 ~ LN (log(𝐴𝑈𝐶𝑖,𝑗,1 × 𝛿𝑖), σ2) (11) 

Occasion specific standard deviations σ1 and σ2 both include intra-subject variability and 

measurement uncertainty.  

The observed AUC ratio for drug i in subject j is simply: 
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 𝐴𝑈𝐶𝑟,𝑖,𝑗 =
𝐴𝑈𝐶𝑖,𝑗,2

𝐴𝑈𝐶𝑖,𝑗,1
⁄  (12) 

In the following, we show the effect of intrinsic variability (decomposed into between-subject 

and occasion specific variabilities) on the performance of predictions (assessed with clear visual 

checks). 

Effect of intrinsic variability components on the performance of predictions 

Figure  show the effect of various levels of intrinsic variability component on predictive 

performance if the model predicts correct between subject and inter-occasion variabilities. 

Basically, the effect of between subject variability is removed by the study design (subject-level 

observations are paired). Only inter-occasion variability affects the performance by spreading 

the predictions, but without bias. 

However, it is interesting to consider how potential approximations of the variabilities by the 

model affect its predictive performance. This is examined in the next section. 
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Figure 11: Effect of varying between subject variability (BSV), inter-
occasion variability for the study reference arm (IOV1) or for the test arm 
(IOV2) on AUC ratio predictions. 

Effect of intrinsic variability mis-estimation on the performance of predictions 

Figure  show the effect of various levels of biases affecting intrinsic variability component on 

predictive performance. Bias affecting of between subject variability has no impact because its 

effect is removed by the study design (subject-level observations are paired). Bias affecting 

inter-occasion variability does affects the performance by shifting the predictions away from 

identity line. It is therefore important that inter-occasion variability be correctly estimated. 
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Figure 12: Effect of over- or under-estimation (biases) affecting between 
subject variability (BSV), inter-occasion variability for the study reference 
arm (IOV1) or for the test arm (IOV2) on AUC ratio predictions.  

 

EMA Issue 8 

Please discuss the option to include separate acceptance criteria for Cmax, AUC and for 

different CoU. 
 

RESPONSE: As mentioned previously one of the more challenging issues that has been debated 

over the years is what fold (predicted/observed ratio) would constitute a successful prediction? 

We think that formally introducing separate acceptance criteria for Cmax, AUC and for COU 

may overcomplicate matters as appropriate acceptance criteria are likely to be dependent on the 

drug’s therapeutic window and exposure response.   
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EMA Issue 9 

Please discuss the model development/verification/refinement/application workflow. This 

information needs to be provided separately for each use case and each compound in a tabular 

format. It may need to be clarified for each case if the same data were used for model 

development and evaluation and how ‘optimisation’ of the model is understood. 

 
RESPONSE: Prior to integration within the platform, a rigorous feasibility assessment is 

conducted for each compound to ensure that there are sufficient in vitro and clinical data 

available to develop and verify the files for their intended use i.e., quantitative prediction of 

CYP-mediated DDIs either as a victim and/or perpetrator. As part of this process, relevant 

information on physicochemical properties, cell permeability, protein and blood binding, in 

vitro metabolism and clinical PK is collated. Where multiple values for data are available, a 

meta-analysis approach is used as described in Howgate et al. (2006). to obtain a weighted 

geometric mean value and variance for a particular parameter. Simulations using each of the 

compound files aims to describe concentration-time profiles from clinical datasets based on in 

vitro data alone, at least in the initial stages. Model development is performed initially using 

intravenous data (if available) with a focus on the distribution and elimination parameters. 

Thereafter, absorption related parameters are introduced into the PBPK models for each 

compound to predict plasma concentration-time profiles following oral administration. At each 

stage, optimisation of relevant parameters is performed using clinical data, if necessary, to 

ensure accurate recovery of observed data.  

• For a victim drug (substrate), it is important to characterise the clearance routes and 

demonstrate that when inhibited, the observed increase in exposures is accurately 

captured.  

• Initially in vitro metabolism data are scaled to a CL value and compared against 

observed data. If underestimated, the hepatic intrinsic clearance (CLint) can be estimated 

from the observed CLpo value using a retrograde model integrated within the Simcyp 

Simulator V19 and described by the following equation: 

 

     (13) 

 

 

Where B:P is the concentration ratio of drug in blood to plasma; fub is fraction of unbound 

drug in blood; QH is the blood flow in the hepatic vein; fG is the fraction escaping first pass 
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metabolism in the gut; CLR is the renal clearance; fa is the fraction absorbed; Uptake is a 

factor that accounts for any active hepatic uptake (assumed to be the default value = 1).  

• Initially, the in vitro metabolism data are used to assign the relative contributions of the 

CYP enzymes (fmCYP). If the clinical DDI study with a strong inhibitor is not predicted 

accurately, the fmCYP is optimized to capture the observed data. Thereafter, independent 

clinical studies are used to verify the optimized fmCYP. 

• For a perpetrator (inhibitor), it is necessary to ensure that after integration of the inhibitory 

parameters into the PBPK model, they lead to accurate prediction of clinical DDIs with a 

sensitive substrate. If not, the inhibitory parameters are optimized to capture the observed 

DDI. Thereafter, independent clinical studies are used to verify the optimized fmCYP. 

 

Within each of the CYP enzyme analysis files, there is a worksheet called “Source of fm and 

Ki values”. On this worksheet, it is indicated how the fm values were derived for each of the 

substrates and whether/how the inhibition parameters were derived/optimised.  

Reference 

Howgate EM, Rowland-Yeo K, Proctor NJ, Tucker GT and Rostami-Hodjegan A. Prediction 
of in vivo drug clearance from in vitro data: impact of interindividual variability.  Xenobiotica 
2006; 36 (6): 473-497.  

EMA Issue 10 
The University of Washington Database (UW) was used by the Applicant to form the part of 

the DDI qualification matrix where clinical DDI studies were selected if compound files for 

both substrate and inhibitor were available within the SimCYP simulator. However, some of 

the available DDI studies in this database were still omitted by the Applicant in the 

qualification procedure without a precise/detailed explanation and the inclusion/exclusion 

criteria as discussed in the powerpoint presentation were not always consistently conducted: 

a. Cocktail studies were sometimes included in the analysis, 

b. studies that were used for inhibitor optimization sometimes seemed to be 

included in the analysis (e.g. amiodarone, fluconazole, ritonavir), 

c. Duplicates of the same interaction data seem to be included and this should be 

avoided e.g. Mean and gMean, AUCt and AUCinf, subgroup + total group 

analysis, males vs females etc 

d. Studies with complex interactions were sometimes included in the qualification 

set, which is out of scope. 

e. Please provide detailed information as why studies included in the Washington 

database were not included in the qualification dataset. 

f. A table with the DDI qualification set studies is included as attachment with 

tentative remarks to the above observations Please comment on the 
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appropriateness of inclusion of the highlighted studies in the qualification data 

set. 

g. the Applicant should present a tabular overview of all omitted 

studies/references for each pair of substrate-inhibitor where reason(s) for the 

omission of each individual study/reference should be clearly stated. 

 

RESPONSE: For CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, UOW searches were 

performed to identify clinical DDI studies involving moderate to sensitive substrates according 

to FDA guidance and UOW criteria. Initially, studies were excluded if they were:   

• Cocktail studies. 

• Involved patients.  

Thereafter, only studies involving Simcyp compounds (or published models that were 

reproducible) were retained. Then studies were excluded if they were:   

• Duplicate studies. 

• Involved complex interactions e.g. repaglinide/gemfibrozil. 

 

For each enzyme, in the following excel files there is a worksheet called “UOW” that indicates 

which studies were selected and excluded (with clarification):  

“CYP1A2-ClinicalData_TrialDesignSetting-02”  

“CYP2C8-ClinicalData_TrialDesignSetting-02”  

“CYP2C9-ClinicalData_TrialDesignSetting-02”  

“CYP2C19-ClinicalData_TrialDesignSetting-02” 

“CYP2D6-ClinicalData_TrialDesignSetting-02” 

 

EMA Issue 11 

Please justify the selection of the ADAM or the first order absorption model. 

 
RESPONSE: Typically, the simplest absorption model is used initially especially if the 

compound is well behaved in terms of its absorption characteristics. If reliable in vitro data are 

available, fa (the fraction absorbed) and ka (absorption rate constant) describing first order 

absorption can be predicted using MDCK or Caco-2 cell data, which are preferred over 

PSA/HBD data. If intestinal transport needs to be considered for the drug or a complex 

formulation is being considered, then ADAM would be applied.  

 

An excel file called “V19-ADAM_FO” has been provided to indicate which compounds use 

first order versus ADAM models.  
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EMA Issue 12 

Fraction metabolized (Fm) reported in briefing document, publication by Kilford et al 2022 

and substances files are not identical. Even though the impact on the predicted values might be 

small, these are compound specific characteristics and should be the same since all three are 

based on V19R1. Please clarify and indicate the impact. 

 

RESPONSE: Some of the differences are due to the fact that CYP3A5 was not considered in 

the fmCYP contributions in the Kilford analysis (2022). In addition, some of the files were in 

development for later versions of the Simcyp Simulator. We present fmCYP values for all 

substrates run in V19 using the same conditions (same population). These data can be found in 

an excel file called “fm-Fg-F-202312” in the “Responses Folder to submit”.      

 

EMA Issue 13 

The minimal PBPK model considers hepatic and intestinal metabolism. Involvement of 

intestinal metabolism is considered for CYP3A4, but also for CYP2D6, CYP2C9 and CYP2C19. 

While for CYP3A4 references were provided to demonstrate that the intrinsic activity of 

CYP3A4 is the same in liver and intestine but the degradation rate of CYP3A4 is different in 

liver and intestine no information on the intrinsic activity and kdeg for the enzymes CYP2D6, 

CYP2C9 and CYP2C19 was provided.  Please provide this information and discuss if a rank 

order approach would be appropriate for intestinal CYP enzymes considering variable 

expression of the enzymes along the intestine from duodenum to distal ileum (or even colon). 

 
RESPONSE: With MBI there is some added complexity as the kdeg values can vary from 

enzyme to enzyme and for some enzymes there are less data available. These data were 

summarised in a publication by Yang et al. (2008). The table from this publication (shown 

below) indicates that the half-lives of CYP2D6, CYP2C9 and CYP2C19 are 23, 104 and 26 h 

which translate to kdeg values of 0.031 (=0.0693/23), 0.0067 and 0.027 h-1, respectively. The 

latter values are used in Simcyp V19.  

 

It should be noted that the same kdeg value (0.03 h-1) is used for all isozymes in the gut as it is 

based on the turnover of the enterocyte which is faster than the turnover of the individual 

enzymes (Yang et al., 2008). 
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Regarding the intrinsic activity of CYP2C9, CYP2C19 and CYP2D6 in liver versus gut, there 

are no published data indicating that there is a relationship. However, we have extracted 

relevant data for each of the enzymes from a PhD thesis by Von Richter 2000. It appears that 

the intrinsic activity of CYP2C9 may be similar in the liver and intestine. We have shared these 

data in an excel file within the folder called “Issue 13”.  

 

Reference: 

Yang J, Liao M, Shou M, Jamei M, Rowland-Yeo K, Tucker GT and Rostami-Hodjegan A. 
Cytochrome P450 turnover: regulation of synthesis and degradation, methods for determining 
rates, and implications for the prediction of drug interactions. Curr Drug Metab 2008; 9: 384-
394 (2008). 
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EMA Issue 14 

The conditions under which the fm- and Ki-values, Kapp/kinact have been optimised for the 

various substrate files need to be described in greater detail in order to allow adequate 

assessment of the use of the platform for the CoUs.  

a. The (type of) clinical data that were used to verify and/or optimise fm should be 

clarified. Did this include data from DDI studies with strong, moderate and/or 

weak inhibitors? This is a crucial point that requires clarification in order to 

adequately assess CoU1, since CoU1 states that clinical DDI data with a strong 

inhibitor will be available and can be used to verify the fm-value. Were data 

from moderate and weak inhibitors DDI studies used to verify and/or optimise 

fm values when developing the PBPK models for the substrates included in the 

SimCYP platform provided by the Applicant? 

b. For each substrate compound file where a fm parameter optimization was 

implemented, please provide information on if independent clinical studies were 

available (and if so, how many), along with appropriate tables and figures of 

the independent verification. 

c. The optimization of Ki-values for inhibitors cannot be followed based on the 

provided compound summaries for inhibitors. For each inhibitor compound file 

where a Ki parameter optimization was implemented, please provide 

information on if independent clinical studies were available (and if so, how 

many), along with appropriate tables and figures of the independent 

verification. Also provide info on in vitro Ki vs optimized Ki and effect on 

exposure prediction of optimization. By the end of the qualification procedure, 

the compound summaries should be updated accordingly.  

d. Please provide a Table with Ki values for the inhibitors and compare these with 

median and range of Ki values reported in DIDB.  

e. Provide similar information as requested in c+d for optimization of Kapp and 

kinact values. 

 

 

• RESPONSE: We provide a general response that captures points a-c. Initially, the in vitro 

metabolism data (and mass balance data if available) are used to assign the relative 

contributions of the CYP enzymes (fmCYP) and clearance routes to the elimination of the 

drug. If the clinical DDI study with a strong inhibitor is not predicted accurately, the 

fmCYP is then optimized to capture the observed data. Thereafter, independent clinical 

studies are used to verify the optimized fmCYP.  

• For a perpetrator (inhibitor), it is necessary to ensure that after integration of the inhibitory 

parameters into the PBPK model, they lead to accurate prediction of clinical DDIs with a 

sensitive substrate. If not, the inhibitory parameters are optimized to capture the observed 

interaction. Thereafter, independent clinical studies are used to verify the optimized 

fmCYP.  
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• We have followed the above approach for the development of compound files as substrates 

and inhibitors. To the best of our knowledge, we have removed all clinical DDIs that have 

been used to optimize the fmCYP values or inhibitory parameters.  

• Within each of the CYP enzyme analysis files, there is a worksheet called “Source of fm 

and Ki values”. On this worksheet, it is indicated how the fm values were derived for each 

of the substrates (in vitro data or clinical DDI study) and whether/how the inhibition 

parameters were derived/optimized (invitro data or clinical DDI study).  

• Going forward we will endeavour to capture this information on the compound file 

summaries. 

Regarding points d) and e) above, we have collated the requested data relating to the inhibitory 

potencies of the drugs and included two excel files in two subfolders called “Issue 14-Ki” and 

“Issue 14-Kapp-kinact” within “Responses Folder to submit”.  

 

EMA Issue 15 

Polymorphism: please provide a comparison of substrates single dose and multiple dose data 

for EM and PM for CYP2C9, CYP2C19, CYP2D6 (observed and predicted PK parameters) 

and comparison of PM with strong inhibitors. In principle, the exposures should be comparable 

for poor metabolisers or for EM with a strong inhibitor. Therefore, poor metabolisers could be 

used to verify the model. How are PM, IM, EM, UM for the various polymorphic CYP enzymes 

included in Simcyp? 
 
RESPONSE: We have compiled a dataset where we show studies with metoprolol exposures 

in CYP2D6 PM subjects (n=9 studies) versus metoprolol exposures in subjects following 

coadministration with a strong CYP2D6 inhibitor paroxetine (n=2). In the latter 2 studies, the 

CYP2D6 phenotypic status of the subjects is not clear. In the second dataset, we show studies 

with omeprazole exposures in CYP2C19 PM subjects (n=8 studies) versus omeprazole 

exposures in subjects following coadministration with a strong CYP2C19 inhibitor omeprazole 

(n=8). The number of PM subjects tends to be small and the phenotypic status of the subjects 

in the DDI studies is not clear. In principle, this sounds like a reasonable approach; however, 

in practice, it may not be possible given the relatively small numbers and the lack of clarity 

regarding the phenotypic status of some of the subjects.   

 

A folder “Issue 15” with two excel sheets indicating the data for metoprolol and omeprazole 

have been provided in the “Responses Folder to submit”.  
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Regarding the second question, and how Simcyp handles phenotypic data we provide the 

following information. On the demographic screen of the population tab, the frequency of 

different phenotypes (EM, IM, UM and PM) is entered. These values are then used when setting 

up the population for a particular simulation; individuals are randomly assigned to the 

phenotypes depending up on the frequency associated with the enzyme in a population. The 

values of the phenotype frequency can be different for each population and can also be altered 

by the user to reflect those of a specific study. The values are taken from a meta-analysis of 

literature data where the different phenotype frequencies have been measured. 

For each phenotype an associated abundance with variability is provided for the liver and 

intestine. These distributions are sampled for an individual once their phenotype has been 

defined. Thus, each individual has a phenotype and associated enzyme abundance for each 

relevant enzyme. 

EMA Issue 16 

What constitutes a “sensitive” CYP substrate? Please discuss using the ICH M12 definition.  

 

RESPONSE: Ideally, drugs should be selected for clinical studies based on their sensitivity, 

specificity, safety profiles, and reported DDI studies with inhibitors. According to the ICH-

M12 definition, sensitive index substrates are index drugs that demonstrate an increase in AUC 

of ≥5-fold with strong index inhibitors of a given metabolic pathway in clinical DDI studies. 

Moderately sensitive substrates are drugs that demonstrate an increase in AUC of ≥2- to < 5-

fold with strong index inhibitors of a given metabolic pathway in clinical DDI studies. Where 

possible, we have included sensitive and moderate sensitive substrates for each enzyme.  

EMA Issue 17 

For several input parameters throughout the documentation (e.g., compound summaries), the 

Method/Reference that has been used to derive several of the input parameters cannot be 

followed. The Applicant should update the documentation to clarify the Method/Reference, 

including instances where the following terms have been used by the Applicant:  

a. The Applicant states “meta-analysis” as a reference without specifying which 

underlying literature references this refers to. 

b. For some parameters the Applicant stated “optimized” without clearly 

specifying the reference for which study that was used to optimize the parameter.  

c. For some parameters the Applicant stated “predicted” without specifying the 

method used to predict the parameter. 
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RESPONSE: All this information has been collated and is logged in the form of meta-analyses 

within excel sheets for each compound file. We understand the need for transparency and will 

endeavour to capture this information within the compound file summaries. Although it does 

need to be recognized that even for one compound, many different references have been 

collated over the years and critiqued to provide even a single source. It is difficult to translate 

this amount of information into a summary document that can be easily interpreted.     

EMA Issue 18 

The model validation of the DDIs throughout the documentation (in particular, the compound 

summaries) provided by the Applicant are mostly in the form of Tables of the observed and 

predicted ratio of Cmax and AUC, respectively, as well as the ratio of the observed and 

predicted ratios (i.e., the “ratio of ratio”). The level of detail of this format is considered a 

limitation of the work since it does not allow a sufficiently in-depth assessment of CoU1. For 

clinical DDI studies where this is applicable, the Applicant should provide more detailed model 

validation, including tables with the predicted and observed Cmax and AUC, respectively (i.e. 

not only a Table with ratios) as well as Figures comparing the observed and predicted drug 

concentration vs time curves (with and without the interaction).  

 

RESPONSE: For each of the enzymes, we have reviewed the clinical data and extracted 

observed data when available/possible. We have prepared overlays of the clinical data which 

are executable in Simcyp V19. We have rerun all the simulations, overlaid observed data (when 

available) and prepared word documents with the profiles, predicted and observed Cmax and 

AUC values and corresponding ratios. These can be found within each enzyme folder in a sub-

folder called “DDI Simulation Summaries”. 

 

SPECIFIC ISSUES ON CYP1A2 FOR COU1 

EMA Issue 19 

The Simcyp Simulator V19 R1 contains only two CYP1A2 inhibitors (ciprofloxacin and 

fluvoxamine) both of which are classified as strong CYP1A2 inhibitors. Therefore, there is no 

evidence presented by the Applicant that the Simcyp Simulator is capable of predicting DDI 

scenarios with different levels of CYP1A2 inhibition (i.e., there are no weak nor moderate 

CYP1A2 inhibitors available in the Simcyp platform). The Applicant should update/extend the 

compound summaries to address these issues or otherwise, based on this limitation, it is 

currently not considered possible to qualify the platform for CoU1 for CYP1A2.  
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RESPONSE: The DDI matrix has been updated to include cimetidine and propranolol as weak 

and moderate inhibitors of CYP1A2, respectively (see below). This information and the 

updated analysis can be found in the excel file CYP1A2-ClinicalData_TrialDesignSetting-02”.  

               

Substrate FDA CDIS fm% FG FH F Dose [mg] 

Caffeine Index Sensitive 97.93 1 0.93 0.81 150 

Duloxetine   Sensitive 56.22 1 0.48 0.32 60 

Olanzapine   NA 36.62 1 0.8 0.76 10 

Theophylline   Moderate sensitive 75.83 1 0.96 0.83 125 

Tizanidine Index Sensitive 96.57 1 0.17 0.16 4 

               

                

Inhibitor FDA CDIS           

Cimetidine   Weak           

Ciprofloxacin   Strong           

Fluvoxamine Strong index Strong           

Propranolol   Moderate           
 

 

CDIS: Certara Drug Interaction Solutions. 

EMA Issue 20 

 

In addition to the lack of adequate evidence to support CoU1, as stated above, the following 

specific issues would also need to be resolved before CYP1A2 can be considered qualified.  

A. For ciprofloxacin, it is stated that the Ki parameter was optimised based on the 

reference Kim et al. (2003), while the observed data from this reference were also used 

to verify the predictive performance as a part of the present qualification procedure. 

The Applicant should discuss whether this caused biased prediction and update the 

documentation as necessary. 

 

RESPONSE: This study is still included as a trial in the excel sheet called “CYP1A2-

ClinicalData_TrialDesignSetting-02” to indicate the trial design but the simulation results have 

now been removed from the CYP1A2 analysis itself.  

 

B. Regarding the CYP1A2 substrates the Applicant has presented only 3 substrates in total. 

It is also noted that tizanidine is not actually available as a compound file in the Simcyp 

Simulator. According to the compound summary of tizanidine: “There is limited data in 

the public domain with which to verify the performance of the RES-Tizanidine file and 

therefore the file has been made available via the Simcyp members area, rather than 
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via the Simcyp simulator”. The Applicant should discuss this limitation and how to 

mitigate it. 

 

RESPONSE: The CYP1A2 DDI matrix has now been expanded to include two other substrates 

with varying contributions of CYP1A2 to the metabolic clearance (duloxetine and olanzapine) 

(see Table 1 above).  

The main issue we have with the tizanidine file is that whilst it accurately predicts the DDI with 

fluvoxamine (P/O AUC ratio = 0.99) it significantly underpredicts the DDI with ciprofloxacin 

(P/O AUC ratio = 0.34). The study investigators themselves [1] state that “Ciprofloxacin, at a 

usual dose of 500 mg twice daily, had a strong pharmacokinetic interaction with tizanidine. 

However, this interaction differed qualitatively and quantitatively from the recently described 

fluvoxamine-tizanidine interaction and quantitatively from the previously published 

interactions of ciprofloxacin with other drugs. Ciprofloxacin increased the AUC(0-inf) of 

tizanidine by 10-fold, in some subjects by up to 24-fold, and the Cmax by 7-fold, but in contrast 

to the effect of fluvoxamine, the elimination half-life of tizanidine was prolonged only 

marginally. In previous reports, ciprofloxacin has only moderately (less than 2-fold) increased 

the AUC of other drugs that are metabolized by CYP1A2, including theophylline, caffeine, 

clozapine, and ropivacaine.” As we already have the sensitive CYP1A2 substrate caffeine we 

could have removed it from the analysis, but we wanted to be transparent.  

 

Reference:  

1. Granfors, M.T., Backman, J.T., Neuvonen, M., Ahonen, J. & Neuvonen, P.J. 

Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially 

hazardous interaction. Clinical Pharmacology & Therapeutics  75, 331-41 (2004). 

 

SPECIFIC ISSUES ON CYP3A4 FOR COU1 

EMA Issue 21 

To demonstrate that the implementations of the simulation designs are adequate, the Applicant 

provided spread sheets (in .xlsx format) for all CYP enzymes apart from CYP3A4. The Applicant 

should provide this type of spread sheet also for CYP3A4. 

 

RESPONSE: This information has now been provided in the excel file “CYP3A4-

ClinicalData_TrialDesignSetting-02”. 
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EMA Issue 22 

Cimetidine is stated by the Applicant to be the only weak CYP3A4 inhibitor included in the 

platform. According to the model validation of DDI studies with cimetidine as a perpetrator, 

the PBPK platform tends to under-predict the magnitude of the interactions. This is considered 

a concern of the qualification of CYP3A4 for CoU1, since from a safety perspective, the 

platform may not be considered conservative when it comes to predicting interactions with 

weak CYP3A4 inhibitors. The Applicant should discuss the impact of these model-

misspecifications and preferably also add additional weak CYP3A4 inhibitors to the 

documentation and/or improve the cimetidine model. 

 

RESPONSE: The Ki value has been modified to improve the predictions for CYP3A4-mediated 

DDIs involving cimetidine. An updated V19 compound file summary has been prepared and 

the results of the updated CYP3A4 simulations are also shown in the excel file called “CYP3A4-

ClinicalData_TrialDesignSetting-02”. 

 

Furthermore, cimetidine has also been used as a weak inhibitor of CYP1A2, CYP2D6 and 

CYP2C19. The inhibitory parameters used in the simulations for each of the enzymes are shown 

in the excel file called “Cimetidine source Ki values” found within “Issue 22” in the main folder 

called “Final Responses”. 

EMA Issue 23 

Cyclosporin is referred to as one of the moderate CYP3A4 inhibitors. The only clinical dataset 

referred to is an interaction study with repaglinide, where the main mechanism of interaction 

appears to OATP-inhibition. In addition, the UW database classifies cyclosporin as a weak 

CYP3A4 inhibitor. The relevance of cyclosporin for qualification of the prediction of CYP3A4 

inhibition needs to be justified.  

 

RESPONSE: Many of the cyclosporin DDI studies cited in the DIDB were conducted in 

patients and therefore cannot be included in the analysis. Due to the lack of relevant DDI studies 

and the fact that the simulated study involves a complex DDI (OATP1B1 and CYP3A4), we 

have removed cyclosporin from the analysis as a moderate CYP3A4 inhibitor.   

EMA Issue 24 

Fluvoxamine is referred to as one of the moderate CYP3A4 inhibitors, however, the UW 

database classifies fluvoxamine as a weak CYP3A4 inhibitor. Several of the input parameters 

(including CYP Ki values) appear to be optimised based on clinical data but no details are 

given (see also general issue above). Validation of CYP3A4 inhibition has only been performed 

with two substrates (midazolam and quinidine), and for quinidine CYP2C inhibition also 



 

 39 

appears to be of importance. It is also unclear if any of these substrates were used to optimise 

the CYP3A4 Ki. The relevance of fluvoxamine for qualification of the prediction of CYP3A4 

inhibition needs to be justified.  

 

RESPONSE:  

The CYP3A4 Ki value was derived initially from a meta-analysis of in vitro HLM data using 

midazolam and triazolam as the CYP3A4 probe substrates. After correcting for non-specific 

microsomal binding, the resultant value was 7.89 µM. Yao et al. (2001) reported that on 

comparison of in vitro and in vivo Ki values based on unbound fluvoxamine concentrations, 

fluvoxamine inhibition potency is approximately 10 times greater in vivo than in vitro. Thus, a 

final value of 0.789 µM was used in all simulations.   

 

Reference:  

Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH. Fluvoxamine-
theophylline interaction: gap between in vitro and in vivo inhibition constants toward 
cytochrome P4501A2. Clin Pharmacol Ther. 2001 Nov;70(5):415-24. doi: 
10.1067/mcp.2001.119724. PMID: 11719727. 

EMA Issue 25 

Itraconazole is used by the Applicant as a strong CYP3A4 inhibitor to predict DDI scenarios 

for the SimCYP platform qualification purpose. However, itraconazole is also known as a 

clinical P-gp inhibitor, which do not seem to be incorporated in the SimCYP compound file 

V19. On the other hand, some inhibitory parameters towards transporters like BCRP and 

OATPs (which are less relevant for itraconazole as an inhibitor) appear to be included. 

Generally, it is common that CYP3A4 substrates are simultaneous P-gp substrates. The 

Applicant is asked to discuss this limitation of the itraconazole compound file (i.e., in terms of 

additional interaction mechanisms) and how this would impact its’ potential use as a strong 

CYP3A4 inhibitor for qualification of CoU1. 

 

RESPONSE: The focus of the current qualification exercise is to assess the performance of the 

Simcyp Simulator V19, for DDIs involving CYP1A2-, CYP2C8/9/19-, CYP2D6- and 

CYP3A4-mediated inhibition. Thus, we believe that the issue of itraconazole being a dual 

CYP3A4/P-gp inhibitor is out of scope for COU1.  

EMA Issue 26 

Ketoconazole is included in the framework as a strong CYP3A4 inhibitor. A few points are 

unclear regarding the inhibitor compound summary file for ketoconazole, as outlined in the 

following: 
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A. The fuinc/fumic seems to be important for predicting all DDIs and was estimated based 

on in vitro data. However, the Applicant only included a brief description of this 

approach, and it is not possible to adequately assess this assumption. Therefore, the 

Applicant is asked to provide more details to support the relevance of the optimisation 

of fuinc/fumic. Please discuss from a mechanistic point of view, why the fuinc would be 

different for different CYP enzymes (according to Table 2 in the compound summary 

for ketoconazole). 

 

RESPONSE: Non-specific microsomal binding (NSMB) in in vitro metabolism systems leads 

to an underestimation of the true intrinsic metabolic clearance of compounds being studied or 

indeed the inhibitory potency (Gardner et al., 2022). Therefore in vitro binding needs to be 

accounted for when extrapolating in vitro data to predict the in vivo metabolic clearance or the 

in vivo inhibitory potency of a compound. When several sources of in vitro Ki are available, an 

individual fuinc/fumic (measured or predicted at the protein concentration used to determine the 

Ki value) is applied to each respective value. Thus, fuinc/fumic values can be different across 

CYP enzymes as the degree of NSMB is dependent on the protein concentration used in the in 

vitro experiment.    

 

For example, in Yao et al. (2001), in vitro CYP1A2 Ki values for fluvoxamine based on total 

inhibitor concentrations were 177, 121 and 52 µM in human liver microsomes with 1 mg/ml 

protein, 0.5 mg/ml protein and 0.3 mg/ml protein, respectively. After correcting for NSMB, the 

corresponding in vitro values based on unbound fluvoxamine concentrations were 35, 36 and 

36 µM, respectively.  

 

References:  
Gardner I, Xu M, Han C, Wang Y, Jiao X, Jamei M, Khalidi H, Kilford P, Neuhoff S, Southall 
R, Turner DB, Musther H, Jones B, Taylor S. Non-specific binding of compounds 
in in vitro metabolism assays: a comparison of microsomal and hepatocyte binding in different 
species and an assessment of the accuracy of prediction models. Xenobiotica. 2022 
Aug;52(8):943-956. doi: 10.1080/00498254.2022.2132426. PMID: 36222269. 
 
Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH. Fluvoxamine-
theophylline interaction: gap between in vitro and in vivo inhibition constants toward 
cytochrome P4501A2. Clin Pharmacol Ther. 2001 Nov;70(5):415-24. doi: 
10.1067/mcp.2001.119724. PMID: 11719727. 
 

B. Similar to itraconazole, ketoconazole is also known to inhibit P-gp which does not seem 

to be incorporated for SimCYP V19 for ketoconazole. In line with the concern raised 

for itraconazole (see above), the Applicant is asked to discuss the limitation of the lack 

of P-gp interactions in the ketoconazole file and how this would impact the potential 

use as a strong CYP3A4 inhibitor for qualification of CoU1. 
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RESPONSE: The focus of the current qualification exercise is to assess the performance of the 

Simcyp Simulator V19, for DDIs involving CYP1A2-, CYP2C8/9/19-, CYP2D6- and 

CYP3A4-mediated inhibition. Thus, we believe that the issue of ketoconazole being a dual 

CYP3A4/P-gp inhibitor is out of scope for COU1.  

 

C. In the ketoconazole compound summary file, the text refers to model validation figures 

with plasma concentrations vs time, including interaction data from Stoch et al 2009 

and Olkkola et al 1994 in Figures 10 -12. However, Figures 10 – 12 are not available 

in the compound summary for ketoconazole, and the Applicant should provide an 

updated compound summary file, include Figures 10 – 12.  

 

RESPONSE: An updated compound file summary has now been provided for ketoconazole in 

V19.   

SPECIFIC ISSUES ON CYP2D6 FOR COU1 

EMA Issue 27 

In the compound summaries for substrates, it is stated that nebivolol is a new compound for 

SimCYP V20, which is confusing since the current procedure concerns SimCYP V19. The 

Applicant is asked to please clarify this finding and if applicable, should re-run the nebivolol 

model using SimCYP V19, since this is the version that is the topic of the current procedure.  

 

RESPONSE: To clarify, whilst doing the V19 qualification analysis, nebivolol, was being 

developed as a new compound for V20. Thus, the same parameters that were used for the 

compound in V20 were applied in V19. The compound file summary that was provided was 

run in V19 and does not need to be re-run.    

EMA Issue 28 

For fluvoxamine, more details with respect to how the Ki for CYP2D6 was optimised needs to 

be provided before fluvoxamine can be considered acceptable to be part of the qualification of 

the CYP2D6 pathway (see also general issue, above). 

 

RESPONSE:  

The CYP2D6 Ki value was derived initially from a meta-analysis of in vitro HLM data using 

CYP2D6 probe substrates. After correcting for non-specific microsomal binding, the resultant 

value was 1.89 µM. Yao et al. (2001) reported that on comparison of in vitro and in vivo 

Ki values based on unbound fluvoxamine concentrations, fluvoxamine inhibition potency is 
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approximately 10 times greater in vivo than in vitro. Thus, a final value of 0.189 µM was used 

in all simulations.   

 

Reference 

Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH. Fluvoxamine-
theophylline interaction: gap between in vitro and in vivo inhibition constants toward 
cytochrome P4501A2. Clin Pharmacol Ther. 2001 Nov;70(5):415-24. doi: 
10.1067/mcp.2001.119724. PMID: 11719727. 
 

EMA Issue 29 

Several points are unclear regarding the model(s) for fluoxetine and norfluoxetine: 

A. Fluoxetine and norfluoxetine appear to have comparable PK behaviour in many other 

aspects and it is unclear if the fu should differ this much between these two 

compounds. The chosen fu for norfluoxetine should be further justified. 

 

RESPONSE: The protein binding data (0.079) for racemic fluoxetine came from clinical studies 

(Aronoff et al., 1984 and Schenker et al., 1988). As no corresponding data were available for 

norfluoxetine, an average value (0.165) for the enantiomers was used (Lutz et al., 2013).  

References  

Aronoff, G. R., R. F. Bergstrom, S. T. Pottratz, R. S. Sloan, R. L. Wolen, and L. Lemberger. 

1984. “Fluoxetine Kinetics and Protein Binding in Normal and Impaired Renal Function.” 

Journal Article. Clin Pharmacol Ther 36 (1): 138–44. 

Schenker S, Bergstrom RF, Wolen RL, Lemberger L. Fluoxetine disposition and elimination in 

cirrhosis. Clin Pharmacol Ther. 1988 Sep;44(3):353-9. doi: 10.1038/clpt.1988.161. PMID: 

3262026. 

Lutz JD, VandenBrink BM, Babu KN, Nelson WL, Kunze KL, Isoherranen N. Stereoselective 

inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk 

assessment of multiple time-dependent inhibitor systems. Drug Metab Dispos. 2013 

Dec;41(12):2056-65. doi: 10.1124/dmd.113.052639. Epub 2013 Jun 19. PMID: 23785064; 

PMCID: PMC3834134. 

 

B. The y-axis limits for the validation without any interaction for repeated dosing is not 

acceptable and should be updated. The y-axis should be limited to a much more 

plausible range given the data (e.g. ~50-500 rather than 1-1000). The Applicant is 

asked to please update the figures accordingly. 

 

RESPONSE:  This has been amended and an updated V19 compound file summary has been 

provided.  
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C. The DDIs are underpredicted in the inhibitor file and a strong justification or model 

improvement is needed in case CoU1 is to be applied with fluoxetine as the 

perpetrator for the CYP2D6 pathway. 

 
RESPONSE: We are surprised by this comment as, of the 7 DDIs that have been simulated, 4 

of them fall within 1.25-fold of the observed data. The results are shown below and can be 

found in the excel sheet called “CYP2D6-ClinicalData_TrialDesignSetting-02”. 

 

 

 

 
 

   PREDICTED OBSERVED P/O Ratio 

 
 

 SUBSTRATE INHIBITOR CMAX AUC Cmax AUC Cmax AUC 

24 
 

CYP2D6 
Nebivolol, 10 mg SD 
on day 21 

Fluoxetine, 20 mg QD days 1-21 2.39 6.92 3.38 5.80 1.41 0.84 

10 

 

CYP2D6 
Desipramine HCL, 50 
mg QD for 28 Days 

Fluoxetine, 20 mg QD Days 8-28 4.00 4.80 3.99 4.60 1.00 0.96 

25 

 

CYP2D6 
Tolterodine, 2.36 mg 
BID days 22-24 (5 
doses) 

Fluoxetine, 20 mg QD for 24 days 3.57 4.87 3.75 6.68 1.05 1.37 

26 

 

CYP2D6 
Tolterodine, 2.36 mg 
BID days 22-24 (5 
doses) 

Fluoxetine, 20 mg QD for 24 days 1.36 1.24 1.22 1.31 0.89 1.06 

16 

 

CYP2D6 
Dextromethorphan, 
30 mg on Day 12 

Fluoxetine, 20 mg SD Day 1, then 
60mg QD days 2-14 (1 hour before 

Dextromethorphan) 

- 27.21 4.94 13.80  - 0.51 

8 

 

CYP2D6 
Desipramine HCL, 50 
mg (3 hours after 
Fluoxetine) 

Fluoxetine, 60 mg Day 1 1.63 2.25 1.56 2.39 0.96 1.06 

9 

 

CYP2D6 
Desipramine HCL, 50 
mg on Day 8 (3 hours 
after Fluoxetine) 

Fluoxetine, 60 mg QD for 8 Days 2.54 7.43 2.09 5.27 0.82 0.71 

 

 

D. The numbers differ for the prediction of the fluoxetine-desipramine DDIs between the 

fluoxetine and desipramine compound summary files. The Applicant is requested to 

clarify this issue. 
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RESPONSE:  This has been amended and an updated V19 compound file summary has been 

provided.  

EMA Issue 30 

For quinidine, the model is under-predicting the DDI studies for quinidine as a perpetrator. 

This is especially true for the metoprolol scenario only including CYP2D6 extensive 

metabolizers (EM) (Leemann et al 1993). Furthermore, there are no CYP2D6 only substrates 

included in the presented DDI scenarios which is another limitation. All CYP2D6 are also 

CYP3A4 substrates which quinidine also inhibits, and this makes it difficult to conclude whether 

the CYP2D6 part of the model is inappropriate. The Applicant should address these or 

otherwise the quinidine model will not be viewed as a relevant compound file for supporting 

the qualification of CoU1 for CYP2D6. 

 

RESPONSE:  Whilst there is a tendency for underprediction of DDIs with quinidine, the P/O 

AUC ratios are still reasonable with values of 0.94 and 0.61 for metoprolol and 0.80 and 0.88 

for dextromethorphan. However, to determine whether CYP2D6 inhibition is correctly 

predicted by quinidine, we have added propranolol to the analysis. CYP2D6 is the main enzyme 

involved in the metabolism of propranolol (55%) – there is no CYP3A4 component. P/O AUC 

ratios for propranolol using 3 different dosage regimens of quinidine are 1.04, 1.16 and 1.29. 

Thus, it appears that the CYP2D6 inhibitory component of quinidine is appropriate. The results 

are shown below and can be found in the excel sheet called “CYP2D6-

ClinicalData_TrialDesignSetting-02”. 

 

Number CYP Substrate Dose Inhibitor Dose 

Observed Predicted  
Predicted 

/Observed 

Cmax 
Ratio 

AUC 
Ratio 

Cmax 
Ratio 

AUC 
Ratio 

Cmax 
Ratio 

AUC 
Ratio 

28 CYP2D6 
Propranolol 10 mg 
SD 

Quinidine 100 mg 
12h before and 
simultaneously 

  2.76   2.86   1.04 

29 CYP2D6 
Propranolol 20 mg 
SD 

Quinidine 200mg   2.66   3.09   1.16 

30 CYP2D6 
Propranolol 80mg 
SD 

Quinidine 50mg   1.92   2.48   1.29 

19 CYP2D6 

Metoprolol 
Tartrate, 200 mg on 
Day 4 (2 hours after 
Quinidine) 

Quinidine, 100 mg 
QD for 5 days 

- 4.89 2.32 4.59  - 0.94 
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14 CYP2D6 
Dextromethorphan, 
30 mg SD 

Quinidine, 50 mg (1 
hour before 
dextromethorphan) 

4.38 7.31 4.40 5.86 1.00 0.80 

15 CYP2D6 
Dextromethorphan, 
30 mg SD 

Quinidine, 50 mg (1 
hour before 
dextromethorphan) 

6.10 6.34 4.21 5.57 0.69 0.88 

20 CYP2D6 
Metoprolol 
Tartrate, 20mg IV 
infusion 

Quinidine, 50 mg 
SD (12 hours before 
metoprolol) 

- 2.43 1.01 1.48 -  0.61 

EMA Issue 31 

Several points are unclear regarding the model for cinacalcet: 

A. According to the validation of the no interaction data for the multiple dose scenario 

(Table 1 in the cinacalcet compound summary) and the interactions with 

dextromethorphan and desipramine for cinacalcet as a perpetrator (Table 6 in the 

cinacalcet compound summary) the model is not at all describing the observed data 

which is not acceptable. The Applicant should clarify if these issues are due to 

typos/errors in the compound summary for cinacalcet or if there are problems with the 

underlying model. The Applicant should update the model and/or compound summary 

file as applicable, to resolve the outlined issues. 

 

RESPONSE:  The cinacalcet file is correct – the compound file summary has been updated to 

reflect that the DDIs are accurately predicted.  

 

B. For cinacalcet, it appears that all data are from fed conditions, whereas CoU1 

specifically states that qualification is sought for the fasted conditions. The Applicant is 

asked to clarify this aspect and justify how data from fed conditions could be applicable 

to CoU1. 

 

RESPONSE:  We have reviewed all the clinical studies to confirm the precise fasted/fed 

conditions of each clinical study. The compound file summary has been updated to reflect 

this. Only the DDI study with desipramine which was conducted in fasted conditions was 

used for the analysis.  

 

C. The only Ki listed in Table 7 is for CYP2C9 which is a suspected typo (should 

probably read CYP2D6) which the Applicant should correct. 

 



 

 46 

RESPONSE:  The compound file summary has been updated to reflect that the Ki value 

should be listed for CYP2D6 not CYP2C9.   

EMA Issue 32 

For ritonavir, the validation of the multiple dose data without any interaction (Figure 1 in the 

ritonavir compound summary) there is a distinct peak at around 20 hours which is not captured 

by the model. Furthermore, it appears that the study (Greenblatt et al 2009) has a quite complex 

study design with respect to timing of all the doses. To better assess this aspect, the Applicant 

is asked to provide documentation to show how the study design for Greenblatt et al 2009 was 

implemented.  

 

RESPONSE:  As there is only one DDI study available for ritonavir, and cimetidine has now 

been introduced as a weak CYP2D6 inhibitor, we have decided to exclude ritonavir from the 

analysis.  

EMA Issue 33 – COU1 

The Applicant has not provided evidence that the SimCYP platform could potentially be capable 

of fulfilling CoU1 for CYP1A2, CYP2C8, CYP2C9 and CYP2C19 enzymes. The mentioned CYP 

enzymes do not have included examples of the prediction at all three levels of inhibition (i.e., 

there are no examples of weak, moderate and/or strong inhibition predictions). Therefore, the 

qualification of SimCYP platform in terms of CoU1 for the mentioned CYP enzymes do not 

seem feasible unless further adequate examples/evidence are provided. 

 

RESPONSE: The DDI matrix has been extended to include weak, moderate, and strong 

inhibitors for CYP1A2, CYP2C8, CYP2C9 and CYP2C19. For each enzyme, this information 

can be found on the worksheet called “Substrate-Inhibitor Pairs” in the following excel files:  

“CYP1A2-ClinicalData_TrialDesignSetting-02”  

“CYP2C8-ClinicalData_TrialDesignSetting-02”  

“CYP2C9-ClinicalData_TrialDesignSetting-02”  

“CYP2C19-ClinicalData_TrialDesignSetting-02” 

In addition, the information is summarised below:  

Inhibitor FDA CDIS ICH-M12 

Cimetidine  Weak  

Ciprofloxacin  Strong Moderate sensitive 

Fluvoxamine Strong index Strong Sensitive 

Propranolol  Moderate Moderate sensitive 
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CYP2C8 Inhibitor FDA CDIS 

Gemfibrozil strong strong 

Clopidogrel moderate moderate 

Trimethoprim weak weak 

Tucatinib nothing on CYP2C8 weak 

 

 

CYP2C9 Inhibitor FDA CDIS 

Sulphaphenazole NA strong 

Amiodarone moderate moderate 

Fluconazole moderate moderate 

Fluvoxamine weak weak 

 

CYP2C19 Inhibitor FDA CDIS 

Fluvoxamine index strong 

Fluconazole strong strong 

Fluoxetine strong strong 

Ticlopidine strong strong 

Voriconazole moderate moderate 

Omeprazole weak moderate 

Cimetidine nothing on CYP2C19 weak 

EMA Issue 34 – COU2 

For inhibitors it is important that the pharmacokinetics of the inhibitor is well described 

under the conditions used in the clinical DDI studies. Please provide a Table with Cmax and 

AUC following single dose and multiple dose administration and indicate when steady-state 

had been reached for inhibitor and metabolite if applicable. Please present observed vs 

predicted PK values, indicate if PK of the inhibitor is time-dependent. 

 

RESPONSE: For each of the inhibitors, dosage regimens that were used in the clinical studies 

have been indicated on a worksheet called “Sources of fm and Ki values” found in each of the 

enzyme analyses:  

“CYP1A2-ClinicalData_TrialDesignSetting-02”  

“CYP2C8-ClinicalData_TrialDesignSetting-02”  

“CYP2C9-ClinicalData_TrialDesignSetting-02”  

“CYP2C19-ClinicalData_TrialDesignSetting-02” 

“CYP2D6-ClinicalData_TrialDesignSetting-02” 

 

On that worksheet, the dosage regimens provided in the compound files summaries have also 

been indicated. In cases where dosage regimens used in clinical DDI studies have not been 
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included in the compound file summary, and data are available in publications, additional 

simulations have been run. With each enzyme folder, a sub-folder called “Inhibitor Profiles” 

contains the additional inhibitor PK information. For CYP3A4, as there are many inhibitors, a 

separate excel file rather than a worksheet was prepared and included in the CYP3A4 “Inhibitor 

profiles” folder.   

EMA Issue 35 – COU2 

How is CYP3A5 DDIs addressed? Differences in CYP3A4 inhibition potential may be observed 

in subjects with and without CYP3A5 activity. The fm values for CYP3A5 were not provided at 

all for all substrates. Furthermore, no information on CYP3A5 inhibition is provided or 

incorporated into the PBPK model. This may need to be indicated as a limitation of the PBPK 

model. 

 

RESPONSE: We provide a reference indicating how CYP3A5 is addressed within the Simcyp 

Simulator (Cubitt et al., 2011). When available, CYP3A5 metabolic data have been included 

for compounds including alprazolam, cyclosporin, midazolam and triazolam. Given that only 

17% of the Caucasian population have CYP3A5, on average its relative contribution tends to 

be much smaller than that of CYP3A4. Furthermore, CYP3A5 expression in the liver and 

intestine is lower than that of CYP3A4 (103 versus 137 pmol/mg microsomal protein and 24.6 

versus 66.2 nmol/intestine). Thus, fmCYP3A5 values for the aforementioned substrates are 

4.2%, 8.4%, 8.5% and 7.1%, respectively.  

 

In terms of inhibitory potential, if CYP3A5 data are available for inhibitors, these parameters 

have been included e.g., ketoconazole (competitive inhibition) and verapamil (MBI). 

Furthermore, in cases where it has been recognised that CYP3A5-mediated inhibition occurs, 

but data are not available (e.g., atazanavir), it has been assumed that the inhibitor is equipotent 

towards CYP3A5 and CYP3A4.    

 

In a default Caucasian population (17% with CYP3A5), on average, the fmCYP3A5 of 

midazolam is about 8.54%. When co-administered with ketoconazole which inhibits both 

CYP3A4 (Ki=0.015 µM) and CYP3A5 (Ki=0.109 µM), the fmCYP3A5 increases to 12.07% 

despite being inhibited but not as much UGT1A4 whose contribution to the clearance increases 

from 3.35 to 35.28% (no inhibition).  

  

Statistics % contribution in absence of inhibitor(s)      

  
CYP3A4 

Liver 
CYP3A5 

Liver 
UGT1A4 

Liver 
UGT1A4 
Kidney Renal 
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Mean 87.62 8.54 3.35 0.06 0.42 

Statistics 
% contribution in presence of 
inhibitor(s)     

  
CYP3A4 

Liver 
CYP3A5 

Liver 
UGT1A4 

Liver 
UGT1A4 
Kidney 

Renal 

Mean 49.29 12.07 35.28 0.41 2.94 

 

 

References  
Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual 
variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine 
clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica. 2011 
Aug;41(8):623-38. doi: 10.3109/00498254.2011.560294. Epub 2011 Mar 24. PMID: 21434772. 
 

EMA Issue 36 – COU2 

Please, provide separate figures for competitive inhibition and MBI inhibitors for individual 

CYP enzymes. If an inhibitor or inhibitor + metabolite is both a reversible inhibitor and MBI, 

it would be appreciated if it could be shown what the contribution of each inhibition pathway 

is. X-axis and Y-axis seem inverted for plots predicted AUC/Cmax ratio v.s. observed 

AUC/Cmax ratio for individual CYP enzymes. 
 

RESPONSE: Separate figures have been provided for competitive inhibition and MBI and for 

each enzyme and for each COU. The figures are presented in word as summary documents in 

each of the enzyme folders.  

EMA Issue 37 – COU2 

There is limited DDI information of reversible inhibitors with weak, moderate and sensitive 

substrates for several enzymes. Please discuss the possibility for inclusion of more substrates 

and reversible inhibitors for CYP1A2, CYP2C8, CYP2C19 with a good representation of mild, 

moderate and sensitive/strong? In addition, how is a distinction made between CYP3A4 and 

3A5 in the model?   

 

RESPONSE: The DDI matrix has been extended to include weak, moderate and strong 

inhibitors for CYP1A2, CYP2C8 and CYP2C19. For each enzyme, this information can be 

found on the worksheet called “Substrate-Inhibitor Pairs” in the following excel files:  

“CYP1A2-ClinicalData_TrialDesignSetting-02”  

“CYP2C8-ClinicalData_TrialDesignSetting-02”  

“CYP2C19-ClinicalData_TrialDesignSetting-02” 

In addition, the information is summarised below:  

CYP1A2 Inhibitor FDA CDIS ICH-M12 

Cimetidine  Weak  

Ciprofloxacin  Strong Moderate sensitive 
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Fluvoxamine Strong index Strong Sensitive 

Propranolol  Moderate Moderate sensitive 

 

CYP2C8 Inhibitor FDA CDIS 

Gemfibrozil strong strong 

Clopidogrel moderate moderate 

Trimethoprim weak weak 

Tucatinib nothing on CYP2C8 weak 

 

CYP2C19 Inhibitor FDA CDIS 

Fluvoxamine index strong 

Fluconazole strong strong 

Fluoxetine strong strong 

Ticlopidine strong strong 

Voriconazole moderate moderate 

Omeprazole weak moderate 

Cimetidine nothing on CYP2C19 weak 

 

We have discussed in detail how CYP3A5 is handled in the response to Issue 35.  

 

SPECIFIC ISSUES ON CYP2C8 FOR COU3 

EMA Issue 38  

No sensitive substrates (fm > 80%) were included. It is thus unclear, which substrate should be 

used in a clinical study as a sensitive substrate according to CoU (2 and 3). 

 

According to the draft ICH-M12 Guideline, a sensitive substrate is a drug that demonstrates an 

increase in AUC of ≥5-fold with a strong index inhibitor of a given metabolic pathway in 

clinical DDI studies. Repaglinide is the only CYP2C8 substrate (also CYP3A4 and OATP1B1) 

where such an increase is obtained in a clinical study with gemfibrozil. It should be noted that 

gemfibrozil also inhibits OATP1B1 and OAT3 (acknowledged in Table 13 of ICH-M12 

Guideline) and therefore, inhibition is not exclusive to CYP2C8. Despite the fmCYP2C8 of 

66%, repaglinide remains one of the most sensitive index substrates of CYP2C8 and therefore, 

is typically used in clinical studies. Of the remaining CYP2C8 substrates, montelukast appears 

to be the most sensitive substrate in that AUC ratios ranged from 3- to 4-fold when co-

administered with clopidogrel or gemfibrozil.   

 

 

Substrate FDA CDIS ICH-M12 fm% 

Repaglinide sensitive sensitive 
Sensitive 

index 66.1 

Rosiglitazone moderate sensitive moderate sensitive  56.1 
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Pioglitazone moderate sensitive moderate sensitive  64.2 

Montelukast moderate sensitive moderate sensitive  77.65 

Tucatinib Nothing on CYP2C8 moderate sensitive  71.73 

     

EMA Issue 39  

Gemfibrozil and metabolite are inhibitors of CYP2C8 but also of OATP1B1/3. Repaglinide is 

a substrate for both CYP2C8 and OATP1B1. Therefore, this is considered a complex 

interaction which is out of scope of this qualification. Please comment. 

 

RESPONSE: We have presented the CYP2C8 analysis with and without the 

repaglinide/gemfibrozil DDIs. Even in the latter case, there remain 17 DDI pairs in the CYP2C8 

analysis.     
 

EMA Issue 40  

Dose – and time variant studies (Honkalammi et al., Tornio et al,) between gemfibrozil and 

repaglinide indicate that Mechanism based-inhibition of CYP2C8 is probably underestimated 

or kdeg of CYP2C8 is not correct. Inclusion of more CYP2C8 MBI inhibitors and other CYP2C8 

substrates may help elucidate this issue. Please discuss. 

 

RESPONSE: As discussed in Issue 38, we have now extended the CYP2C8 analysis to include 

other substrates. There are now 8 DDIs involving gemfibrozil (600 mg BID) and 4 substrates. 

Whilst there is a tendency to underpredict (AFE=0.84), 6 of the predicted AUC ratios are within 

1.25-fold of observed data. 
 

Study 
Substrate 
Dose 

Observed Predicted  
Predicted 

/Observed 

Cmax 
Ratio 

AUC 
Ratio 

Cmax 
Ratio 

AUC 
Ratio 

Cmax 
Ratio 

AUC 
Ratio 

Karonen_2010 

Montelukast, 
Oral 10 mg 
on day 3 (1 hr 
after 
Gemfibrozil) 1.53 4.54 2.09 3.96 1.36 0.87 

Karonen_2012 

Montelukast, 
Oral 10 mg 
on day 3 (1 hr 
after 
Gemfibrozil) 1.46 4.28 1.96 3.74 1.34 0.87 
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Deng_2005 
(in Chinese) 

Pioglitazone, 
Oral 30 mg 
on day 3 at 8 
AM 1.11 3.38 1.06 1.62 0.96 0.48 

Jaakkola_2005 

Pioglitazone, 
Oral 15 mg 
on day 3 at 9 
AM 1.06 3.22 1.17 2.69 1.11 0.83 

Aquillante_2012 

Pioglitazone, 
Oral 15 mg 
on day 3 at 9 
AM 1.09 3.12 1.17 2.69 1.08 0.86 

Aquillante_2012 

Pioglitazone, 
Oral 15 mg 
on day 3 at 9 
AM 1.15 4.66 1.23 3.25 1.08 0.70 

Niemi3 

Rosiglitazone, 
Oral 4 mg at 
9 AM on day 
3 1.22 2.29 1.17 2.38 0.96 1.04 

Topletz_Erickson_2022 

Tucatinib, 
Oral 300 mg 
on day 5, 
8AM 1.62 3.04 1.69 3.26 1.05 1.07 

 

SPECIFIC ISSUES ON CYP2C9 FOR COU3 

EMA Issue 41  

Amiodarone is the only MBI used. No independent model verification with amiodarone was 

performed - “developed as research files” according to the Applicant. This implies that 

predicted and observed values are based on the same studies. If so, the validity of the model for 

CYP2C9 cannot be assumed. The Applicant is invited to discuss. 

 

RESPONSE: The inactivation parameters were based on in vitro data (Rougee et al., 2017; 

McDonald et al., 2012, 2015). Four clinical study designs involving S-warfarin (n=2) and oral 

and IV phenytoin (n=2) were included in the updated CYP2C9 analysis. A new and updated 

compound summary for Amiodarone is supplied with further details on the compound 
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development and verification (00 V19_Amiodarone summary_FOfile_new.pdf). No DDI study 

was used to optimise inhibitory parameters for the parent and metabolite files for CYP2C9. 
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SPECIFIC ISSUES ON CYP2D6 FOR COU3 

EMA Issue 42 

The only inhibitor used was paroxetine, which is also an MBI of CYP3A4. However, no clinical 

study with a CYP3A4 substrate has apparently been included. How is ensured that CYP3A4 

contribution is correctly captured by the model?  

 

RESPONSE: We used the UOW DDI database to search for clinical DDIs involving paroxetine. 

Of 76 DDIs, only 1 study used a CYP3A4 substrate, ranolazine which is considered to be 

moderately sensitive. The search results can be found in the subfolder “Issue 42” found within 

the folder called “Response Folder to Submit”.  

   

 

SPECIFIC ISSUES ON CYP2C19 FOR COU3 

EMA Issue 43 

The in vitro MBI data for (nor)fluoxetine are from Lutz et al. study. How are R- and S-isomer 

considered, are the data averaged?  

 

RESPONSE: For fluoxetine, the CYP2C19 Kapp and kinact values were averaged from the R and 

S enantiomers (Lutz et al., 2013). For norfluoxetine, the CYP2C19 kinact values were the mean 
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of the R and S enantiomers (Lutz et al., 2013); Kapp was optimised from Vlase et al. (2010) 

using the clinical DDI study with omeprazole. Thus, the latter study was excluded from the 

CYP2C19 analysis. 

 

References  

Lutz JD, VandenBrink BM, Babu KN, Nelson WL, Kunze KL, Isoherranen N. Stereoselective 

inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk 

assessment of multiple time-dependent inhibitor systems. Drug Metab Dispos. 2013 
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PMCID: PMC3834134. 

 

SPECIFIC ISSUES ON CYP3A4 FOR COU3 

EMA Issue 44 

The MBI parameters for atazanavir are from a CDER (FDA) document containing no 

information on methodology. It is thus unclear, in which system / under which conditions the in 

vitro data were generated. 

RESPONSE: These are the only data that are available in the public domain. The number of 

atazanavir studies is small (n=3) and can be excluded from the analysis if there is an issue with 

the lack of information on the methodology.  

EMA Issue 45 

The methodology for studying CYP3A5 inhibition by erythromycin from McConn et al. 2004 

could not be evaluated as the full text article was not submitted. The reference should be 

provided as full text. 

RESPONSE: The full reference has now been provided. 

EMA Issue 46 

The MBI data for ritonavir are from Kirby et al. 2011, the study was apparently conducted in HLM but 

without methodology description the methodology could not be assessed. Kapp provided by the 

Applicant (0.18 µM) differs from that by Kirby et al. (0.25 µM). The Applicant should explain. The MBI 

data for CYP3A5 are assumed to be the same as for CYP3A4. This should be justified. 

 

RESPONSE: The reason for the difference is that the reported Kapp was not corrected for NSMB. 

The inactivation parameters were determined at a protein concentration of 0.25 mg/mL which 
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translates to a fumic value of 0.71. When this is applied to the Kapp, the resultant value is 0.18 

µM.   

 

In terms of inhibitory potential, if CYP3A5 data are available for inhibitors, these parameters 

are typically included. However, often these data are not available, but in cases where it has 

been recognised that CYP3A5-mediated inhibition occurs it is assumed that the inhibitor is 

equipotent towards CYP3A5 and CYP3A4.    

 

References  

Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug 
interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome 
P450 3A by ritonavir or nelfinavir. Drug Metab Dispos. 2011 Jun;39(6):1070-8. doi: 
10.1124/dmd.110.037523. Epub 2011 Mar 15. PMID: 21406602; PMCID: PMC3100903. 

 

EMA Issue 47 

For simvastatin, fm of 88.7% is reported to be predicted using HLM data from multiple sources, 

but no references are specified. The references should be provided as full texts. 

RESPONSE: A folder “Issue 47– simvastatin references” with all references has now been 

provided in the “Responses Folder to submit”.  

 

EMA Issue 48 

For nifedipine, fm of 99.8% (as in the Briefing Document) was defined by Vmax and Km 

values that were obtained by a meta-analysis of published values (n=8 and 3 studies, 
respectively), but the respective references are not specified. The references should be 

provided as full texts. 

 
RESPONSE: A folder “Issue 48 – nifedipine references” with all references and an excel sheet 

indicating the sources (see below) has now been provided in the “Responses Folder to submit”.  
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EMA Issue 49 

With the exception of CYP3A4/5 a limited number of inhibitors is included. Please discuss the 

possibility of including additional inhibitors (and substrates) for the different CYPs. 

 
RESPONSE: We have now added 2 extra MBI compounds – clopidogrel (CYP2C8) and 

mirabegron (CYP2D6). In addition, we have been able to simulate more DDIs with existing 

MBI compounds because of the increased number of substrates.   

 

Enzyme  CI  MBI  ALL  

CYP1A2  42  0  42  

CYP2C8  7  10  17  

CYP2C9  25  3  28  

CYP2C19  15  13  28  

CYP2D6  32  14  46  

CYP3A4/5  66  51  117  

 

 

Appendix 

Simulation script 1 

## ========================================================================= 

## Average Fold Error (AFE), Average Absolute Fold Error (AAFE) code. 

##  

## Interaction studies are comparative trials where the individual 

## values of a PK parameter (usually some form of AUC) for subjects in 

## a drug treatment group are compared to those in a test group where 

## the same drug and another (interacting) one are administered. 

## We can simulate such trials to replace them. The issue is "how 

## good" is the model at simulating real life, and how do we measure 

## that? 

## The issue is obviously embedded in a population variability framework. 
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## 

## ========================================================================= 

 

## Most interaction clinical trials are one group of subjects, each 

## getting the reference treatment and then the test (two drugs) 

## treatment (I. Gardner personnal communication) 

 

## ========================================================================= 

## Simulate a clinical DDI trial: 

## Simulate AUCs from a reference (single drug treatment) group. 

## There is a population level, a subject level and an occasion level. 

 

## Make a function 

Simulate_trial = function(N.subj, AUC.pop.GM.1, AUC.pop.GSD.1, 

                          AUC.occas.GSD.1, AUC.occas.GSD.2, Delta) { 

  ## 

  ## Subject level AUC after single drug administration 

  AUC.subj.1 = rlnorm(N.subj, meanlog=log(AUC.pop.GM.1), 

                      sdlog=log(AUC.pop.GSD.1)) 

  ## 

  ## Occasion level AUC after single drug administration 

  AUC.occas.1 = rep(0, N.subj)  

  for (i in 1:N.subj) 

    AUC.occas.1[i] = rlnorm(1, meanlog=log(AUC.subj.1[i]), 

                            sdlog=log(AUC.occas.GSD.1)) 

  ## 

  ## Subject level AUC after two drugs administration 

  AUC.subj.2 = AUC.subj.1 * Delta # Delta could be randomized... 

  ## 

  ## Occasion level AUC after two drugs administration 

  AUC.occas.2 = rep(0, N.subj)  

  for (i in 1:N.subj) 

    AUC.occas.2[i] = rlnorm(1, meanlog=log(AUC.subj.2[i]), 

                            sdlog=log(AUC.occas.GSD.2)) 

  ## 

  AUC_ratios = AUC.occas.2 / AUC.occas.1 

  return(list(AUC.ref    = AUC.occas.1, 

              AUC.test   = AUC.occas.2, 

              AUC.ratios = AUC_ratios)) 

} 

## try it: 

Simulated.data = Simulate_trial(N.subj=20, AUC.pop.GM.1=50, AUC.pop.GSD.1=2, 

                                AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                                Delta=1.2) 

hist(log(Simulated.data$AUC.ratios)) 

 

 

## ========================================================================= 

## Simulate studies for many different compounds (one study per compound): 

 

N.comp = 10000 

 

## Simulate data 

N.subj = 20 

AUC.pop.GM.1 = Delta = rep(1, N.comp) 

Data = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.1[i] = runif(1, 10, 500) 

  Delta[i] = runif(1, 1, 10) 

  Data[,i] = Simulate_trial(N.subj, AUC.pop.GM.1[i], AUC.pop.GSD.1=2, 

                            AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                            Delta[i])$AUC.ratios 

} 

data.means = apply(Data, MAR=2, mean)  

data.SDs   = apply(Data, MAR=2, sd) 

## plot(data.means) 

 

## Simulate predictions  
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N.subj = 200 # Note that it makes sense to simulate a large trial here. 

AUC.pop.GM.pred = Delta.pred = rep(1, N.comp) 

Predictions = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.pred[i] = rnorm(1, AUC.pop.GM.1[i], 1) 

  Delta.pred[i] = rnorm(1, Delta[i], 0.1)  

  Predictions[,i] = Simulate_trial(N.subj, AUC.pop.GM.pred[i], 

                                   AUC.pop.GSD.1=2, 

                                   AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                                   Delta.pred[i])$AUC.ratios 

} 

pred.means = apply(Predictions, MAR=2, mean)  

pred.SDs   = apply(Predictions, MAR=2, sd) 

 

dev.new() 

lims = c(0.5, 20) 

plot(pred.means, data.means, las=1, log="xy", xlim=lims, ylim=lims, pch=".", 

     xlab="Predicted AUC ratio", ylab="Observed AUC ratio") 

x = c(0.1, 50) 

lines(x, x,    lty=1, col="red") 

for (fc in c(1.25)) { 

  lines(x, x*fc, lty=2) 

  lines(x, x/fc, lty=2) 

} 

 

## Compute AFE, which is just a summary of the above 

FE = log(pred.means / data.means) 

hist(FE, yaxt="n", 40, ylab="", main="") 

abline(v=c(-log(1.25),log(1.25)), col="red", lwd=2) 

exp(mean(FE)) # AFE 

 

## Compute AAFE 

AFE = abs(FE) 

hist(AFE, yaxt="n", 40, ylab="", main="") 

exp(mean(AFE)) # AAFE 

 

## End. 

 

Simulation script 2 

## ========================================================================= 

## Average Fold Error (AFE), Average Absolute Fold Error (AAFE) code. 

##  

## Interaction studies are comparative trials where the individual 

## values of a PK parameter (usually some form of AUC) for subjects in 

## a drug treatment group are compared to those in a test group where 

## the same drug and another (interacting) one are administered. 

## We can simulate such trials to replace them. The issue is "how 

## good" is the model at simulating real life, and how do we measure 

## that? 

## The issue is obviously embedded in a population variability framework. 

## 

## ========================================================================= 

 

IDtag = "_2" # version number 

 

## Most interaction clinical trials are one group of subjects, each 

## getting the reference treatment and then the test (two drugs) 

## treatment (I. Gardner personnal communication) 

 

## ========================================================================= 

## Simulate a clinical DDI trial: 

## Simulate AUCs from a reference (single drug treatment) group. 

## There is a population level, a subject level and an occasion level. 

 

## Make a function 

Simulate_trial = function(N.subj, AUC.pop.GM.1, AUC.pop.GSD.1, 
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                          AUC.occas.GSD.1, AUC.occas.GSD.2, Delta) { 

  ## 

  ## Subject level AUC after single drug administration 

  AUC.subj.1 = rlnorm(N.subj, meanlog=log(AUC.pop.GM.1), 

                      sdlog=log(AUC.pop.GSD.1)) 

  ## 

  ## Occasion level AUC after single drug administration 

  AUC.occas.1 = rep(0, N.subj)  

  for (i in 1:N.subj) 

    AUC.occas.1[i] = rlnorm(1, meanlog=log(AUC.subj.1[i]), 

                            sdlog=log(AUC.occas.GSD.1)) 

  ## 

  ## Subject level AUC after two drugs administration 

  AUC.subj.2 = AUC.subj.1 * Delta # Delta could be randomized... 

  ## 

  ## Occasion level AUC after two drugs administration 

  AUC.occas.2 = rep(0, N.subj)  

  for (i in 1:N.subj) 

    AUC.occas.2[i] = rlnorm(1, meanlog=log(AUC.subj.2[i]), 

                            sdlog=log(AUC.occas.GSD.2)) 

  ## 

  AUC_ratios = AUC.occas.2 / AUC.occas.1 

  return(list(AUC.ref    = AUC.occas.1, 

              AUC.test   = AUC.occas.2, 

              AUC.ratios = AUC_ratios)) 

} 

## try it: 

Simulated.data = Simulate_trial(N.subj=20, AUC.pop.GM.1=50, AUC.pop.GSD.1=2, 

                                AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                                Delta=1.2) 

hist(log(Simulated.data$AUC.ratios)) 

 

 

## ========================================================================= 

## Simulate studies for many different compounds (one study per compound): 

 

N.comp = 10000 

 

## Simulate data 

N.subj = 20 

AUC.pop.GM.1 = Delta = rep(1, N.comp) 

Data = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.1[i] = runif(1, 10, 500) 

  Delta[i] = runif(1, 1, 10) 

  Data[,i] = Simulate_trial(N.subj, AUC.pop.GM.1[i], AUC.pop.GSD.1=2, 

                            AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                            Delta[i])$AUC.ratios 

} 

data.means = apply(Data, MAR=2, mean)  

data.SDs   = apply(Data, MAR=2, sd) 

## plot(data.means) 

 

## Simulate predictions  

N.subj = 200 

AUC.pop.GM.pred = Delta.pred = rep(1, N.comp) 

Predictions = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.pred[i] = rnorm(1, AUC.pop.GM.1[i], 1) 

  Delta.pred[i] = rnorm(1, Delta[i], 0.1)  

  Predictions[,i] = Simulate_trial(N.subj, AUC.pop.GM.pred[i], 

                                   AUC.pop.GSD.1=2, 

                                   AUC.occas.GSD.1=1.3, AUC.occas.GSD.2=1.3, 

                                   Delta.pred[i])$AUC.ratios 

} 

pred.means = apply(Predictions, MAR=2, mean)  

pred.SDs   = apply(Predictions, MAR=2, sd) 
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dev.new() 

lims = c(0.5, 20) 

plot(pred.means, data.means, las=1, log="xy", xlim=lims, ylim=lims, pch=".", 

     xlab="Predicted AUC ratio", ylab="Observed AUC ratio") 

x = c(0.1, 50) 

lines(x, x,    lty=1, col="red") 

for (fc in c(1.25)) { 

  lines(x, x*fc, lty=2) 

  lines(x, x/fc, lty=2) 

} 

 

## Compute AFE, which is just a summary of the above 

FE = log(pred.means / data.means) 

hist(FE, yaxt="n", 40, ylab="", main="") 

abline(v=c(-log(1.25),log(1.25)), col="red", lwd=2) 

exp(mean(FE)) # AFE 

 

## Compute AAFE 

AFE = abs(FE) 

hist(AFE, yaxt="n", 40, ylab="", main="") 

exp(mean(AFE)) # AAFE 

 

 

## ========================================================================= 

## Simulate studies with different between subject variabilities: 

 

N.comp = 10000 

 

## Simulate data 

N.subj = 20 

Sigma  = 2   # pop GSD (BSV); (1, 2, 5) 

sigma1 = 1.3 # inter-occasion GSD ref  group (IOV1) (1.1, 1.3, 2) 

sigma2 = 1.3 # inter-occasion GSD test group (IOV2) (1.1, 1.3, 2) 

AUC.pop.GM.1 = Delta = rep(1, N.comp) 

Data = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.1[i] = runif(1, 10, 500) 

  Delta[i] = runif(1, 1, 10) 

  Data[,i] = Simulate_trial(N.subj, AUC.pop.GM.1[i], 

                            AUC.pop.GSD.1=Sigma, 

                            AUC.occas.GSD.1=sigma1, 

                            AUC.occas.GSD.2=sigma2, 

                            Delta[i])$AUC.ratios 

} 

data.means = apply(Data, MAR=2, mean)  

data.SDs   = apply(Data, MAR=2, sd) 

## plot(data.means) 

 

## Simulate predictions  

N.subj = 200 

AUC.pop.GM.pred = Delta.pred = rep(1, N.comp) 

Predictions = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.pred[i] = rnorm(1, AUC.pop.GM.1[i], 1) 

  Delta.pred[i] = rnorm(1, Delta[i], 0.1)  

  Predictions[,i] = Simulate_trial(N.subj, AUC.pop.GM.pred[i], 

                                   AUC.pop.GSD.1=Sigma, 

                                   AUC.occas.GSD.1=sigma1, 

                                   AUC.occas.GSD.2=sigma2, 

                                   Delta.pred[i])$AUC.ratios 

} 

pred.means = apply(Predictions, MAR=2, mean)  

pred.SDs   = apply(Predictions, MAR=2, sd) 

 

## plot 

fname = paste0("Observed vs predicted AUC ratio, BSV=", Sigma, 

               " IOV1=", sigma1, " IOV2=", sigma2, ".pdf") 

pdf(fname) 
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lims = c(0.5, 20) 

plot(pred.means, data.means, las=1, log="xy", xlim=lims, ylim=lims, pch=".", 

     xlab="Predicted AUC ratio", ylab="Observed AUC ratio") 

x = c(0.1, 50) 

lines(x, x,    lty=1, col="red") 

for (fc in c(1.25)) { 

  lines(x, x*fc, lty=2) 

  lines(x, x/fc, lty=2) 

} 

ltext = c(paste0("BSV  = ",  Sigma), 

          paste0("IOV1 = ", sigma1), 

          paste0("IOV2 = ", sigma2)) 

legend(0.5, 20, ltext, bty="n") 

dev.off() 

 

 

## ========================================================================= 

## Simulate the effect of bias in variability estimates: 

 

N.comp = 10000 

 

## Simulate data 

N.subj = 20 

Sigma  = 2   # pop GSD (BSV); 

sigma1 = 1.3 # inter-occasion GSD ref  group (IOV1) 

sigma2 = 2 # inter-occasion GSD test group (IOV2) 

Bias.S  = 1 

Bias.s1 = 1 

Bias.s2 = 0.6 

AUC.pop.GM.1 = Delta = rep(1, N.comp) 

Data = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.1[i] = runif(1, 10, 500) 

  Delta[i] = runif(1, 1, 10) 

  Data[,i] = Simulate_trial(N.subj, AUC.pop.GM.1[i], 

                            AUC.pop.GSD.1=Sigma, 

                            AUC.occas.GSD.1=sigma1, 

                            AUC.occas.GSD.2=sigma2, 

                            Delta[i])$AUC.ratios 

} 

data.means = apply(Data, MAR=2, mean)  

data.SDs   = apply(Data, MAR=2, sd) 

## plot(data.means) 

 

## Simulate predictions  

N.subj = 200 

AUC.pop.GM.pred = Delta.pred = rep(1, N.comp) 

Predictions = matrix(0, N.subj, N.comp) 

for (i in 1:N.comp) { 

  AUC.pop.GM.pred[i] = rnorm(1, AUC.pop.GM.1[i], 1) 

  Delta.pred[i] = rnorm(1, Delta[i], 0.1)  

  Predictions[,i] = Simulate_trial(N.subj, AUC.pop.GM.pred[i], 

                                   AUC.pop.GSD.1=Sigma*Bias.S, 

                                   AUC.occas.GSD.1=sigma1*Bias.s1, 

                                   AUC.occas.GSD.2=sigma2*Bias.s2, 

                                   Delta.pred[i])$AUC.ratios 

} 

pred.means = apply(Predictions, MAR=2, mean)  

pred.SDs   = apply(Predictions, MAR=2, sd) 

 

## plot 

fname = paste0("Observed vs predicted AUC ratio, Bias.S=", 

               format(Bias.S, nsmall=1), 

               " Bias.s1=", format(Bias.s1, nsmall=1), 

               " Bias.s2=", format(Bias.s2, nsmall=1), ".pdf") 

pdf(fname) 

lims = c(0.5, 20) 

plot(pred.means, data.means, las=1, log="xy", xlim=lims, ylim=lims, pch=".", 
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     xlab="Predicted AUC ratio", ylab="Observed AUC ratio") 

x = c(0.1, 50) 

lines(x, x,    lty=1, col="red") 

for (fc in c(1.25)) { 

  lines(x, x*fc, lty=2) 

  lines(x, x/fc, lty=2) 

} 

ltext = c(paste0("BSV  = ", format(Sigma,  nsmall=1), "; Bias = ", Bias.S), 

          paste0("IOV1 = ", format(sigma1, nsmall=1), "; Bias = ", Bias.s1), 

          paste0("IOV2 = ", format(sigma2, nsmall=1), "; Bias = ", Bias.s2)) 

legend(0.5, 20, ltext, bty="n") 

dev.off() 

 

## End. 

 

 

Inference script 1 

## Meta-analysis of theophylline-ciprofloxacin and others data to 

## estimate inter-study variability 

## v1: do not use individual data, skip them 

## v2: improve variance priors 

## v3: use individual data; one between subject variability (fixed effect) 

 

## read the data 

DDI.data = read.csv("DDI.csv") 

 

chems = unique(DDI.data$Chems) 

 

## nice plot 

## pdf("data plot.pdf") 

## places = c(11.5, 15.5, 17.5, 31.5, 33.5) 

## color-code studies 

## studies = unique(DDI.data$Study) 

## cols = rainbow(length(studies)) 

## plot(DDI.data$AUC_ratio, log="y", xaxt="n", col=cols[DDI.data$Study], 

##      xlab="Interactions", ylab="AUC ratio", cex.lab=1.3, pch=16) 

## abline(v=places) 

## mtext(chems, side=1, at=c(11, places[2]+places[1], places[3]+places[2], 

##                               places[4]+places[3], places[5]+places[4], 

##                               43.5 + places[5])/2, cex=0.8) 

## dev.off() 

 

## prepare for MCMC 

library(coda) 

library(MCMCvis) 

library(corrplot) 

library(nimble) 

 

## ------------------------------------------------------------------------- 

## Hierarchical core Nimble (BUGS) code 

myNimbleCode = nimbleCode({ ## BUGS (extended) code 

  ## 

  Var_subjs ~ T(dnorm(0, 0.25), 0, 1) # var in log space, rather vague 

  Var_inter_studies ~ T(dnorm(0, 0.25), 0, 1) 

  for (i in 1:N_chems) { 

    AUC_chem[i] ~ dunif(1, 50)  

    for (j in 1:N_studies[i]) {  

      Var_studies[i,j]    <- Var_subjs / N_subjs[i,j] + Var_inter_studies 

      AUC_chem_study[i,j] ~  dlnorm(meanlog = log(AUC_chem[i]), 

                                    varlog  = Var_studies[i,j]) 

      for (k in 1:(N_subjs[i,j] * has.data[i,j])) { 

        AUC_chem_study_subj[i,j,k] ~ dlnorm(meanlog=log(AUC_chem_study[i,j]), 

                                            varlog =Var_subjs) 

      } 

    } 

  } 
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}) # End myNimbleCode 

 

N_chems   = length(chems) 

N_studies = vector() # number of studies per chemical 

for (i in 1:N_chems) { 

  N_studies[i] = max(DDI.data$Study[which(DDI.data$Chem == chems[i])]) 

} 

 

## matrix of number of subjects per chemical and study 

N_subjs = matrix(0, N_chems, max(N_studies)) 

for (i in 1:N_chems) { 

  for (j in 1:N_studies[i]) { 

    N_subjs[i,j] = DDI.data$N[which((DDI.data$Chem == chems[i]) & 

                                    (DDI.data$Study == j))][1] 

  } 

} 

 

## matrix of mean AUC ratio data per chemical and per study 

AUC_chem_study = matrix(NA, N_chems, max(N_studies)) 

for (i in 1:N_chems) { 

  for (j in 1:N_studies[i]) { 

    my.index = which((DDI.data$Chem == chems[i]) & (DDI.data$Study == j))[1] 

    if (is.na(DDI.data$Subject[my.index])) { 

      AUC_chem_study[i,j] = DDI.data$AUC_ratio[my.index] 

    } 

  } 

} 

 

## indicator variable for studies with individual data 

has.data = is.na(AUC_chem_study) & (N_subjs > 0) 

 

## matrix the AUC ratios data per chemical, per study, and per subject, 

AUC_chem_study_subj = array(NA, 

                            dim=c(N_chems, max(N_studies), 

                                  max(DDI.data$Subject, na.rm=T))) 

for (i in 1:N_chems) { 

  for (j in 1:N_studies[i]) { 

    my.index = which((DDI.data$Chem == chems[i]) & (DDI.data$Study == j)) 

    l.index  = length(my.index) 

    if (l.index > 1) { 

      AUC_chem_study_subj[i,j,1:l.index] = DDI.data$AUC_ratio[my.index] 

    } 

  } 

} 

 

constants = list(N_chems   = N_chems, 

                 N_studies = N_studies, 

                 N_subjs   = N_subjs, 

                 has.data  = has.data) 

 

data  = list(AUC_chem_study      = AUC_chem_study, 

             AUC_chem_study_subj = AUC_chem_study_subj) 

 

inits = list() 

 

Rmodel = nimbleModel(myNimbleCode, constants, data, inits, calculate=F) 

 

Node.names = Rmodel$getNodeNames(includeData=T) 

Rmodel$simulate(nodes = Node.names)   

res = values(Rmodel, Node.names) 

names(res) = Node.names 

res 

 

conf = configureMCMC(Rmodel) 

 

Rmcmc  = buildMCMC(conf) 

 

Cmodel = compileNimble(Rmodel, showCompilerOutput=F) 
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Cmcmc  = compileNimble(Rmcmc, project=Rmodel) 

 

N.iter = 10000 

mysamples = runMCMC(Cmcmc, niter=N.iter, nburnin=5000, nchains=3, setSeed=1) 

str(mysamples) 

 

mcmc.sum = MCMCsummary(object = mysamples, round = 5) 

mcmc.sum 

write.table(mcmc.sum, file="mcmc.sim_v3.txt", quote=F, sep="\t") 

 

fname = "traces_v3.pdf" 

MCMCtrace(object=mysamples, ISB=F,  

          pdf=T, open_pdf=F, 

          filename=fname, 

          iter=5000, 

          ind=TRUE, Rhat=TRUE, n.eff=TRUE) 

dev.off() 

 

End. 

 

MCMC posterior plots 
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