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1 Executive summary

The objective of this submission is to seek a qualification opinion on recur-
rent event endpoints for clinical trials where recurrent events are clinically
meaningful and where treatments are expected to impact the first as well
as subsequent events. We claim that clinically interpretable treatment ef-
fect measures (estimands) based on recurrent event endpoints can be defined
along with statistical analyses that are more efficient than those targeting
treatment effect measures based on the first event only.

Recurrent events refer to the repeated occurrence of the same type of event
over time for the same patient, thereby characterizing the disease burden
or progression. Recurrent event endpoints are well established in indica-
tions where the rate of terminal events (e.g. death) is very low. Examples
include relapses in multiple sclerosis (CHMP, 2015), exacerbations in pul-
monary diseases (e.g. chronic obstructive pulmonary disease (CHMP, 2012a)
and asthma (CHMP, 2010a)), headache attacks in migraine (CHMP, 2007,
2016a), hypoglycemia episodes in diabetes mellitus (CHMP, 2012b), and
seizures in epileptic disorders (CHMP, 2010b, 2016b). In these chronic dis-
eases, time-to-first-event endpoints that focus on the treatment effect on the
first event are clinically less meaningful and hence rarely used. Experience
with recurrent event endpoints is more limited in indications where the rate
of terminal events is high. For example, current practice in chronic heart
failure suggests that the primary analysis is based on a time-to-first-event
endpoint (e.g. first occurrence of heart failure hospitalizations or cardiovas-
cular death), although the clinical meaningfulness of recurrent heart failure
hospitalizations is acknowledged in e.g. CHMP (2017).

The primary interest in trials using recurrent event endpoints is usually to
understand how treatment affects the occurrence of recurrent events. This
raises the question how to measure a treatment effect under the repeated
occurrence of an event, which in turn depends critically on the underly-
ing scientific question (Glynn and Buring, 1996): Different endpoints and
treatment effect measures (i.e. different estimands; see ICH (2017)) can
be considered. Depending on the specific setting, some estimands may be
more appropriate than others. For example, accounting for the interplay
between recurrent events and terminal events, such as death, is important
in indications where the rate of terminal events is high. At the same time,
inappropriate statistical approaches are often used to compare event rates
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without being transparent about the target of inference (i.e. the estimand)
and acknowledging the implicit scientific question of interest. A discussion
on the use of recurrent event endpoints in different clinical trial settings is of
broad scientific interest.

Depending on the clinical trial setting (e.g. with or without terminal events),
different treatment effect measures can be considered. We do not seek to
recommend a specific choice, but rather discuss the value and limitations of
different treatment effect measures and their associated statistical analyses
for recurrent events. We provide a thorough review of the statistical and
clinical literature on recurrent events and present the results of extensive
simulations studies to support the intended claim.

2 Statement of need

In this section, we outline the need for a qualification opinion about clini-
cally interpretable treatment effect measures based on recurrent events. We
first motivate this need by discussing the complex setting of clinical trials
in chronic heart failure, where both recurrent hospitalizations and death are
relevant when defining treatment effects (Section 2.1). Section 2.2 reviews
several examples of diseases where recurrent event endpoints are well es-
tablished and the rate of death is low in typical clinical trials. Section 2.3
discusses relevant statistical considerations when defining treatment effect
measures based on recurrent events. Finally, Section 2.4 outlines the scope
of this qualification opinion request.

2.1 Motivation for this request

With the availability of new treatments in the past decades, some diseases,
such as heart failure (HF), were converted from short-term fatal diseases to
chronic diseases. Traditional endpoints used in HF trials include ‘time-to-
disease-related-mortality’ or a composite of ‘time to the first event of either
disease-related morbidity or mortality’. These endpoints have limitations as
they do not capture the chronic nature of the disease which manifests in
recurrent events (e.g. recurrent hospitalizations for HF) which in turn are
an important indicator for the disease progression and the health status of
patients. Thus, there is a need to tailor these traditional endpoints to best
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reflect the disease characteristics under chronic conditions.

Time to the first composite event of cardiovascular death (CVD) and hospi-
talization for heart failure (HHF) is used in many trials that have changed the
practice of cardiovascular (CV) medicine. It is more specific than previous
endpoints (e.g. time-to-death) and avoids competing risk and multiplicity
problems (e.g. through the use of two endpoints, time-to-death and time-to-
first-hospitalization). However, it ignores all HHF that occur after the first
event despite the fact that these events reflect clinically meaningful informa-
tion. In addition, improved medical care results in decreasing event rates.
Therefore, the sample sizes needed for classical disease-related mortality and
morbidity trials have increased to an extent that it becomes more and more
challenging to conduct adequately powered trials. In contrast, including all
recurrent HHF information is expected to better characterize the disease bur-
den as HHF are an important indicator for disease progression, ultimately
leading to clinically more meaningful treatment effect measures and better
statistical efficiency (in terms of statistical power).

The recent CHMP (2017) guideline recognizes the clinical meaningfulness
of recurrent HHF in patients with chronic heart failure (CHF) to better
characterize their disease burden. At the same time, it is acknowledged that
despite their importance, recurrent event endpoints are rarely used in CHF
clinical trials compared to time-to-first-HHF (Collins et al., 2013; Zannad
et al., 2013). Recurrent HHF are mostly used as secondary or exploratory
endpoints although case studies highlighting the use or potential value of
their repeated occurrence do exist; see e.g. the CHAMPION (Abraham et al.,
2011) and PARAGON (Solomon et al., 2017) trials in HF, but also CHMP
(2017) and Rogers et al. (2014a). One considerable challenge in analyzing
recurrent event data in indications, where the rate of death is high, arises
due to competing risks as the determinants of e.g. HHF and death share the
same risk factors.

Different outcome measures are available to account for the repeated occur-
rences of the same type of event over time, such as counting the number of
HHF, counting the number of ’bad’ events (HHF and CVD), ranking accord-
ing to a patient’s journey or defining a suitable utility function. Figure 1 vi-
sualizes the differences between two of the former outcome measures, namely
”number of HHF” and ”number of ’bad’ events”. Patient 1 experienced two
’bad’ events in form of two HHF and his life is terminated by experiencing
a non-CVD. Patient 2 experienced three ’bad’ events in form of two HHF
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Figure 1: Visualization of four distinct life history processes. CVD: cardio-
vascular death.
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and a fatal event in form of a CVD. In contrast, Patient 3 also experienced
three ’bad’ events, but in form of three HHF, therefore remaining in the trial
until its end, while being alive. Finally, Patient 4 experienced only one ’bad’
event, a fatal event early in the trial in form of a CVD. This example also
illustrates that the event count may be low for two very different reasons:
Either because the risk of experiencing the event is low or because the patient
has died early and therefore did not experience many events.

A large number of statistical analysis methods for recurrent event endpoints
is available, also in the presence of competing risks. However, concerns and
questions remain, especially about the treatment effect being estimated by
the various methods. As pointed out by Anker and McMurray (2012), “the
complexity of these tests is beyond the understanding of most clinicians, and
the differences between and advantages and disadvantages of all the methods
available are unclear to us.” Likewise, Claggett et al. (2013) argued that “...
the act of appropriately condensing, summarizing and evaluating that infor-
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mation in a clinically meaningful manner becomes increasingly difficult” and
Anker et al. (2016) asked “how to interpret results if recurrent event analysis
results differ substantially in magnitude or direction from time-to-first-event
analysis?” The root cause for many of these challenges in interpretation is
the competing terminal event of death as its occurrence precludes the oc-
currence of any other event of interest. For example, in a trial in which
the primary outcome is time-to-CVD, the non-CVD is a competing terminal
event: A patient who dies of cancer is no longer at risk of experiencing CVD.
Regardless of how long the duration of follow-up is extended, a patient will
obviously not be observed to die of CV causes once he or she has died of
cancer. In clinical trials, where patients are equally randomized to test and
control treatment, a selection effect occurs as patients dying from non-CV
causes are no more contributing further data. This may create an imbalance
if treatments have different effects on the risk of non-CVD. A selection ef-
fect also occurs if for each patient only the first event (e.g. first HHF) is
considered, and data after an event are discarded; see e.g. Appendix C.

In summary, statistical methods are often applied in complex settings, such
as CHF, for which the interpretation of the treatment effect is not clear,
leading to the question about the targeted treatment effect of greatest rele-
vance to regulatory and clinical decision making (CHMP, 2017). Triggered
by the recent ICH (2017) guideline, it is desirable to condense the relevant
information into a clinically meaningful and interpretable measure of the
treatment effect, the estimand. This includes a transparent description of
how to capture key information like the target population (attribute A), the
variable of interest (attribute B), intercurrent events that occur after treat-
ment initiation and either preclude observation of the variable or affect its
interpretation (e.g. treatment switching or death; attribute C) and an ap-
propriate summary level (attribute D); see ICH (2017) for a more detailed
description of attributes A to D. Accordingly, current practice needs to be
reversed: First an agreement on a clinically meaningful estimand of primary
interest is needed, which then informs choices about trial design, data collec-
tion, and statistical analysis. This should lead to clinical trials resulting in
informative and interpretable treatment effects and hence facilitate decisions
by regulators, clinicians and patients.
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2.2 Recurrent event endpoints in clinical practice

Recurrent events are common in medical research, yet the best ways to mea-
sure their occurrence remains subject of discussion. An early argument for
the greater importance of event rates, rather than only first events, was pro-
vided by Cumming et al. (1990) in their trials of falls. The cumulative risk of
fractures increases with each fall; hence the number of falls is a more specific
indicator of risk rather than whether one has fallen. A high rate of recurrent
falls may especially increase the risk of injury. A focus on only those who
fall at least once can blur important distinctions between groups when one
group has an increased risk of recurrence relative to the other.

Recurrent event endpoints are well established in indications where repeated
occurrences of the same type of event are clinically meaningful, treatments
are expected to impact the first as well as subsequent events and where the
rate of terminal events, such as death, is low in typical clinical trial set-
tings. In such indications, selecting an appropriate treatment effect measure
is important for benefit-risk assessments and in determining whether the
treatment is actually modifying the disease course. A treatment effect mea-
sure with poor reliability or interpretability may lead to inaccurate results
or improper use of treatments. In the following, we briefly review diseases
where recurrent event endpoints are routinely used in clinical trials.

Relapsing-remitting multiple sclerosis (RRMS): The most common form of
multiple sclerosis is characterized by recurrent acute episodes of neurological
abnormalities (relapses), which are followed by complete or partial recovery.
The treatment objective in RRMS is typically to prevent or reduce the fre-
quency of new relapses, and to delay worsening of disability. Relapse-related
outcomes are important because prevention of relapses benefits patients im-
mediately; see also CHMP (2015). The most common primary variable used
in the recent past has been the annualized relapse rate (ARR) which is the
average number of relapses in one year (Lavery et al., 2014; van Munster and
Uitdehaag, 2017); see also Table 1. The ARR is a recurrent event endpoint
which takes into account that patients may relapse repeatedly, and, by report-
ing the relapse rate per year, depends less on the follow-up time of patients
during a clinical trial. Secondary relapse-related variables in RRMS trials
often include time-to-first-relapse, the number (%) of relapse-free patients,
severity of relapses, relapses with complete or partial recovery, and relapses
leading to hospitalizations (D’Souza et al., 2008), although each of these
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variables has its own limitations. The analysis of the time-to-first-relapse is
inefficient because the information following the first relapse is ignored. The
number and proportion of relapse-free patients may be misleading because
it depends on the time that patients were observed. Also, this variable does
not distinguish between patients who have one relapse and those who have
several, which may lead to incorrect conclusions if the treatment fails to in-
fluence the first relapse but reduces the risk of subsequent relapses (Glynn
and Buring, 1996). Severity of relapses, completeness of recovery after a re-
lapse and relapses leading to hospitalizations target at rather specific aspects
of the treatment effect and thus fail to characterize more broadly the disease
burden or progression.

Asthma: Another indication where recurrent event endpoints are well estab-
lished. It is a chronic inflammatory disorder of the airways caused by the
interaction of genetic and environmental factors. The disease is characterized
by variable and recurring symptoms, airflow obstruction, bronchial hyper
responsiveness and underlying inflammation. The GINA (2017) report on
asthma management and prevention recognizes that patients can experience
episodic flare-ups (exacerbations) of asthma that may be life-threatening and
each exacerbation carries a significant burden to patients and the community.
It continues stating that the long-term goals of asthma management are to
achieve good symptom control, and to minimize the future risk of exacerba-
tions, fixed airflow limitations and occurrence of adverse events. Similarly,
CHMP (2010a) recommends the exacerbation rate as a clinically relevant
endpoint to assess treatment in asthma patients. The statistical methods
used to analyze this endpoint (as percentage of patients, annualized rate,
time-to-first-event) should be justified. The trial length should be of suffi-
cient duration to capture these events and dependent on the study treatment
as well as the disease severity in the patient population. In standard Phase
III trials, the duration is often one year to balance out seasonal effects that
have a major impact in asthma.

Chronic obstructive pulmonary disease (COPD): A respiratory disorder char-
acterized by airflow limitation, which is not fully reversible. The airflow
limitation is usually progressive and is associated with an abnormal inflam-
matory response in the lungs to noxious particles or gases, primarily caused
by cigarette smoking. COPD patients often suffer from acute exacerbations
(i.e. a sudden worsening of symptoms). As exacerbations are a major cause of
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Table 1: Primary variables for selected late-stage clinical trials in RRMS.
CDMS: Clinically Definite MS, EDSS: Expanded Disability Status Scale
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morbidity, mortality, and the need for hospitalization or urgent care, Mahler
and Criner (2007) conclude that “an exacerbation in a patient with COPD
has been considered analogous to an acute coronary event in a patient with
coronary heart disease.” Accordingly, CHMP (2012a) recognizes that the
rate of moderate or severe exacerbations is a clinically relevant endpoint re-
lated to the associated morbidity and mortality and the usually significantly
increased health-care requirement. The frequency and/or severity of exacer-
bations are important outcome measures that should be considered in COPD
trials (Keene et al., 2008a,b). Such measures can include reduction in the
number of exacerbations, annual rate and severity of exacerbations. Time-
to-first-exacerbation might also be considered. If one of these measures is
chosen as the primary efficacy endpoint, the others should be assessed also
to ensure that improvement in one endpoint does not result in worsening in
another. The frequency of exacerbations should normally be assessed over a
period of at least one year due to seasonal variation in exacerbation rates.

Migraine: A primary headache disorder characterized by recurrent headaches
that are moderate to severe. Typically, the headaches affect one half of the
head, are pulsating in nature, and last from two to 72 hours. Recognizing the
recurrent nature of the disease manifestations, CHMP (2007) recommends
the frequency of attacks within a pre-specified period as the primary endpoint
in migraine prophylaxis trials. Likewise, the related CHMP (2016a) concept
paper suggests the choice of primary (migraine days vs headache days vs
number of attacks) and secondary endpoints (symptom severity) as a critical
item for discussion.

Epilepsy: A group of neurological disorders characterized by epileptic seizures,
i.e. episodes that can vary from brief nearly undetectable to long periods of
vigorous shaking. These episodes can result in physical injuries including oc-
casionally broken bones. In epilepsy, seizures tend to recur and as a rule, have
no immediate underlying cause. Conversely, isolated non-recurring seizures
that are provoked by a specific cause (e.g. poisoning) are not deemed to
represent epilepsy. CHMP (2010b) recommends that the assessment of ef-
ficacy should be based primarily upon seizure frequency and/or occurrence.
The related CHMP (2016b) concept paper suggests a revision of the trial
design in the add-on setting as a critical item for discussion in an update of
its original guideline, e.g. validity and acceptability of a time-to-first-event
approach as alternative endpoint and consequences for trial duration.
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2.3 Statistical considerations on recurrent event anal-
yses

The recent ICH (2017) guideline highlights the importance of defining suit-
able estimands. The choice of the primary estimand will usually be the main
determinant for aspects of trial design and conduct, and guide the decision
on an appropriate statistical analysis method targeting this estimand. In this
section we briefly discuss statistical considerations relevant in this context.

2.3.1 Estimand

In any clinical trial with recurrent event endpoints the scientific question of
interest has to be clearly stated, leading to a suitable choice of the primary
estimand, under particular consideration of the therapeutic and experimental
context. For example, Kuramoto et al. (2008) listed the following questions
of potential interest:

• Does treatment decrease the event number over the trial period com-
pared to control?

• How many events does treatment prevent, on average, compared to
control?

• What is the treatment effect on the number of subsequent events among
those who experienced the preceding event?

• What is the treatment effect on the number of higher-order events, e.g.
third event, compared to control?

This list shows the importance of pre-specifying and choosing a clinically
interpretable estimand, and also emphasizes the difference between the first
event and what can happen when further events are considered.

When choosing an estimand, events that occur after treatment initiation need
particular attention as they may lead to confounding. While randomized tri-
als are expected to be free from baseline confounding, such ‘intercurrent
events’ (ICH, 2017) will likely complicate the description and interpreta-
tion of treatment effects. Examples of intercurrent events include the use
of an alternative treatment (e.g. rescue medication, prohibited medication,
or subsequent line of therapy), as well as the patient’s discontinuation from
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treatment or even treatment switching, and, of course, terminal events such
as death. In Section 3 we provide a detailed description of estimands based
on recurrent event and time-to-first-event endpoints.

2.3.2 Trial design

An estimand should be understandable to a broader audience, including prac-
ticing clinicians and patients. Hence, when defining an estimand, one will
typically refer to a certain time window for comparing treatment and control.
For example, in psoriasis trials the response rate at week 12 and in diabetes
trials the change from baseline in HbA1c at week 24 are typically of primary
interest. Similarly for recurrent event data, the treatment effect for a fixed
time period (e.g. two years) will be easiest to communicate. A clinical trial
design where each patient is followed for the same time (fixed follow-up time
of e.g. two years) would be adequate in such settings.

An alternative trial design is to follow patients until terminating the trial
at some point in calendar time (flexible follow-up time). The advantage of
this second design is that the patients enrolled first may be followed for a
relatively long time, thus yielding long-term information without delaying
the trial end. Statistical analyses typically allow to take into account data
from patients with different follow-up times.

In both design options, patients are censored as they are no longer followed
after some time. In the design with fixed follow-up time, the censoring hap-
pens at e.g. two years, while in the design with flexible follow-up time,
censoring occurs at trial end. Censoring always implies a loss of information
because we do not know what happens to patients after censoring.

A patient may also be censored due to other reasons, e.g. when withdrawing
the consent to participate in the trial. This type of censoring is more difficult
to address in the statistical analysis as it may be related to treatment; see
e.g. NRC (2010).

Censoring should not be confused with death and other terminal events:
After death no events will occur and therefore following the patient is logically
the same as not following the patient. In other words, we do not lose any
information on the patient by not following him after death, because there
is no information that can be lost. Note that other events than death can
lead to similar implications and conceptual challenges. For example, intake
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of rescue medication may make it irrelevant to follow the disease process
further for certain estimand strategies. In this sense, one may consider the
use of rescue medication as a terminal event. Such terminal events must
first be addressed at the estimand level. Different strategies to account for
the termination of the recurrent event process due to terminal events (here:
death) will be discussed in Section 3; see also Hernan and Robins (2018).

2.3.3 Statistical analysis

To be relevant, a statistical analysis method has to target the selected esti-
mand. Additionally, the assumptions made by the analysis method should
be plausible. For example, counting the total number of events can result
only in non-negative integer values. Such data are non-normally distributed,
and the variance varies with the mean. Thus, it is inappropriate to analyze
such count data using ordinary linear regression because the linear model
assumes homogeneity of variance and could produce meaningless negative
predicted values. Some trialists may rescale the counts to a dichotomy (e.g.
‘relapsed’ versus ‘did not relapse’) or a set of ordered categories (e.g. 0, 1,
2, and ≥ 3), when defining the estimand. The data may then be analyzed
using e.g. a logistic regression. However, reduction of counts into categories
wastes information and may lead to a considerable loss in statistical power.

A simple model for analyzing count data is to assume that they are dis-
tributed according to a Poisson distribution. However, certain diseases ex-
hibit greater heterogeneity, i.e. variability in event rates between patients,
than expected with the Poisson distribution, known as overdispersion. For
example, RRMS relapse data often exhibit overdispersion, which can arise in
several ways (Wang et al., 2009). It can be a result of heterogeneity among
patients, i.e. each patient has a constant relapse rate, but some patients may
be more prone than others to relapse, partly due to genetic and environmen-
tal differences or unmeasured covariates. Overdispersion can also be a conse-
quence of contagion, i.e. occurrence of a relapse increases a patient’s risk for
subsequent ones. Both heterogeneity and contagion mechanisms cause sta-
tistical correlation between relapses. Specifically, a patient with a history of
relapses is likely to continue to experience more relapses, while subjects with
no history of relapses tend to experience fewer future relapses. Thus, overdis-
persed count data are more spread than expected under the assumption of a
Poisson distribution. The use of a Poisson model would not be appropriate
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in such cases, as this would typically lead to too narrow confidence intervals
for the treatment effect. Therefore, statistical models for overdispersed count
data are needed.

Accounting for possible overdispersion is an important statistical considera-
tion for recurrent event data, but not the only one. Dependent on the specific
assumptions, different regression models for the recurrent event data can be
formulated. For example, under the proportional rate assumption fully para-
metric models such as the Poisson model and the negative binomial (NB)
model (accounting for overdispersion) could be considered. We refer to Ap-
pendix A.2 for a technical introduction of several classes of statistical models
for analyzing recurrent event data. As all these models are based on some
assumptions, it is important to assess the robustness across a range of plau-
sible assumptions via a thorough sensitivity analysis, see Section 3. General
references on statistical considerations for recurrent event data include Cook
and Lawless (2007), Hougaard (2000), and Therneau and Grambsch (2000).

2.4 In-scope and out-of-scope of this request

We claim that treatment effect measures can be defined based on recurrent
event endpoints that are clinically interpretable and allow for efficient sta-
tistical analyses. To support this claim, we investigate different estimands
and associated analysis methods for recurrent events. However, it is not our
objective to suggest, create, or validate new endpoints.

Depending on the clinical trial setting, different treatment effect measures
(estimands) can be considered. We do not seek to recommend a specific
choice, but rather discuss the value and limitations of different treatment
effect measures and their associated statistical analyses. As discussed, dif-
ferent ways of including more information than just the first recurrent event
are possible. For example, in CHF one may count the number of HHF, count
the number of HHF and CVD, perform some ranking according to a patient’s
journey or define a suitable utility function. In this request, we focus on the
first two measures only. The other two are out-of-scope as are aspects like
quality of life or functional status of the patients.

The concepts surrounding recurrent events can also be used to evaluate safety,
to assess risk versus benefit and quantify health economic value. Recurrent
events often occur in all those settings, but the focus of this request is on
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efficacy as seen in clinical trials, particularly on clinically interpretable treat-
ment effects and on the efficiency of statistical analyses in an efficacy setting.

In many chronic disease trials, patients are at risk of different types of re-
current events. For example, transient ischemic attacks may be classified
according to location in CV trials and migraines may be differentiated by
severity in neurological trials. Also, the duration of event conditions could
be an important aspect, especially if there is considerable variation in the
duration or if some episodic conditions last for a long time. For the purpose
of this request, methodological discussions as to whether and how to account
for the duration or severity of events are out-of-scope. Instead, we refer the
methodologically interested reader to Cook and Lawless (2007, Chapter 6).

Also, we do not discuss how to define an event in a clinically meaningful way.
For example, in RRMS relapses are generally defined as neurologic symptoms
lasting more than 24 hours which occur at least 30 days after the onset of
a preceding event (Kappos et al., 2006), though definitions can vary by trial
which will not be discussed in this request.

The work presented in this request, and the examples cited, focus on large
Phase III confirmatory trials. Nevertheless, the described concepts are im-
portant in early drug development as well. Determination of an interpretable
clinical endpoint is equally relevant in early phases and should be an impor-
tant building block of a clinical development program leading to Phase III.
Recognition of the importance of a recurrent event process early helps in
preparation for larger, later stage trials. Later sections in this request in-
clude simulations that examine the properties of different methods across
various sample sizes. The properties shown with the smaller samples may be
useful for guiding design and analysis for early phase and/or smaller trials.
Nevertheless, the primary scope of this request is on confirmatory trials.

Although we briefly mention sensitivity analyses and the handling of missing
data, a thorough discussion of these aspects is out-of-scope of this request.

The objective through the following sections is to demonstrate that recurrent
event data collected from clinical trials can be used in a ‘better way’ com-
pared to the current practice. That is, we address the question whether more
valuable information can be included when drawing inference on treatment
effects. This qualification opinion request will answer ‘yes’ to that question,
but first an agreement on the estimand of primary interest is needed (ICH,
2017). Statistical approaches need to be aligned to the estimand of choice and
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robustness of conclusions ought to be assessed through a sensitivity analysis.
Section 3 outlines estimands for recurrent event endpoints and also consid-
ers estimands which focus on the first event only. The setting of interest
is that of a chronic disease, where a new treatment is investigated in terms
of reducing disease burden. Section 4 provides case studies for RRMS and
CHF to illustrate the various estimands introduced in Section 3 in situations
without and with competing terminal events (death), respectively, although
the key considerations are more broadly applicable. Section 5 then addresses
the efficiency comparison of time-to-first-event with recurrent event analyses
through two comprehensive simulation studies, each motivated by the case
studies described in Section 4, and covering a wide range of practical sce-
narios. Section 6 concludes this request with a summary of the key findings.
Detailed technical results and the complete results of the simulation studies
are left for the appendix.

3 Estimands based on recurrent event and

time-to-first-event endpoints

The recent ICH (2017) guideline emphasizes that trial objectives and statisti-
cal approaches should be aligned by clearly defining the estimand of interest.
An estimand defines what is to be estimated to address a specific scientific
question of interest. In clinical trials we are usually interested in estimating
treatment effects with respect to the variable of interest (e.g. HHF and CVD
in CHF). However, intercurrent events occurring after randomization, such
as treatment discontinuation, non-CVD or rescue medication intake, may
complicate both the definition and estimation of relevant treatment effects.
Such events need to be taken into account when defining the estimand of
interest.

An estimand can generally be described through the following four attributes:

(A) Population: As reflected through the inclusion/exclusion criteria of a
given trial, e.g. RRMS patients with at least one documented relapse
in the year preceding enrollment;

(B) Variable: As required to address the scientific question. For ease of
interpretation and communication, the variable will typically refer to a
specific time window, e.g. number of relapses up to two years;
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(C) Intercurrent events: Specification of how to account for intercurrent
events to reflect the scientific question of interest, e.g. whether these
are ignored;

(D) Summary measure: For the variable which provides a basis for a com-
parison between different treatment conditions, e.g. difference in vari-
able means.

An estimator defines the specific analysis method according to which the es-
timand is to be estimated from the trial data. When defining an estimator,
assumptions will typically have to be made and it is essential to conduct
a sensitivity analysis in the form of a structured and targeted sequence of
analyses. These analyses should use estimators that focus on the identical
estimand as the primary estimator, allowing investigation of robustness to
model assumptions and data limitations. In contrast, supplementary analy-
ses are concerned with different estimands that help putting the results into a
broader perspective, e.g. to investigate the treatment effect on other relevant
aspects of a disease. The estimand framework helps distinguishing between
the target of estimation (trial objectives, estimand), method of estimation
(estimator, estimate, measures of uncertainty), and sensitivity analysis.

Estimands with a causal interpretation are of main interest and would typ-
ically be preferred, as also emphasized in NRC (2010): “Estimation of the
primary (causal) estimand, with an appropriate estimate of uncertainty, is
the main goal of a clinical trial.” Causal estimands are often defined using
the potential outcome framework, considering how the outcome of treatment
compares to what would have happened to the same patients under different
treatment conditions; see e.g. Little and Rubin (2000), Imbens and Rubin
(2015), and Hernan and Robins (2018).

In the following, we present estimands for recurrent event endpoints and also
consider estimands when the focus lies on the first event only. The setting
of interest is that of a chronic disease, e.g. CHF or RRMS, where a new
treatment is investigated in terms of reducing the disease burden. Reduc-
tions in disease-related events, such as HHF or CVD for CHF or relapses for
RRMS, would be clinically relevant. The main scientific question concerns
the comparison of test versus control treatment, and is best addressed by a
randomized controlled clinical trial.
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3.1 Settings without terminal events

In many therapeutic areas with disease-related recurrent events, the rate of
death during a clinical trial is low, such as in RRMS or asthma. In this
section, we focus on the setting where death or other terminal events are
not considered to be a relevant intercurrent event. Instead, we focus on the
intercurrent event of treatment discontinuation.

3.1.1 Recurrent event endpoints

We focus here on the commonly used ‘treatment policy’ and ‘hypothetical’
estimands, but also briefly discuss alternative estimands.

3.1.1.1 Treatment policy estimand The treatment policy estimand
refers to the effect of the initially assigned treatment and not the effect of
the treatment eventually received. The treatment policy estimand is often
considered to be of interest, and is closely related to the intent-to-treat prin-
ciple (ICH, 1998). The following four attributes characterize this estimand:

(A) Population: Usually defined through appropriate inclusion/exclusion
criteria to reflect the targeted patient population for approval. It may
sometimes also be defined based on data collected in a run-in period
(before randomization) if the aim is e.g. to focus on the patient popu-
lation which can tolerate control and/or test treatment.

(B) Variable: Number of recurrent events up to a certain follow-up time
(e.g. two years). The choice of the time window is to a certain degree
arbitrary and balances feasibility with the desire to assess the treatment
effect sufficiently well.

(C) Intercurrent events: Regardless of whether or not an intercurrent event
had occurred. Note that disregarding intercurrent events such as treat-
ment discontinuation may lead to difficulties in the clinical interpre-
tation of the treatment effect, especially if many patients discontinue
treatment, or if discontinuations are strongly imbalanced between groups.
For example, if patients discontinue study treatment for lack of effi-
cacy, and then take another approved treatment, the treatment policy
estimand compares ‘test treatment followed by approved treatment’
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against ‘control treatment followed by approved treatment’. If more
patients on test treatment discontinue, an ineffective test treatment
may appear to be effective. Similarly, if more patients on control dis-
continue, an effective test treatment may appear to be ineffective. It
is thus advisable to collect information on any treatments being used
after study treatment discontinuation.

(D) Summary measure: Often the expected number of events in the follow-
up time (e.g. two years), which may also be expressed as an annualized
rate. This summary measure can be interpreted without assumptions
on how the events are generated. Comparisons of test versus control
treatment could be based on the ratio (or difference) of the expected
number of events. Note that the treatment effect could be explained to
patients as ‘Prescription of the test treatment is expected to decrease
the number of events within the next two years by 30% compared to
prescription of the control treatment.’ Other summary measures for
the number of events (or the annualized rate) could be chosen, such as
the median number of events, if considered clinically meaningful.

A randomized clinical trial, where each patient is followed-up for exactly the
same time, is an appropriate design to address a treatment policy estimand.

The expected number of events in test and control treatment (for the selected
time window of e.g. two years) can be easily estimated if no data are missing,
i.e. if all patients are followed as required for two years. The estimate is
simply the average number of events in each group. Hence, the treatment
effect may be estimated as the ratio

average number of events in test treatment

average number of events in control treatment

and may be expressed as a percentage reduction of events on test treatment
compared to control.

For inference, statistical models are typically applied which require further
(testable) assumptions. For example, a standard NB regression is often used
to model the number of relapses in RRMS, i.e. a time-homogenous NB model
with a constant marginal event rate (Appendix A.2.2.4). The maximum-
likelihood estimate for the rate ratio population parameter in the NB model
is numerically identical to the ratio of average event numbers (if no data are
missing, and hence all patients have the same follow-up time). Hence, the
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NB model provides a valid point estimate for the treatment policy estimand,
even if model assumptions are not correct (if there are no missing data).

The Anderson-Gill model with robust variance estimator proposed by Lin
et al. (2000) (LWYY, Appendix A.2.3.1) can also be used for inference.
LWYY gives the same point estimate as NB and hence is also an appro-
priate estimator for the treatment policy estimand (if there are no missing
data). Other methods, such as those described in Wei et al. (1989) (WLW,
Appendix A.2.3.2) or Prentice et al. (1981) (PWP, Appendix A.2.2.3), do
not provide estimates of the treatment policy estimand, and hence should
not be used for analysis in the context considered here. Although WLW and
PWP could be considered as supplementary analyses, the treatment effects
implied by these methods remain difficult to interpret.

A statistical hypothesis test is valid if the type I error rate is controlled
at a pre-specified significance level. Under the (strict) null hypothesis of
identical recurrent event data processes, some of the assumptions made for
the statistical analysis are always correct. This holds e.g. for the constant
rate ratio assumption for treatment versus control made by NB and LWYY.
However, other assumptions such as the distributional assumption of a NB
counting process made by the NB model may be incorrect. Note that a
hypothesis test may still control the type I error rate (and hence be valid)
even when the statistical model used to derive it is not fully appropriate.

To limit the assumptions for estimation, recurrent event information for the
entire follow-up time (e.g. two years) is required. However, for various rea-
sons patients may drop out early from the trial, leading to a missing data
problem. Such missing data will have to be imputed implicitly or explicitly.
Importantly, the imputed data should be in line with the treatment policy
estimand. Generally, untestable assumptions will be required for such im-
plicit or explicit imputations of missing data. The robustness of conclusions
across a range of assumptions can be assessed with a sensitivity analysis. We
refer to NRC (2010) for a more detailed discussion on missing data issues.

In general, when defining estimands, one main analysis method should be de-
fined which can be accompanied by a sensitivity analysis. For example, the
NB model paired with an appropriate imputation method to handle miss-
ing data could be chosen as the main analysis. In a sensitivity analysis,
the assumptions made for the main analysis and the missing data handling
approach can be varied across a range of plausible assumptions.
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3.1.1.2 Hypothetical estimand An alternative treatment effect refers
to the hypothetical setting where all patients stay on the initially assigned
treatment for the intended duration. Sometimes such an estimand is of sci-
entific interest, especially if treatment discontinuation could be avoided in
practice. If, however, many patients are expected to discontinue due to ad-
verse events or other tolerability issues then the question, what the effect
would be had these patients continued their treatment, appears to be of
limited clinical and scientific value.

The hypothetical estimand has the same attributes (A) population, (B) vari-
able, and (D) summary measure as the treatment policy estimand. However,
intercurrent events are handled differently:

(C) Intercurrent events: The hypothetical setting is of interest where the
intercurrent event of treatment discontinuation would not occur, i.e.
patients would continue their treatment for the intended duration.

A randomized clinical trial with fixed or flexible follow-up time would be
an appropriate design. Recurrent event information after discontinuation of
study treatment does not have to be collected for the main analysis, although
it may in many cases be important from a safety perspective to follow-up on
patients after discontinuation.

In contrast to the treatment policy estimand, stronger assumptions are needed
to obtain consistent point estimates and to perform inference for the hypo-
thetical estimand. Statistical models will typically be used to implicitly or
explicitly impute data after treatment discontinuation. For example, a stan-
dard NB model (Appendix A.2.2.4) censors the patient at time of treatment
discontinuation and uses an offset of log(discontinuation time). The standard
time-homogeneous NB model assumes that a patient’s recurrent event rate
does not change with time, and also that treatment discontinuation is not
informative. By ‘not informative’ we mean that information after treatment
discontinuation for a given patient can be appropriately predicted based on
the observed data of that given patient and other similar patients. Similar-
ity is established in terms of the same baseline characteristics featured in
the model and the observed recurrent event history up to the point of treat-
ment or study discontinuation. If these assumptions are appropriate, the
estimated rate ratio parameter of the NB model will be consistent with the
hypothetical estimand. Note that semi-parametric NB models do not rely on
the assumption of a constant event rate (Cook and Lawless, 2007).

22



LWYY (Appendix A.2.3.1) allows that recurrent event rates change with
time, but requires stronger assumptions than NB regarding treatment dis-
continuation. LWYY implicitly predicts missing data based on the baseline
characteristics featured in the model but does not include information on the
observed recurrent event data process after randomization (while NB does).
Again, if assumptions are appropriate, LWYY provides consistent estimates
for the estimand of interest.

In summary, either NB or LWYY may be selected for the main analysis.
The robustness of conclusions to alternative assumptions can be investigated
with a sensitivity analysis. In line with our discussion for the treatment
policy estimand, WLW and PWP do not provide consistent estimates of the
hypothetical estimand but could be considered as supplementary analyses.

3.1.1.3 Other estimands and additional considerations In settings
without terminal event, the treatment policy and hypothetical estimands
discussed above seem to be the most commonly used estimands in current
practice. For example, a treatment policy strategy could be used for some
intercurrent events (e.g. patients discontinuing treatment due to adverse
events), while a hypothetical strategy could be used for others (e.g. patients
discontinuing treatment due to perceived lack of efficacy). However, alterna-
tive estimands may also be considered. The ICH (2017) guideline discusses
various strategies for selecting estimands, and these considerations straight-
forwardly apply to the case of recurrent events without terminal events.

3.1.2 Time-to-first-event endpoints

Disease-related events such as relapses in RRMS occur repeatedly for the
same patient. However, sometimes events after the first event are ignored,
and comparison of test and control treatment is based on a time-to-first-
event variable, e.g. time-to-first-relapse for RRMS. In this section we focus
on such time-to-first-event endpoints. Note that the general framework in
ICH (2017) also applies to time-to-first-event endpoints, although they were
not discussed explicitly. Here, we highlight some points which need special
attention.

Similar to the case of recurrent event endpoints, we discuss only the treatment
policy and hypothetical estimands. These estimands would consider the same
population (attributes A) and handling of intercurrent events (attribute C)
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as in the recurrent event setting discussed in Section 3.1.1. The variable of
interest (attribute B) now becomes the time-to-first-event up to a specified
follow-up time (e.g. two years).

However, the selection of an appropriate summary measure (attribute D)
is more challenging. The hazard ratio (HR) of a Cox proportional haz-
ards model is typically used in time-to-first-event settings to summarize a
treatment effect. However, the HR does not always allow for a causal inter-
pretation (Aalen et al., 2015), which seems undesirable. Additionally, the
HR is difficult to interpret if the proportional hazards assumption does not
hold. Alternative summary measures such as the event-free probability at
the follow-up time or the restricted mean survival time would admit a causal
interpretation; see e.g. Royston and Parmar (2011), Uno et al. (2014, 2015),
Pak et al. (2017), and Rufibach (2017). These can also be interpreted without
reference to a particular statistical model.

For the analysis, a standard Cox proportional hazards regression is com-
monly used regardless of the estimand of interest. When interest lies in
the hypothetical estimand then the patient should be censored at the time
of treatment discontinuation. A standard Cox model applied to such data
targets the hypothetical estimand (with the HR summarizing the treatment
effect), if the model is appropriate and the treatment discontinuations are not
informative. In the presence of between-patient heterogeneity not accounted
for by the covariates (common in many diseases such as RRMS), the propor-
tional hazards assumption typically does not hold, and hence the resulting
HR estimate would be difficult to interpret. For the estimation of the treat-
ment policy estimand, the data after treatment discontinuation would not be
censored. In this setting, the assumptions of the Cox proportional hazards
model are likely to be violated leading again to difficulties in interpretation.

Despite the issues with the use of Cox proportional hazards regression for
estimation (e.g. lack of causal interpretation, difficult to communicate to
non-statisticians, proportional hazards assumption not plausible in relevant
settings), associated statistical hypothesis tests are closely linked to the log-
rank test and hence valid, at least if treatment discontinuations are indepen-
dent of the time to the first event.
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3.2 Settings with terminal events

Serious chronic diseases such as CHF are characterized through recurrent
disease-related morbidity events, e.g. HHF. Patients with such diseases also
have an appreciable risk for disease-related deaths, e.g. CVD. Disease-related
deaths are terminal events, i.e. events that terminate the recurrent event
process such that no more events can occur afterwards. Additional terminal
events such as disease-unrelated deaths further complicate this setting.

Terminal events pose conceptual challenges when drawing conclusions from
associated clinical trials. We would like to acknowledge that patients who die
can no longer experience any morbidity events. While disease-related deaths
preclude all future morbidity events, patients in less serious conditions may
remain on trial and experience many morbidity events. Thus, simply count-
ing the number of events may not be sufficient. The event count could be
low for two very different reasons, either because the risk of experiencing the
event is low, or because the patient has died and therefore not experienced
many events. A key question is thus how to account for the intercurrent event
of death. When answering this question it is important to keep in mind that
“truncation by competing events raises logical questions about the meaning of
the causal estimand that cannot be bypassed by statistical techniques” (Her-
nan and Robins, 2018). Note that the question above also applies to other
settings than recurrent events in the presence of mortality, e.g. longitudinal
biomarkers when mortality is appreciable or semi-competing risk problems.

In the following, we present several estimands that make use of the recurrent
morbidity event information up to e.g. two years of follow-up. For ease of
exposition, we focus on only one intercurrent event, namely disease-related
death. For more than one type of intercurrent event, including disease-
unrelated deaths, we refer to Section 3.2.1.6.1. Considerations on suitable
estimators and sensitivity analyses are kept short, especially if the estimators
were already discussed in Section 3.1.

3.2.1 Recurrent event endpoints

Motivated by ICH (2017), we discuss five estimand strategies: treatment
policy, composite, hypothetical, principal strata, and while-alive. The treat-
ment policy and hypothetical strategies were already discussed for recurrent
event endpoints without terminal events in Section 3.1.1, where the only
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intercurrent event under consideration was treatment discontinuation. The
implications for a terminal intercurrent event such as death are entirely dif-
ferent, and hence we discuss these two strategies again in this context. While
we describe these five strategies, we are not suggesting that they are all clini-
cally meaningful. Moreover, we emphasize that an investigation of recurrent
event endpoints in the presence of disease-related death is incomplete without
considering in addition an estimand that focuses on disease-related death it-
self. As mentioned before, we consider a world in which only one intercurrent
event can occur (disease-related death) for the purpose of clarity. Other in-
tercurrent events (e.g. treatment discontinuation or disease-unrelated death)
are expected not to occur.

3.2.1.1 Treatment policy estimand A treatment policy estimand would
ignore intercurrent events. However, in our case the intercurrent event is
disease-related death, which cannot be ignored as it makes further recurrent
events impossible. The same issue also occurs for other types of endpoints,
not just for recurrent event endpoints. For example, if the variable is clin-
ical response at one year, then this value does not exist for a patient who
dies earlier. Hence, a treatment policy estimand is not suitable for terminal
intercurrent events, as also indicated in ICH (2017).

3.2.1.2 Composite estimand The composite strategy includes the in-
tercurrent event of disease-related death in the variable definition. There
are various ways how this could be done, and we focus here on one specific
composite estimand for illustration. Alternative estimands falling into this
category are discussed in Section 3.2.1.6.2.

The specific composite estimand considered here may be described as follows:

(A) Population: Defined through appropriate inclusion/exclusion criteria
to reflect the targeted patient population for approval;

(B) Variable: Number of unfavorable events including disease-related mor-
bidity events (e.g. HHF) and disease-related death (e.g. CVD) up to
two years;

(C) Intercurrent events: The intercurrent event of disease-related death is
captured through the variable definition;
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(D) Summary measure: Expected number of unfavorable events at two years;
comparisons between test and control treatment could be based on the
ratio or difference (Section 3.1.1).

By focusing on the unfavorable event count at two years and noting that
no unfavorable events can occur after death, this estimand focuses on the
naive unfavorable event count up to two years. As previously discussed, this
unfavorable event count may be low for two very different reasons, either
because the risk of experiencing the unfavorable events is low or because
the patient has died early and therefore could not experience additional un-
favorable events. The clinical meaningfulness of this estimand is therefore
debatable unless it is complemented with an estimand that focuses on the
time to disease-related death; see Section 3.1.2.

For the variable defined in (B), a death event is implicitly considered to
be equivalent to a disease-related morbidity event. Alternatively, a higher
weight could be given to death. For example, one could define a variable as
the number of disease-related morbidity events (e.g. HHF) up to two years
for patients who do not die within two years, and 24 (equivalent to monthly
hospitalizations) for patients who die within two years. We will not discuss
such alternative options in the following.

A design that targets this specific composite estimand is a randomised paral-
lel group design where patients are followed up for two years or until death.

In general, the same statistical considerations as laid out in Section 3.1.1 also
apply when analyzing the composite estimand above. However, in addition it
is important to acknowledge that patients who die for a disease-related cause
can no longer experience morbidity events thereafter. This can be done by
censoring the patients at the end of two years rather than at time of death.
Methods that target this specific composite estimand include non-parametric
methods (Ghosh and Lin, 2000) and semi-parametric models (Ghosh and Lin,
2002) which make the constant mean ratio assumption. More recently, Mao
and Lin (2016) described how the semi-parametric LWYY proportional mean
model (Appendix A.2.3.1) can be used with censoring at trial end. Of these
models one can be chosen as the main analysis, while others could play a role
in a sensitivity analysis.

3.2.1.3 Hypothetical estimand We define this estimand by asking the
hypothetical question what would have happened had the patient not died
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due to a disease-related cause. The hypothetical estimand shares the same
attribute (A) as the composite estimand. The other attributes are different:

(B) Variable: Number of disease-related morbidity events (e.g. HHF) up
to two years;

(C) Intercurrent events: The hypothetical setting is of interest where the
intercurrent event of disease-related death would not occur;

(D) Summary measure: Expected number of disease-related morbidity events
at two years; comparisons between test and control treatment could be
based on the ratio or difference (Section 3.1.1).

The same design considerations as mentioned for the composite estimand
also apply here.

Estimators for the hypothetical effect can be obtained in a variety of ways,
dependent on the specifics of the assumed latent process after disease-related
death. For certain latent processes, NB (Appendix A.2.2.4) with censoring
at the time of disease-related death can be used. Conceptually, this method
predicts the latent process for a given patient based on a) baseline covariates
included in the model, b) information on the patient’s recurrent event process
prior to disease-related death and c) similar patients that share similar base-
line characteristics and recurrent event data information after randomization.
Alternative choices that consider other latent processes include LWYY (Ap-
pendix A.2.3.1) with censoring at the time of disease-related death. Here the
latent process for a given patient is characterized based on a) baseline covari-
ates included in the model and b) similar patients that share similar baseline
characteristics. In contrast to NB, LWYY does not include information on
the recurrent events that occur after randomization and prior to death in or-
der to inform the latent process. Yet an alternative approach to predict the
latent process is through the use of joint frailty models (Appendix A.2.4.2).
They model the recurrent morbidity and the mortality events simultaneously
while accounting for the correlation between these two event processes. By
linking these two processes, certain assumptions can be captured, e.g. that a
larger cumulative number of morbidity events leads to a higher risk of dying;
see also Cowling et al. (2006) and Liu et al. (2004).

Any of the aforementioned statistical analyses for this estimand will rest
on assumptions about disease-related morbidity events that would have been
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observed under the hypothetical setting where patients had not died due to a
disease-related cause. Generally, the assumptions needed for such predictions
cannot be verified from the observed data.

3.2.1.4 Principal stratum estimand The principal stratum estimand
(Frangakis and Rubin, 2002) shares the same attributes (B) and (D) as the
hypothetical estimand. The population (principal stratum) is defined as
follows:

(A) Population: Defined through patients who would not die due to a disease-
related cause over a period of two years, regardless of treatment assign-
ment, within the targeted population defined by inclusion/exclusion
criteria.

As disease-related deaths do not occur for this principal stratum population,
attribute (C) becomes

(C) Intercurrent events: The intercurrent event of disease-related death is
captured through the population definition.

The principal stratum estimand has a causal interpretation as it refers to the
treatment effect in a subgroup properly defined by intercurrent events. How-
ever, as disease-related morbidity and mortality events are related, focusing
on a population where no patients would die during the trial may often not
be of primary clinical interest.

A statistical analysis for this estimand requires causal inference methods; see
e.g. Imbens and Rubin (2015) and Hernan and Robins (2018). The robust-
ness of conclusions with respect to the underlying assumptions is assessed by
an appropriate sensitivity analysis.

3.2.1.5 While-alive estimand The while-alive or while-on-treatment
estimand focuses on the treatment effect while patients are alive or, in other
words, while the intercurrent event did not occur. This estimand has the
same attribute (A) as the composite estimand. The remaining attributes are
defined as follows:

(B) Variable: Number of disease-related morbidity events (e.g. HHF) while
the patient did not die due to a disease-related cause;

29



(C) Intercurrent events: The intercurrent event of disease-related death is
captured through the variable definition;

(D) Summary measure: Expected number of disease-related morbidity events
divided by the restricted mean survival time (Royston and Parmar,
2011; Uno et al., 2014).

The same design considerations as for the composite estimand can be applied
here.

For the statistical analysis, one could use LWYY (Appendix A.2.3.1) with
censoring at the time of disease-related death, as this estimator would target
the while-alive estimand; see also Section 5.2.2 and Appendix E.3.

3.2.1.6 Additional Considerations

3.2.1.6.1 More than one intercurrent event So far we only consid-
ered one intercurrent event, namely disease-related death. However, in prac-
tice usually more than one intercurrent event needs to be accounted for.
In the case of e.g. CHF trials at least two additional intercurrent events
are worth discussing: non-CVD and treatment discontinuation for various
reasons. Often, non-CVD are considered to be non-informative, e.g. if treat-
ments are likely to have no effect on them. Thus, different strategies can be
plausible and clinically meaningful. In particular the hypothetical, principal
stratum and while-alive strategies appear reasonable in this context. As for
treatment discontinuation, clinical trials in CHF have traditionally focused
on the treatment policy strategy, i.e. the effect of treatment assignment
regardless of study treatment discontinuation; see also Section 3.1.1.

For illustration, we describe two estimands that take into account the three
intercurrent events CVD, non-CVD, and treatment discontinuation. These
two estimands will also be discussed in Sections 4 and 5. The two estimands
differ with respect to the variable of interest (attribute B):

• Estimand 1 (HHF): Number of HHF while the patient is alive;

• Estimand 2 (HHF+CVD): Number of unfavorable events, i.e. number
of HHF and CVD, up to and including the time of death.
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For both estimands, the population (A) is defined by appropriate inclu-
sion/exclusion criteria. In terms of attribute (C), we are interested in the
treatment effect regardless of treatment discontinuation and while patients
are alive, i.e. they did not die due to any cause. Hence, for the intercur-
rent event of treatment discontinuation, a treatment policy strategy is used,
while for CVD and non-CVD, a while-alive strategy is applied. The sum-
mary measure (D) is the event rate while patients are alive which can be
expressed as the expected number of disease-related morbidity events di-
vided by the restricted mean survival time. For comparisons between test
and control treatment, the summary measure becomes the rate ratio and can
be interpreted as

expected number of events per unit time alive in test treatment

expected number of events per unit time alive in control treatment
.

3.2.1.6.2 Other estimands So far we focused on estimands that count
the number of all disease-related morbidity and potentially all disease-related
mortality events. Other estimands could also be considered and can generally
be classified into two categories: a) approaches focusing on a hierarchy of
variables and b) approaches using a weighted composite variable.

The first class of approaches categorizes patients according to their worst
outcome and an agreed hierarchy of variables, e.g. mortality is worse than
hospitalization, which in turn is worse than a certain drop in a quality of life
index. While experience is limited, there are examples where such approaches
were applied CHF trials:

• The score by Packer (2001) categorizes patients according to their clin-
ical course as ‘improved’, ‘unchanged’ or ‘worse’. This was used e.g.
in the REVIVE and RELAX-AHF-Asia trials; see Packer et al. (2013)
and Sato et al. (2017). The odds ratio was used as a summary measure
by comparing the odds of being in a more favorable category when tak-
ing the test treatment relative to the odds of being in a more favorable
category when taking the control treatment.

• Felker et al. (2008) and Subherwal et al. (2012) advocate the use of
global ranking approaches where all patients are ranked from worst
rank to best rank with respect to their clinical experience.
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• Pocock et al. (2011) propose the use of win ratios, either in a matched-
pair or an unmatched approach. The unmatched approach compares
each patient on test treatment with each patient on control treatment
based on hierarchically ordered endpoints, such as CVD and HHF, with
the option to include recurrent HHF. The summary measure of interest
is the win ratio, which in the matched-pair case is the proportions of
winners divided by the proportion of losers in the test treatment group.
In the unmatched case it is the number of pairwise comparisons where
the test treatment wins divided by the number of pairwise comparisons
where the test treatment loses; see also Dong et al. (2016).

• Claggett et al. (2014) propose an ordered categorical outcome derived
from multiple time-to-event outcomes by creating a sequence of nested
composite outcomes. The probability of a patient falling into each
possible category at a fixed follow-up time can then be used as basis
for the intervention effect: the net probability that a treated patient
experiences a better rather than worse categorical outcome compared
to a control patient.

These approaches allow the inclusion of information on changes in symptoms
and functional status in addition to clinical outcomes. In particular, events
with greater clinical importance can be given greater relative weight. Also,
the directional consistency in the components is not crucial as long as every-
one agrees on the chosen hierarchy. The latter is very important and could
be perceived as a limitation of these approaches as different stakeholder (e.g.
patients, clinicians, payers, regulators) may well be interested in different
hierarchies. Additional challenges in using such estimands may arise when
patients have differential follow-up time as this may not be directly captured
in the definition of the variables. For rank-based approaches, communication
and interpretation of the treatment effect may also be challenging. Finally,
experience with such estimands for confirmatory trials is limited and trial
designs may become challenging. For example, there may be lack of histori-
cal data to inform the sample size assessment (e.g. baseline rates, correlation
between the components, minimum clinically relevant difference).

The second class of approaches uses a weighted composite approach and
allows for the inclusion of multiple events while accounting for the relative
importance of the individual components through the choice of adequate,
perhaps subjective, weights. Estimands that fit into this category have been
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used in the past (Taylor et al., 2004; Sampson et al., 2010). However, they
sometimes result in estimates that are difficult to interpret; see Taylor et al.
(2004). Most importantly, the choice of weights requires agreement of all
relevant stakeholders. In the context of CHF, Anker et al. (2016) note that
the use of such approaches is “limited by the lack of consensus on the relative
weighting of events and inconsistency across trials.” A popular approach
that fits into this category is based on the days alive and out of hospital
and the weighted version of symptom-adjusted days alive and out of hospital
(Cleland, 2002). Note that any endpoint incorporating a function of days
in the hospital is subject to influences beyond just a patient’s condition, as
hospital reimbursement policies and local medical practices differ around the
world and introduce heterogeneity that may inhibit the ability to detect a
treatment effect. An example of this was observed by Pfeffer et al. (2015)
in the TOPCAT trial. This issue of regional differences may be addressed,
partly if not entirely, by stratification, as long as the treatment differences
across strata are not too different to be interpretable.

Alternative approaches to define estimands that do not fall into either of the
two classes above may also be valuable. For example, an approach inspired
by multi-state survival data methods is to consider the integrated hazards
instead of the event counts. In the absence of terminal events, the inte-
grated hazards will agree with the mean number of events, as explained in
Appendix A.2.4. In the presence of terminal events, the two quantities do
not agree. The mean number of events will be smaller reflecting that patients
who died can no longer experience any event. This may make a treatment
with high mortality appear better than it deserves. Using the integrated haz-
ard as the target of estimation will avoid such effects. It would be calculated
for each treatment so that it can be compared as a measure of the treatment
effect.

Utility-based methods are yet another alternative, which seem particularly
useful if utilities can be assigned to different life history paths. With a utility-
based approach one may not need to distinguish between different causes of
death (e.g. disease- or morbidity-related or not) as the utility would be e.g.
0 for days after death from any cause, 1 for living at perfect health and
some lower value for each day in which they are suffering from a morbidity-
related symptom. This could be viewed as a generalization of the idea of
quality-adjusted life years used in economic evaluations.
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3.2.2 Time-to-first-event endpoints

In Section 3.2.1 we discussed recurrent event endpoints subject to a compet-
ing terminal event. While many clinical trials collect such information, they
often only report the results focussing on the first event, e.g. the first mor-
bidity event. In such cases, disease-related and disease-unrelated deaths are
competing terminal events. In principle, the same estimands and considera-
tions as discussed in Section 3.2.1 also apply for time-to-first-event endpoints
subject to competing terminal events.

While the focus of this request is not on time-to-first-event endpoints, we
discuss some related aspects in Appendix B as it may benefit the discussion
around competing risk approaches for time-to-first-event endpoints. We fo-
cus on the case where interest lies in the time to the disease-related death,
e.g. CVD, and where disease-unrelated death is a competing terminal event.
All considerations can be applied to the case where morbidity events or a
composite event are of main interest and subject to terminal events, e.g.
disease-related or unrelated deaths.

Note that for only two recurrent event processes the estimand for a recurrent
event analysis is the same as for a time-to-first-event analysis: a) a Poisson
model with a proportional rate function, if appropriate, and b) a renewal
model with proportional hazards for the times between events, if appropriate.
In both cases it is assumed that there is no between-patient heterogeneity.
These are extreme settings so that in general a time-to-first-event analysis
will target a different estimand than a recurrent event analysis.

4 Case studies

In this section we discuss estimands and analysis methods for two case stud-
ies. The first one involves the acyclovir trial in RRMS while the second one
is based on the ValHeft trial in CHF.

4.1 Relapsing-remitting multiple sclerosis

Lycke et al. (1996) investigated the effect of an antiviral drug, acyclovir, in pa-
tients with RRMS. This was a randomized, placebo-controlled, double-blind
clinical trial, where 60 RRMS patients were randomly assigned to test treat-
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ment (acyclovir at 800mg, three times daily) or placebo, and then followed
for two years. A non-parametric test was used to compare the two groups
with respect to relapses. The estimand of main interest was not clearly spec-
ified, in particular regarding the summary measure. For our discussion here
we focus on the intercurrent event of treatment discontinuation.

4.1.1 Estimands

We consider two hypothetical estimands, which differ with respect to the
variable of interest (attribute B) and the summary measure (attribute D).

• Time-to-first-relapse estimand: Suppose we are only interested in the
first relapse for each patient, and disregard any following relapses.
Time-to-first-relapse up to two years is then the variable of interest (at-
tribute B). The hazard ratio (HR) of a Cox proportional hazards model
is used as a summary measure (attribute D), but see Section 3.1.2 for
a discussion on the limitations of the HR.

• Number-of-relapses estimand: The variable of interest (attribute B)
reflecting disease activity is the number of relapses in the first two
years. An interpretable summary measure (attribute D) is the ratio

mean number of relapses in test treatment

mean number of relapses in placebo
.

For both estimands, the population (attribute A) is defined by the inclu-
sion/exclusion criteria given in Lycke et al. (1996). We are interested in
the hypothetical estimands (Section 3.1.1.2) where the intercurrent event of
treatment discontinuation would not occur and patients continue their treat-
ment until the end of two years (attribute C).

4.1.2 Analysis

For the hypothetical estimands considered here, relapse data after treatment
discontinuation are irrelevant and therefore not included in any analysis,
i.e. patients are censored at treatment discontinuation. Missing information
for patients that discontinue early from the trial or treatment are implicitly
imputed based on the analysis methods discussed below; see Appendix A.1.4
for further discussion.
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Figure 2: Relapse data for RRMS patients randomized to test (T) treatment
or placebo (P). Each horizontal line corresponds to one patient with relapses
indicated by dots. Two patients on T were lost to follow-up after four and
six months, respectively. One patient on T discontinued treatment after nine
months, but was followed-up for two years (dashed line).
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For the time-to-first-relapse estimand, a Cox proportional hazards model is
used to estimate the HR. A Wald test based on this model may be used for
significance testing.

For the number-of-relapses estimand, NB is used for estimation and infer-
ence. The model includes log(duration on treatment) as offset variable. NB
provides a consistent estimate for this estimand if the model assumptions
(e.g. constant relapse rates) are appropriate (Appendix A.2.2.4). A Wald
test based on NB may be used for significance testing. LWYY could be used
as a sensitivity analysis as it also targets the number-of-relapses estimand,
but under different assumptions. Other methods such as WLW or PWP can
be used for supplementary analyses but would not be appropriate as sensi-
tivity analyses, as these are not targeting the number-of-relapses estimand.
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Figure 3: Expected number of relapses for test (T) treatment and placebo (P)
against follow-up time: non-parametric Nelson-Aalen estimate (solid lines),
and estimate assuming constant relapse rates (dashed lines).
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4.1.3 Results

The relapse data of the acyclovir trial were manually extracted from Figure 1
in Lycke et al. (1996), and may slightly differ from the original data. Figure 2
shows relapse times for each patient in the clinical trial. Most patients (57
of 60) stayed on their randomized treatment for the planned duration of two
years. Two patients on test treatment discontinued treatment after four and
six months, respectively, and were not followed-up (censored). One patient
on test treatment discontinued treatment after nine months, but was followed
for two years. For this patient, relapse data after nine months were removed
for the analysis (censored), in alignment with the hypothetical estimands.

Figure 3 shows the Nelson-Aalen estimate (Cook and Lawless, 2007) of the
expected number of relapses against follow-up time, suggesting roughly con-
stant relapse rates over time. Hence, both NB and LWYY seem appropriate
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Table 2: Summary of analysis methods (RR: hazard or rate ratio; LCIL:
lower 95% confidence interval limit; UCIL: upper 95% confidence interval
limit). For the time-to-first-relapse estimand, Cox is the main analysis. For
the number-of-relapses estimand, NB is the main analysis, with LWYY as a
sensitivity analysis. WLW or PWP can be used as supplementary analyses.

Method Estimand RR LCIL UCIL p-value
Cox time-to-first-relapse 0.90 0.51 1.58 0.705

NB number-of-relapses 0.67 0.43 1.05 0.082
LWYY number-of-relapses 0.68 0.45 1.02 0.060

WLW - 0.65 0.44 0.96 0.030
PWP - 0.72 0.53 0.97 0.034

in terms of model assumptions (LWYY would also allow for non-constant
relapse rates).

Table 2 summarizes the analysis results. For the time-to-first-relapse esti-
mand, the Cox model estimates the hazard ratio as 0.90, which is far from
being statistically significant. For the number-of-relapses estimand, NB es-
timates the relapse rate ratio as 0.67. This is very similar to the estimate
of 0.68 obtained by LWYY. The method of moments estimate of the relapse
rates within a treatment group is obtained by dividing the total number of
relapses by the total follow-up time. Thus, in the placebo group, the 30
patients had 94 relapses with a total follow-up time of 60 = 2 × 30 years
so that ARR = 94/60 = 1.57, i.e. patients have on average 1.57 relapses
per year. In the test treatment group, 59 relapses were observed in a total
follow-up of 2 × 27 + (4 + 6 + 9)/12 = 55.6 years (ARR = 59/55.6 = 1.06).
The ratio of these ARR is 0.68 and coincides with the LWYY estimate. Al-
though a relapse rate ratio of less than 0.70 could be clinically relevant, the
treatment effect estimate is quite uncertain. The treatment effect in both
NB and LWYY are not statistically significant.

As seen in Table 2, we obtain a much smaller treatment effect estimate
for the time-to-first-relapse estimand than for the number-of-relapses esti-
mand. This may be expected and is due to a selection effect; see (17) in Ap-
pendix A.2.2 and the corresponding discussions in Appendices A.1.5 and C.
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4.1.4 Discussion

In this case study, the number-of-relapses estimand seems more appropriate
to reflect the disease burden and also more sensitive to assess the treat-
ment effect compared to the time-to-first-relapse estimand. In contrast, the
time-to-first-relapse estimand ignores valuable information, and also has con-
ceptual drawbacks (Appendix C).

We considered only hypothetical estimands in this case study. An alterna-
tive would be to use the treatment policy estimand (Section 3.1.1.1) where
the effect regardless of treatment discontinuation is of interest. This es-
timand would require follow-up of all patients for two years regardless of
treatment discontinuation. Patients who are lost to follow-up create a miss-
ing data problem and subsequent statistical analyses need to make untestable
assumptions. These assumptions should be in line with the treatment policy
estimand (NRC, 2010; Carpenter et al., 2013).

4.2 Chronic heart failure

The second case study is the ValHeft randomized trial of the angiotensin-
receptor blocker valsartan in CHF (Cohn et al., 2001). This was a parallel
group, placebo-controlled, double blind clinical trial with 5010 patients suf-
fering from CHF of New York Heart Association (NYHA) class II, III or IV
being randomly assigned to receive test treatment valsartan or placebo in a
1:1 ratio. The trial was designed with two primary endpoints: time to all-
cause mortality and time to a combined endpoint of mortality and morbidity,
defined as the incidence of cardiac arrest with resuscitation, HHF or receipt
of intravenous inotropic or vasodilator therapy for at least four hours.

The trial results showed that overall mortality was similar in the two groups.
The risk of the combined endpoint, however, was 13.2% lower with test treat-
ment than with placebo (HR = 0.87; 97.5% confidence interval [0.77, 0.97];
p-value: 0.009), predominantly because of a lower number of patients hospi-
talized for HF: 455 (18.2%) on placebo and 346 (13.8%) on test treatment
(p-value < 0.001). The comparison of both endpoints between test treatment
and placebo was performed using a log-rank test.

All original analyses ignored the recurrent HHF occurring after the first event.
When reanalyzing this example in the following, we assess different estimands
that incorporate information on the recurrent HHF.
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4.2.1 Estimands

For the definition of estimands that incorporate information on recurrent
HHF we need to account for three intercurrent events: CVD, non-CVD and
treatment discontinuation. We consider two estimands which differ with
respect to the variable of interest (attribute B):

• Estimand 1 (HHF): Number of HHF while the patient is alive;

• Estimand 2 (HHF+CVD): Number of unfavorable events, i.e. number
of HHF or CVD, up to and including the time of death.

These two estimands differ in that Estimand 2 counts CVD as an additional
event for the variable of interest; see also Section 3.2.1.6.1.

For both estimands, the population (attribute A) is defined by the inclu-
sion/exclusion criteria given in Cohn et al. (2001). In terms of attribute (C),
we are interested in the treatment effect regardless of treatment discontin-
uation (treatment policy strategy) and while patients are alive (while-alive
strategy), i.e. they did not die from any cause. The summary measure (D)
is the rate ratio

expected number of events per unit time alive in test treatment

expected number of events per unit time alive in placebo
.

4.2.2 Analysis

Various estimators are available for both estimands, dependent on the ad-
justment for the competing event of death which stops the recurrent event
data process. LWYY (Appendix A.2.3.1) targets the two estimands of inter-
est and may be used as the main analysis. NB with termination at the time
of death could be considered as well. Conceptually, NB attempts to weight
patients in both arms based on their likelihood to die. That is, patients with
a larger chance to die early are upweighted relative to patients with a low
probability to die during the trial. The weighting is based on both baseline
covariates and information on the patient’s recurrent event process prior to
death. This is different from LWYY where the weighting is based only on
baseline covariates. Finally, joint frailty models (JFM, Appendix A.2.2.4)
could be considered as they model the recurrent morbidity and the mortal-
ity events simultaneously while accounting for the association between these
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Table 3: Summary of number of HHF and CVD.

Number of HHF
Placebo Test Treatment Total
NP = 2499 NT = 2511 NTOT = 5010

0 1878 (75.15%) 1974 (78.61%) 3852 (76.89 %)
1 344 (13.77%) 317 (12.62%) 661 (13.19 %)
2 146 (5.84%) 130 (5.18%) 276 (5.51 %)
3 56 (2.24%) 51 (2.03%) 107 (2.14 %)
4 36 (1.44%) 19 (0.76%) 55 (1.10 %)
5 21 (0.84%) 13 (0.52%) 34 (0.68 %)
6 5 (0.20%) 3 (0.12%) 8 (0.16 %)
7 6 (0.24%) 1 (0.04%) 7 (0.14 %)
8 3 (0.12%) 2 (0.08%) 5 (0.10 %)
9 2 (0.08%) 0 (0.00%) 2 (0.04 %)
10 1 (0.04%) 1 (0.04%) 2 (0.04 %)
12 1 (0.04%) 0 (0.00%) 1 (0.02 %)

Number of HHF 1189 922 2111
Number of CVD 419 427 846

Number of HHF or CVD 1608 1349 2957

two event processes. By linking the two processes, assumptions such as ‘the
higher your risk of experiencing morbidity events the higher your risk of
dying’ can be captured.

In the following we apply LWYY and NB to both estimands. In practice,
LWYY may be chosen as the main analysis while NB could be a sensitivity
analysis, or vice versa. We also use different JFM for Estimand 1, which in
practice could serve as sensitivity analyses. The JFM differ in their assump-
tions with regard to

• the distribution of the random effect linking the recurrent event data
and the survival processes (gamma versus lognormal distribution);

• the parametric form of the link between both processes. Either the
same frailty term Z is used for both processes, or the processes use
modified versions of the frailty term, i.e. we include Z for the recurrent
event data process and Zα for the death process; the parameter α is
also estimated.
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Figure 4: Expected number of HHF events for test (T) treatment and placebo
(P) against follow-up time: non-parametric Nelson-Aalen estimate (solid
lines); dashed lines are added as a visual aid to judge deviations from linear-
ity.
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4.2.3 Results

We start with descriptive statistics and the traditional analyses for this type
of data before moving to the estimation of Estimand 1 and Estimand 2.

A tabulation of the number of HHF observed in the ValHeft trial is shown
in Table 3. From this table we can see that about 10% of patients had
more than one HHF with one patient suffering 12 HHF. The total number of
HHF is 2111 while the number of unfavorable events, i.e. HHF and CVD, is
2957. Counting only the number of first composite event of HHF and CVD
amounts to 1618, so about half of the number of unfavorable events. The
overall mean duration of follow-up in the ValHeft trial was 23 months with
follow-up times ranging from 0 to 38 months.

In Figure 4 we display the mean cumulative function of HHF. We can see that
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Figure 5: Kaplan-Meier estimate for time-to-CVD, for test (T) treatment
and placebo (P).
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more HHF occurred in the placebo group and that the rate of recurrent HHF
appears to be roughly linear over time for both treatments. After 600 days of
follow-up we observe an average of approximately 0.3 and 0.4 recurrent HHF
per patient for test treatment and placebo, respectively. While these descrip-
tive analyses suggest a reduction in recurrent HHF for the test treatment, as
compared to placebo, this is not the case when focusing on CVD. Figure 5
shows the estimated survival functions for test treatment and placebo, re-
spectively. The Kaplan-Meier curves overlap and likewise the corresponding
log-rank test fails to show a significant difference (p-value: 0.8565). The
Kaplan-Meier curves for the time to the first composite event of HHF and
CVD shown in Figure 6, however, reveal a separation which is also confirmed
by the log-rank test (p-value: 0.0233). Note that Kaplan-Meier curves are
difficult to interpret in the context of competing risks (Appendix A.3.5).

Next we estimate the estimands laid out in Section 4.2.1. The results are
shown in Table 4. All analyses considered for Estimand 1 reveal that test
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Figure 6: Kaplan-Meier estimate for the time to the first composite event of
HHF and CVD, for test (T) treatment and placebo (P).
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treatment is superior to placebo in reducing the expected number of HHF per
unit time while alive. The rate ratio is estimated to be approximately 0.77,
i.e. the expected number of HHF per unit time in the test treatment group
is reduced by 23% compared to the HHF rate per unit time in the placebo
group. The different assumptions on the competing event process of death
and the different assumptions on the relation between the recurrent HHF
and death processes have negligible impact on the estimated effect size and
the inference. Turning to Estimand 2, we observe a dilution of the treatment
effect resulting in an event rate reduction of only 17%. This dilution was
to be expected as no treatment effect was observed for all cause mortality.
Including CVD in a composite variable as done for Estimand 2 thus leads to
a dilution of the effect seen on HHF alone.

In addition, we also apply the unmatched win ratio approach from Dong
et al. (2016). This approach compares each patient on test treatment with
each patient on placebo based on hierarchically ordered endpoints:
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Table 4: Summary of analysis methods (RR: rate ratio; LCIL: lower 95%
confidence interval limit; UCIL: upper 95% confidence interval limit) for
Estimand 1 (HHF) and Estimand 2 (HHF+CVD). Maximum likelihood es-
timates for α were 1 for JFM2 and JFM4

Method Estimand RR LCIL UCIL p-value
LWYY 1 0.771 0.68 0.88 0.0001
NB 1 0.763 0.65 0.88 0.0003
JFM 1 (gamma frailty Z) 1 0.770 0.66 0.88 0.0004
JFM 2 (gamma frailty Zα) 1 0.770 0.66 0.88 0.0005
JFM 3 (lognormal frailty Z) 1 0.771 0.66 0.88 0.0006
JFM 4 (lognormal frailty Zα) 1 0.765 0.65 0.88 0.0007

LWYY 2 0.834 0.75 0.93 0.0016
NB 2 0.834 0.72 0.95 0.0084

1. CVD: the patient who lives longer wins;

2. HHF: If tied on CVD, then compare the rate of HHF, i.e. the number
of HHF divided by the time on trial (until death or censoring due to
trial end). The patient with the smaller rate wins.

Applying this approach to the ValHeft trial results in a win ratio of 1.13,
95% confidence interval [1.03, 1.24] and a p-value of 0.0101 in favor of the
test treatment.

4.2.4 Discussion

Traditional endpoints widely used in CHF trials do not include all relevant
information on recurrent HHF and CVD. The missed opportunities with such
approaches were discussed in Section 2. For the ValHeft trial, we presented
descriptive statistics for the recurrent HHF and the CVD data. In addi-
tion, we looked at two estimands which differ in their variable definition. In
terms of the intercurrent events, we focused on the treatment policy strategy
for treatment discontinuations and on a while-alive strategy for all causes of
death. We estimated these estimands using both LWYY and NB. Other anal-
ysis methods (JFM, win ratio) could be considered as sensitivity analyses.
Alternative estimands as described in Section 3.2 could also be of value.
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5 Efficiency comparison of recurrent event and

time-to-first-event estimands

In this section we compare the efficiency of time-to-first-event and recurrent
event analyses for commonly used estimands described in Section 3. We also
assess the relative performance of various statistical methods for recurrent
event data and discuss advantages and limitations on their use in practice.

We report the results of a comprehensive simulation study covering a wide
range of practical scenarios to allow a direct quantitative comparison of the
described methods, under the same conditions and using the same perfor-
mance metrics. First, we consider settings where terminal events such as
death are rare, e.g. in RRMS trials. Second, we investigate settings where
terminal events are more common, e.g. in CHF trials with death as a terminal
event.

We describe the simulation studies for each of these two settings (without and
with terminal events) following the same outline: a) design of the simulation
study, including its assumptions and scenarios; b) performance metrics (mean
treatment effect, type I error, power) used to evaluate the statistical operat-
ing characteristics of each method; c) summary of the statistical performance
of the methods, based on the simulation results; and d) conclusions.

Appendix C summarizes relevant published literature. Appendices D and E
provide further technical details and results from additional simulations.

5.1 Settings without terminal event

In this section we consider clinical settings with recurrent event endpoints
and where terminal events such as death are rare. The following simulations
are motivated by clinical trials in patients with RRMS, where a reduction
of relapses is of interest. More specifically, we simulate clinical trials to
compare test against control treatment, where patients are followed for two
years. Patients may discontinue their study treatment during the trial, and
the intercurrent event of treatment discontinuation may be either indepen-
dent of the recurrent events (non-informative treatment discontinuation) or
dependent on the recurrent events (informative treatment discontinuation);
see also Appendix A.1.4.
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Estimands In Section 3.1 we discussed two commonly used estimands for
recurrent event endpoints without terminal events, namely the treatment
policy estimand and the hypothetical estimand. Considering these two esti-
mands for each of the two types of study treatment discontinuation described
above, we investigate the following four scenarios:

• Scenario 1: Hypothetical estimand; non-informative discontinuation,

• Scenario 2: Hypothetical estimand; informative discontinuation,

• Scenario 3: Treatment policy estimand; non-informative discontinua-
tion,

• Scenario 4: Treatment policy estimand; informative discontinuation.

Analysis methods Analysis methods should ideally be chosen such that they
target the estimand of interest. In the following we investigate four com-
monly used statistical analysis methods for recurrent event data (NB, LWYY,
WLW, PWP), together with a time-to-first-event analysis (Cox model). We
discuss in particular which estimand each analysis method is targeting and
evaluate their operating characteristics in Section 5.1.3.

5.1.1 Design of simulation study

5.1.1.1 Primary endpoint, treatment effect and sample size The
average number of relapses per year (i.e. the ARR) is a frequently used
primary endpoint in RRMS trials. Following typical rates seen in RRMS
trials, we set the baseline recurrent event rate λ0 = 0.5, 1.5, corresponding to
an active and a highly active disease population, respectively. We simulate
recurrent events for a two-armed randomized controlled clinical trial with a
planned fixed follow-up time of T = 2 years for each patient. We evaluate the
performance of various analysis methods under varied sample size (50 to 250
patients per group, by 50) with fixed treatment effect size RR = 0.65, where
the treatment effect RR is defined as the ratio of ARR in the test treatment
over the control treatment.

5.1.1.2 Event-generating process For each patient, we generate re-
current event data under a homogeneous Poisson process. In RRMS, relapse
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rates tend to be different between patients. We account for this overdisper-
sion by including a patient-specific frailty factor which varies according to
a gamma distribution with shape parameter 1/θ and rate parameter 1/θ,
having mean 1 and variance θ. The dispersion parameter θ measures the ex-
tent of heterogeneity in event rates among patients. We set θ = 0.25, 0.5, 1,
where larger values of θ correspond to larger between-patient variations with
respect to relapse rates. The mixing of a homogeneous Poisson process with a
gamma frailty gives a NB process which is often used to model overdispersed
recurrent events. In additional simulations, we also generate recurrent event
data under a non-homogeneous Poisson process. The inclusion of these simu-
lations is motivated by time trends observed in clinical trials (Nicholas et al.,
2011) and we choose a log-linear baseline intensity function to model the
relapses. More details are given in Appendix D.1.

5.1.1.3 Treatment discontinuation process For the scenarios with
non-informative treatment discontinuation, time to treatment discontinua-
tion can be simulated independent of the recurrent event process. For sce-
narios with informative treatment discontinuation, a JFM is used to link
treatment discontinuation with the recurrent event process such that pa-
tients with higher event rates are more likely to discontinue treatment. After
treatment discontinuation, we continue to follow-up all patients. Each pa-
tient is observed until the trial end so that we do not assume any missing data
in the simulation study. The event rate of the control treatment is assumed
to be the same before and after discontinuation. However, the event rate for
the test treatment is assumed to change to the control rate after treatment
discontinuation. More details are given in Appendix D.2.

In total, we cover 480 different settings in the simulations, corresponding to
the factorial combinations of baseline event rates (λ0 = 0.5, 1.5), treatment
effect size (RR = 0.65, 1), sample size per group (n = 50 to 250 by 50),
frailty (dispersion parameter θ = 0.25, 0.5, 1), event-generation process (ho-
mogeneous and non-homogeneous Poisson), treatment discontinuation (non-
informative, informative) and estimand (hypothetical, treatment policy).

5.1.2 Measuring performance of methods

The performance of the various statistical methods is evaluated based on
10’000 simulated clinical trials. The following metrics are used.
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1. Mean of estimated treatment effects. The mean estimate for the Cox
model is the hazard ratio. The mean estimate for NB and LWYY is the
rate ratio. For WLW and PWP, we compute both the event-specific
estimates up to event 4 and the overall estimates of the treatment
effect. The event-specific treatment effects are estimated by fitting
the marginal and the conditional stratified Cox model for WLW and
PWP, respectively. The overall treatment effect is estimated by fitting
the stratified Cox model with the treatment parameter constrained to
be equal across strata (Therneau and Grambsch, 2000). We denote
the mean estimates by ‘RR’ for all five approaches when reporting the
simulation results below.

2. Type I error of the two-sided Wald test at a significance level of α = 5%.
The (strict) null hypothesis corresponds to an identical data generation
process for both treatment and control group.

3. Power of the Wald test to show a significant treatment effect. The alter-
native is implicitly defined by the specific setting under consideration.

5.1.3 Simulation results

In the following we summarize the results of the simulation study using the
performance metrics of Section 5.1.2. Because of the large number of simula-
tions results, we show here only the results for the base case settings covering
the homogeneous Poisson process with 50, 150, 250 patients per group and
dispersion parameter θ = 0.25. We include tables and plots for these base
case settings to illustrate the key findings. The simulations results for the
other settings are generally in line with the ones shown here. The complete
output can be found in a separate document (Akacha et al., 2017).

5.1.3.1 Mean estimate of treatment effects

5.1.3.1.1 Estimand value For each of the four Scenarios 1 − 4 intro-
duced above, the estimand has a true numerical value. This value is unknown
in actual trials, but can be calculated analytically for our simulation study;
see Appendix D.3 for the derivations. The second column in Table 5 shows
the four numerical estimand values, thus providing a reference for compari-
son. We can make the following observations.
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Table 5: Settings without terminal event (Estimand vs Estimate): Numer-
ical values of hypothetical estimand and treatment policy estimand under
four scenarios. The ratio of the target of estimation (Estimate) for each of
the five analysis methods over the corresponding estimand value (Estimand)
is also shown. ‘Estimand’ values are calculated analytically, ‘Estimate’ val-
ues are calculated based on a simulated data set with 100’000 patients with
RR = 0.65, θ = 0.25, and λ0 = 0.5, 1.5. Estimate/Estimand values larger
(smaller) than 1 correspond to overestimation (underestimation).

Estimand value Estimate/Estimand
Method λ0 = 0.5 λ0 = 1.5

Scenario 1: Non-informative 0.65 Cox 1.023 1.055

(Hypothetical) NB 0.995 0.994
LWYY 0.995 0.994
WLW 0.886 0.895
PWP 1.032 1.075

Scenario 2: Informative 0.65 Cox 1.043 1.071

(Hypothetical) NB 1.017 1.009
LWYY 1.020 1.014
WLW 0.922 0.912
PWP 1.051 1.082

Scenario 3: Non-informative 0.685 Cox 1.013 1.029

(Treatment policy) NB 0.996 0.993
LWYY 0.999 1.000
WLW 0.892 0.893
PWP 1.032 1.067

Scenario 4: Informative 0.7002 Cox 1.000 1.007

(Treatment policy) NB 1.001 0.995
LWYY 1.005 1.014
WLW 0.894 0.887
PWP 1.034 1.055

• The numerical value for the treatment policy estimand with informa-
tive treatment discontinuation is closer to 1 than with non-informative
treatment discontinuation. This is expected because patients with
higher frailty and hence more events have their treatment stopped ear-
lier due to the dependence. This reduces the apparent treatment effect,
moving it closer to 1. This is also seen from the analytic formula for
Scenario 4 (Appendix D.3) where larger values of the dispersion pa-
rameter θ lead to estimand values closer to 1.

• The numerical value for the hypothetical estimands is 0.65 regardless of
the type of treatment discontinuation because these estimands measure
the effect as if the treatment had continued.
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• The numerical values for the treatment policy estimands are closer to 1
than for the hypothetical estimands because the effect is diluted under
treatment policy. More specifically, all patients are followed until the
end of trial and some of the patients on test treatment, who discontinue
their medication, then behave like patients on control.

5.1.3.1.2 Target of estimation for analysis methods In our simu-
lation study we consider one time-to-first-event analysis method (Cox) and
four recurrent event analysis methods (NB, LWYY, WLW, PWP). The tar-
get of estimation for these methods is the treatment effect estimate, i.e. the
hazard ratio (Cox) or the rate ratio (NB, LWYY, WLW, PWP), obtained
from a very large (infinite) number of patients. We approximate this value by
simulating a single trial with 100’000 patients in total. The third column in
Table 5 shows the ratio of the target of estimation (‘Estimate’) over the corre-
sponding estimand value (‘Estimand’) for each of the four scenarios and five
analysis methods. A ratio Estimate/Estimand close to 1 suggests that the
analysis method targets that estimand. A ratio Estimate/Estimand larger
(smaller) than 1 suggests that the analysis method underestimates (overes-
timates) the treatment effect. The results in Table 5 can be interpreted as
follows.

• NB and LWYY give consistent mean effects for the treatment policy
estimand (Scenarios 3 and 4) since they exactly target the treatment
effect defined as ratio of mean event rate for test treatment over control
treatment under a fixed follow-up time. Thus, both NB and LWYY
can be considered as suitable analysis methods for the treatment policy
estimand.

• For the hypothetical estimand with non-informative treatment discon-
tinuation (Scenario 1), both NB and LWYY give again consistent mean
effects and therefore can be considered as suitable analysis methods.

• LWYY is misspecified under informative treatment discontinuation with
the hypothetical estimand (Scenario 2) since its model assumption of
independent censoring is violated. Hence it gives an inconsistent esti-
mate under Scenario 2 and the difference from the numerical estimand
value will increase as the variance of the frailty term increases; see also
the complete results in Akacha et al. (2017). NB is also not a correct
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model under this scenario, and its performance depends on the in-
formative treatment discontinuation process. However, the difference
from the numerical estimand value will typically be smaller than for
LWYY under a Poisson-gamma process, especially when the variance
of the frailty term is large. One may argue that the treatment effect is
typically diluted under plausible informative censoring mechanisms (as
seen in the simulations), so that both NB and LWYY could be used as
conservative analysis methods.

• WLW and PWP are not appropriate since their target values are dif-
ferent from the estimand values, i.e. they give inconsistent estimates
under all scenarios. PWP systematically underestimates the treatment
effect, while WLW systematically overestimates it.

• The Cox model underestimates the treatment effect for Scenarios 1, 2
and 3, but not for Scenario 4.

5.1.3.1.3 Mean estimates for typical sample sizes Table 6 presents
the treatment effect estimates (i.e. hazard ratios or rate ratios) based on
10’000 simulated trials for the five statistical approaches under the four Sce-
narios 1 − 4, with varying sample sizes per group and all other parameters
being the same as in Table 5. In particular, the true estimand values under
the four scenarios are the same as given in Table 5. For WLW and PWP, only
the overall estimates are presented; see Appendix D.4 for the event-specific
treatment effect estimates. The Monte Carlo standard error of the 10’000
simulations is about 0.0046. Thus, the asymptotic 95% confidence interval
for e.g. RR = 0.65 is (0.641, 0.659).

Differences in means seen in Table 6 are mainly driven by differences between
the underlying estimands as given in Table 5. Hence, analysis methods tar-
geting different estimands should be compared with caution. Note that the
true estimand value rather than the treatment effect parameter value used in
the simulations (RR = 0.65) is the appropriate reference. It seems that NB
and LWYY converge to the true estimand value for large n (e.g. n ≥ 150),
but none of the other methods, which again verifies the findings in Table 5.

Table 7 presents the treatment effect estimates when there is no treatment
effect (RR = 1) for a baseline recurrent event rate λ0 = 0.5 and dispersion
parameter θ = 0.25. Again, only the overall estimates are presented here for
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Table 6: Settings without terminal event: Mean treatment effect estimates
under four scenarios based on 10’000 clinical trial simulations, RR = 0.65,
θ = 0.25, λ0 = 0.5, 1.5.

λ0 = 0.5 λ0 = 1.5
Method n = 50 n = 150 n = 250 n = 50 n = 150 n = 250

Scenario 1: Non-informative Cox 0.7 0.68 0.675 0.705 0.694 0.692

(Hypothetical) NB 0.672 0.656 0.653 0.657 0.652 0.652
Estimand value: 0.65 LWYY 0.671 0.656 0.653 0.657 0.652 0.652

WLW 0.615 0.591 0.586 0.602 0.591 0.59
PWP 0.69 0.678 0.676 0.704 0.701 0.702

Scenario 2: Informative Cox 0.705 0.687 0.681 0.709 0.698 0.696

(Hypothetical) NB 0.679 0.666 0.661 0.665 0.659 0.658
Estimand value: 0.65 LWYY 0.681 0.668 0.663 0.668 0.663 0.661

WLW 0.628 0.607 0.599 0.609 0.597 0.594
PWP 0.697 0.687 0.682 0.709 0.706 0.705

Scenario 3: Non-informative Cox 0.726 0.708 0.703 0.723 0.713 0.711

(Treatment policy) NB 0.705 0.691 0.688 0.692 0.687 0.686
Estimand value: 0.685 LWYY 0.706 0.692 0.689 0.695 0.69 0.691

WLW 0.646 0.624 0.619 0.631 0.62 0.619
PWP 0.724 0.713 0.711 0.736 0.733 0.734

Scenario 4: Informative Cox 0.729 0.713 0.709 0.724 0.714 0.712

(Treatment policy) NB 0.718 0.706 0.702 0.707 0.702 0.701
Estimand value: 0.7002 LWYY 0.721 0.709 0.706 0.717 0.714 0.714

WLW 0.658 0.638 0.633 0.64 0.63 0.627
PWP 0.737 0.729 0.726 0.746 0.744 0.743

WLW and PWP. All five approaches give hazard and rate ratio estimates
close to 1 under all scenarios (actually the estimates are slightly above 1 in
all cases being investigated).

5.1.3.2 Type I error rate Table 7 also includes the type I error rates
when there is no treatment effect (RR = 1). All methods control the type
I error rate at the significance level α = 0.05 within the simulation error
for moderate to large sample size under all four scenarios. For small sample
sizes (n = 50) we note a moderate type I error rate inflation when using the
two-sided Wald test, except for the Cox model which seems to control the
type I error rate throughout.

5.1.3.3 Power Figure 7 presents the power of the five statistical ap-
proaches for different sample sizes under the same four scenarios and pa-
rameter configurations as in Tables 5 and 6.
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Table 7: Settings without terminal event: Mean treatment effect estimates
and type I error rate under four scenarios based on 10’000 clinical trial sim-
ulations, RR = 1, θ = 0.25, λ0 = 0.5.

n = 50 n = 150 n = 250
Method RR Type I error RR Type I error RR Type I error

Scenario 1: Non-informative Cox 1.036 0.047 1.013 0.048 1.007 0.047

(Hypothetical) NB 1.028 0.054 1.008 0.053 1.005 0.049
LWYY 1.029 0.058 1.008 0.053 1.005 0.049
WLW 1.051 0.056 1.016 0.052 1.009 0.05
PWP 1.024 0.055 1.007 0.053 1.004 0.049

Scenario 2: Informative Cox 1.052 0.047 1.009 0.061 1.007 0.045

(Hypothetical) NB 1.043 0.067 1.008 0.054 1.005 0.051
LWYY 1.043 0.069 1.008 0.056 1.005 0.052
WLW 1.073 0.066 1.014 0.057 1.009 0.046
PWP 1.036 0.066 1.006 0.058 1.004 0.051

Scenario 3: Non-informative Cox 1.032 0.048 1.012 0.05 1.006 0.046

(Treatment policy) NB 1.026 0.053 1.008 0.056 1.004 0.048
LWYY 1.026 0.055 1.008 0.056 1.004 0.047
WLW 1.046 0.054 1.015 0.051 1.008 0.048
PWP 1.022 0.054 1.006 0.055 1.003 0.048

Scenario 4: Informative Cox 1.032 0.05 1.011 0.052 1.006 0.05

(Treatment policy) NB 1.025 0.056 1.008 0.053 1.003 0.05
LWYY 1.025 0.058 1.008 0.053 1.003 0.049
WLW 1.045 0.057 1.015 0.053 1.007 0.051
PWP 1.021 0.057 1.007 0.053 1.002 0.048

Clearly, the time-to-first-event analysis (Cox model) has considerably less
power than any of the recurrent event analysis methods for all scenarios
considered. Additionally, the power loss for the Cox regression is more pro-
nounced in settings with high baseline event rates (e.g. high relapse rate in
RRMS trials).

With respect to the four statistical approaches for recurrent event data, power
is similar under all four scenarios in settings with low event rates (λ0 = 0.5).
In settings with high event rates (λ0 = 1.5), NB and LWYY perform similarly,
and better than both WLW and PWP.

5.1.4 Conclusions

The simulations show that a time-to-first-event analysis typically provides
considerably less power than recurrent event analyses. Thus, the recurrent
event methods are shown to be more efficient than a time-to-event analysis.
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Figure 7: Setting without terminal event: Statistical power at varied sample
size under four scenarios based on 10’000 clinical trial simulations, RR =
0.65, θ = 0.25, λ0 = 0.5, 1.5.
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Overall, NB seems to perform best in the simulations and can be consid-
ered as a suitable main estimator. NB targets both the hypothetical and the
treatment policy estimand, and also performs well under informative treat-
ment discontinuation. LWYY could be used for a sensitivity analysis (or for
the main analysis) since it targets the same estimands but makes different
assumptions. WLW and PWP do not target the estimands of interest, and
hence should be used with caution, possibly for a supplementary analysis.

The investigations emphasize the importance of first specifying the estimand
of interest before selecting an appropriate statistical approach. Comparing
analysis methods targeting different estimands should be done with great
care.

The simulations were motivated by trials in RRMS. However, the assump-
tions and scenarios considered in the simulations, as well as the performance
metrics used to summarize the results apply more broadly. The results and
conclusions shown here may thus be extended to a wider range of therapeu-
tic areas with recurrent event endpoints, where the rate of terminal events
such as death is low, e.g. asthma and COPD (recurrent exacerbations), or
epilepsy (recurrent seizures).

5.2 Settings with terminal event

We now investigate clinical settings where terminal events (e.g. death) are
common, motivated by clinical trials in HF with preserved ejection fraction
(HFpEF). More specifically, we simulate clinical trials to compare test versus
control treatment with a total duration of five years and with patients being
recruited uniformly over a period of three years. Hence, the minimal follow-
up time is two years and the maximum follow-up time is five years.

Estimands The following three intercurrent events can be expected in typical
HFpEF trials: CVD, non-CVD, and treatment discontinuation. Treatment
discontinuation may be either unrelated (non-informative treatment discon-
tinuation) or related to the recurrent HHF (informative treatment discontin-
uation). As discussed in Section 3.2.1.6.1, there are two main estimands for
recurrent event endpoints with terminal events: Estimand 1 (HHF) which
focuses only on recurrent HHF and Estimand 2 (HHF+CVD) which includes
CVD as an additional event. These estimands handle the intercurrent events
as follows:
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• CVD: while-alive strategy for Estimand 1, composite strategy (part of
the variable definition) for Estimand 2;

• Non-CVD: while-alive strategy for both estimands;

• Treatment discontinuation: treatment policy strategy for both esti-
mands, as often done in long-term outcome trials.

Considering these two estimands for each of the two types of study treatment
discontinuation described above, we investigate the following four scenarios:

• Scenario 1: Estimand 1 (HHF), non-informative discontinuation.

• Scenario 2: Estimand 1 (HHF), informative discontinuation.

• Scenario 3: Estimand 2 (HHF+CVD), non-informative discontinua-
tion.

• Scenario 4: Estimand 2 (HHF+CVD), informative discontinuation.

Analysis methods The same five statistical methods considered for the set-
ting without terminal event are of interest here as well: one time-to-first-event
analysis (Cox) and four recurrent event analyses (NB, LWYY, WLW, PWP).
We also considered the inclusion of a JFM as implemented in the function
frailtyPenal of the R package frailtypack (Rondeau et al., 2012). Unfortu-
nately, this implementation led to a number of computational problems so
that results for this model could not be included; see Appendix E.1 for more
details.

5.2.1 Design of simulation study

5.2.1.1 Primary endpoint and event rates Two types of endpoints
are considered in the two estimands respectively: a recurrent endpoint that
focuses only on the recurrent HHF in Estimand 1 and a recurrent composite
endpoint that includes CVD as an additional event in Estimand 2.

We choose the event rate λCV for CVD such that an observed annualized
event rate of 4% is obtained, motivated by the value of 3.9% observed in
both the CHARM-Preserved trial and the BNP stratum in the TOPCAT
trial. Also, we choose the event rate λHHF for repeated hospitalizations such
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that an observed annualized control event rate of first composite event of 9%
(events per patient-year) is obtained, similar to what has been observed in the
CHARM-Preserved trial (9.1%) and in the BNP Stratum of the TOPCAT
trial (8.5%).

5.2.1.2 Treatment effect and sample size We investigated in detail
several base case situations similar to a typical HFpEF trial. For these we
vary the treatment effect on recurrent HHF (rate ratio RRHHF= 0.6, 0.7,
0.8, 0.9, 1.0) and on CVD (hazard ratio HRCV = 0.6, 0.7, 0.8, 0.9, 1.0), while
keeping the total sample size fixed at N = 4′350, i.e. 2′175 patients per
arm. We choose this sample size as it gives approximately 90% power to
show a treatment effect for the recurrent composite endpoint with LWYY
for RRHHF = 0.7 and HRCV = 0.8. We also vary the sample size (N =
1′500, 2′000, . . . , 5′000) while keeping RRHHF = 0.7 and HRCV = 0.8 fixed.

5.2.1.3 Event-generating process Similar to the setting without ter-
minal event, patient-specific frailties Zi for the rate of recurrent hospitaliza-
tions are assumed to follow a gamma distribution with mean 1 and variance
θ. To determine patient-specific frailties Ui for the rate of CVD, a joint
frailty model (Rogers et al., 2016) is used, assuming Ui = Zα

i . The frailties
are then correlated, but not identical, which seems clinically plausible. We
choose α = 0.75, a value similar to what has been observed when apply-
ing the joint frailty model to previous HF trials (Rogers et al., 2016). This
leads to frailties for CVD having smaller influence than the ones for HHF,
which seems plausible. We set the variance θ = 5.7, as this leads to an
observed ratio of number of total events to number of first events around
1.8. Similar ratios have been observed across a number of previous HF tri-
als (Anker and McMurray, 2012). Conditional on the patient-specific frailty
Zi, time-to-next-hospitalization is exponentially distributed with rate λHHF
and conditional on Ui, time-to-CVD is exponentially distributed with rate
λCV . Time-to-non-CVD is independently simulated as an exponential pro-
cess without patient-specific frailty. The event rate λNCV is chosen such that
the proportion of non-CVD of all deaths is around 30%.

5.2.1.4 Treatment discontinuation process In the simulations, we
vary whether treatment discontinuation is independent of both treatment
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and HHF or depends on HHF, and thus, through the effect on hospitaliza-
tions, also indirectly on treatment. In the independent case it is simulated as
an exponential process without patient-specific frailty. The treatment discon-
tinuation event rate λTD is chosen such that that the rate of annual treatment
discontinuation is 5 %. In the case of treatment discontinuation depending on
hospitalizations, it is assumed that treatment is only discontinued directly
after a hospitalization event. This is clinically plausible, as patients and
their doctors might take recurrent HHF as a non-response to treatment. The
probability of discontinuing after each HHF is chosen as 0%, 5%, 10%, 15%
and 20%. Both for informative (dependent) and non-informative treatment
discontinuation patients are still followed up for events after discontinua-
tion, and the event rate is the same as the control event rate after stopping
treatment. Non-CVD is treated as a censoring event. More details on the
simulation set-up, including exact values of the parameters, are provided in
Appendix E.2.

5.2.1.5 Variations of base case situations We also consider varia-
tions of the base case situations (for non-informative treatment discontinua-
tion only). These correspond to alternative settings that have some clinical
plausibility for the HF indication. In these settings, only one aspect is var-
ied at a time. However, where necessary, the control event rates λHHF and
λCV as well as the frailty variance θ are adapted so that the observed con-
trol annualized CVD rate is 4%, the observed control annualized rate of first
composite event is 9% and the observed ratio of the number of all events and
the number of first events is 1.8 (as for base case situations). The following
aspects are investigated in these variations of the base case.

• Inter-event Weibull: The time-to-next-hospitalization as well as time-
to-CVD are assumed to follow a Weibull distribution instead of an
exponential distribution. The Weibull shape parameter is chosen as γ =
0.75, which leads to an increased hazard shortly after a hospitalization
and stabilizes after some time, reflecting that a patient might still be
in a vulnerable state shortly after an event.

• Autoregressive event rate: It is assumed that the rate of further HHF
and CVD is multiplied after each HHF by an additional factor. This
would reflect some permanent deterioration in the patient’s health after
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each hospitalization. The multiplicative factor is chosen as 1.1 and 1.2,
respectively.

• Detrimental CVD effect: Treatment is assumed to have a positive effect
on HHF, but a detrimental effect on CVD, i.e. we consider settings with
RRHHF < 1 and HRCV > 1.

• Frailty correlation: In the relation of the frailty terms (U = Zα), α is
set to 0.5 (1) instead of 0.75, leading to a lower (higher) correlation
between HHF and CVD.

5.2.2 Measuring performance of methods

We evaluate the performance of the various statistical methods based on
10’000 simulated clinical trials, using the same three metrics as in Sec-
tion 5.1.2: mean of estimated treatment effects, type I error rate, and power.
For the type I error rate evaluations, the (strict) null hypothesis correspond-
ing to an identical data generation process for both treatment and control
groups is again of main interest. For Estimand 1 we also consider the null
hypothesis that there is no treatment effect on HHF (RRHHF = 1), but
possibly a treatment effect on CVD (HRCV 6= 1).

5.2.3 Simulation results

We only present a subset of tables and figures in this section to illustrate
key findings. The simulations results for the other settings are generally
in line with the ones shown here. The complete output can be found in
Appendix E.5.

5.2.3.1 Mean estimate of treatment effects

5.2.3.1.1 Estimand value The true estimand value is of interest for
each of the four scenarios, that are the combination of Estimands 1 and 2
with non-informative and informative treatment discontinuation. Analytical
derivation of the true estimand value was not feasible for flexible follow-up
times and arbitrary correlation between the frailty of HHF and CVD. Hence,
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Table 8: Settings with terminal event (Estimand vs Estimate): True esti-
mand values under four scenarios, as well as the treatment effects estimates
from five approaches. Simulated data for 100’000 patients are generated with
RRHHF = 0.7, HRCV = 0.8; 1.0; 1.25.

Estimand value Method Estimates
HRCV 0.8 1.0 1.25 0.8 1.0 1.25
Scenario 1: Non-informative

0.783 0.722 0.688

Cox 0.841 0.799 0.782

Estimand 1 (HHF) NB 0.752 0.700 0.684
LWYY 0.784 0.722 0.687
WLW 0.789 0.731 0.702
PWP 0.849 0.811 0.791

Scenario 2: Informative

0.770 0.728 0.686

Cox 0.822 0.789 0.769

Estimand 1 (HHF) NB 0.741 0.704 0.679
LWYY 0.771 0.727 0.684
WLW 0.774 0.731 0.692
PWP 0.843 0.817 0.787

Scenario 3: Non-informative

0.809 0.806 0.822

Cox 0.875 0.898 0.935

Estimand 2 (HHF+CVD) NB 0.766 0.814 0.885
LWYY 0.809 0.806 0.821
WLW 0.817 0.818 0.839
PWP 0.878 0.907 0.944

Scenario 4: Informative

0.800 0.800 0.820

Cox 0.859 0.881 0.929

Estimand 2 (HHF+CVD) NB 0.767 0.797 0.889
LWYY 0.801 0.800 0.819
WLW 0.807 0.806 0.831
PWP 0.879 0.900 0.944

we consider here only the setting where all the patients have a fixed follow-
up time of 3.5 years and use a correlation between the frailty of HHF and
CVD of 1. The analytical estimand values are derived in Appendix E.3. The
estimand values are shown in Table 8 and are consistent with the values
obtained analytically (Appendix E.3). Table 8 shows that for Estimand 1,
the treatment effect is stronger as HRCV increases, since the worst patient
outcome of CVD precludes all future HHF for that patient, while patients
in a less serious condition may remain on trial and experience many HHF,
which means this estimand favors the treatment with the higher CVD rate.
In contrast, the treatment effect is fairly constant for Estimand 2. The esti-
mand values for informative and non-informative treatment discontinuation
are comparable. As mentioned above, the true estimand value was calcu-
lated for a fixed follow-up time of 3.5 years. Values would change if instead
a fixed follow-up time of 2 or 4 years would have been used, as illustrated by
Figure 8.
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Figure 8: True estimand value for varying fixed follow-up time.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), noninformative, HR(cv) = 0.8

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), noninformative, HR(cv) = 1

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), noninformative, HR(cv) = 1.25

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), informative, HR(cv) = 0.8

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), informative, HR(cv) = 1

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 1 (HHF), informative, HR(cv) = 1.25

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), noninformative, HR(cv) = 0.8

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), noninformative, HR(cv) = 1

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), noninformative, HR(cv) = 1.25

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), informative, HR(cv) = 0.8

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), informative, HR(cv) = 1

time in year

es
tim

an
d 

va
lu

e

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
6

0.
7

0.
8

0.
9

1.
0

Estimand 2 (HHF+CVD), informative, HR(cv) = 1.25

time in year

es
tim

an
d 

va
lu

e

62



5.2.3.1.2 Target of estimation for analysis methods The target of
estimation for the time-to-first-event analysis method (Cox) and the four
recurrent event analysis methods (NB, LWYY, WLW, PWP) is the estimate
obtained from a very large (infinite) number of patients. This value can
approximately be computed from one simulated dataset containing 100000
patients, with fixed follow-up time of 3.5 years. Table 8 shows the target of
estimation for each scenario and each analysis method. These results can be
interpreted as follows.

• LWYY targets the estimand of interest for all four scenarios. LWYY
is based on the principle of averaging across patients first and then
comparing between treatments, which is aligned with the estimands;
see Section 3.2.1.6.1. Therefore LWYY can be considered as the main
analysis.

• Cox, NB, WLW and PWP seem not appropriate as their target values
are different from the estimand values for all scenarios.

5.2.3.1.3 Mean estimates of analysis methods for typical sample
sizes For understanding the target of estimation of the five analysis meth-
ods, an idealized situation was considered with extremely large sample sizes,
and fixed follow-up time. Here we investigate the treatment effect estimates
for the different methods with realistic sample sizes (N = 4350), a more
realistic correlation for the frailty (γ = 0.75), and we also assume that the
total duration of the trial is 5 years with patients being recruited uniformly
over a period of 3 years (flexible follow-up time). In such cases where the
follow-up time varies among patients, estimators essentially target an aver-
age of different estimands (corresponding to different fixed follow-up times).
As illustrated above (Figure 8), the impact of different averages due to dif-
ferent trial recruitment characteristics (e.g. fast or slow recruitment) would
typically be small.

Table 9 shows the mean treatment effect estimates for the five analysis meth-
ods, for Estimands 1 and 2, and the case of non-informative treatment dis-
continuation. Results for the event-specific estimates for WLW and PWP can
be found in Appendix E.4. When comparing the means, a similar pattern as
in Table 8 is seen. Some additional findings are:
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Table 9: Settings with terminal event: Mean treatment effect estimates for
Estimands 1 and 2 with non-informative treatment discontinuation based on
10’000 clinical trial simulations, sample size N = 4350.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.780 0.755 0.731

NB 0.659 0.631 0.607
LWYY 0.704 0.664 0.628
WLW 0.719 0.680 0.647
PWP 0.793 0.767 0.744

0.8

Cox 0.928 0.902 0.878

NB 0.866 0.834 0.805
LWYY 0.914 0.863 0.817
WLW 0.916 0.872 0.831
PWP 0.931 0.907 0.883

1.0

Cox 1.055 1.030 1.004

NB 1.075 1.040 1.006
LWYY 1.124 1.062 1.006
WLW 1.101 1.051 1.005
PWP 1.050 1.025 1.002

Estimand 2 (HHF+CVD)

0.6

Cox 0.770 0.811 0.851

NB 0.624 0.676 0.730
LWYY 0.700 0.714 0.728
WLW 0.712 0.730 0.748
PWP 0.782 0.819 0.855

0.8

Cox 0.859 0.896 0.932

NB 0.759 0.813 0.868
LWYY 0.853 0.859 0.866
WLW 0.853 0.867 0.880
PWP 0.867 0.901 0.933

1.0

Cox 0.936 0.971 1.003

NB 0.894 0.950 1.005
LWYY 1.006 1.005 1.004
WLW 0.985 0.995 1.004
PWP 0.941 0.971 1.001

• All methods provide estimates around 1 under the global null hypoth-
esis (HRCV = RRHHF = 1), in line with our expectations.

• For Estimand 1, the null hypothesis of no treatment effect on HHF
(RRHHF = 1) but a treatment effect on CVD (HRCV 6= 1) is also of
interest. The treatment effect estimates are monotonically increasing
with increasing effects on CVD (smaller HRCV ). Hence if a treatment
reduces CVD, especially in severely ill patients who subsequently expe-
rience many hospitalizations, the treatment appears to be less effective.
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Table 10: Settings with terminal event: Mean treatment effect estimates
for Estimands 1 and 2 with informative treatment discontinuation based on
10’000 clinical trial simulations, RRHHF = 0.7 and sample size N = 4350
(Trt.Disc. = Probability of treatment discontinuation).

Endpoint HRCV Method Trt.Disc. = 0 % Trt.Disc. = 10 % Trt.Disc. = 20 %

Estimand 1 (HHF)

0.6

Cox 0.843 0.843 0.843

NB 0.741 0.763 0.781
LWYY 0.789 0.804 0.817
WLW 0.800 0.808 0.816
PWP 0.848 0.861 0.873

0.8

Cox 0.819 0.818 0.819

NB 0.713 0.735 0.753
LWYY 0.743 0.762 0.778
WLW 0.759 0.769 0.779
PWP 0.825 0.838 0.851

1.0

Cox 0.796 0.795 0.796

NB 0.688 0.709 0.728
LWYY 0.704 0.726 0.744
WLW 0.723 0.735 0.746
PWP 0.802 0.817 0.830

Estimand 2 (HHF+CVD)

0.6

Cox 0.800 0.800 0.800

NB 0.669 0.690 0.708
LWYY 0.754 0.770 0.784
WLW 0.763 0.772 0.781
PWP 0.807 0.822 0.835

0.8

Cox 0.843 0.843 0.843

NB 0.727 0.745 0.761
LWYY 0.768 0.784 0.798
WLW 0.783 0.791 0.799
PWP 0.847 0.859 0.870

1.0

Cox 0.884 0.884 0.884

NB 0.785 0.800 0.813
LWYY 0.782 0.798 0.811
WLW 0.802 0.809 0.817
PWP 0.886 0.895 0.904

Table 10 gives the mean treatment effect estimates of the five analysis meth-
ods for Estimands 1 and 2 for the case of informative treatment discontinua-
tion. One sees that the mean estimates of treatment effect for the recurrent
event methods are getting closer to 1 with an increasing rate of treatment
discontinuation, while the mean estimates for the Cox model are unaffected.
The other patterns observed for the mean treatment effect in case of non-
informative treatment discontinuation are also observed for the informative
treatment discontinuation case.
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Table 11: Settings with terminal event: Mean treatment effect estimates
and type I error rates for Estimands 1 and 2 with non-informative treatment
discontinuation based on 10’000 clinical trial simulations, RRHHF = 1 and
sample size N = 4350.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.055 0.115

NB 1.075 0.120
LWYY 1.124 0.254
WLW 1.101 0.207
PWP 1.050 0.142

0.8

Cox 1.030 0.066

NB 1.040 0.066
LWYY 1.062 0.098
WLW 1.051 0.088
PWP 1.025 0.071

1.0

Cox 1.004 0.048

NB 1.006 0.050
LWYY 1.006 0.046
WLW 1.005 0.049
PWP 1.002 0.050

Estimand 2 (HHF+CVD) 1.0

Cox 1.003 0.046

NB 1.005 0.046
LWYY 1.004 0.046
WLW 1.004 0.050
PWP 1.001 0.049

5.2.3.2 Type I error rate For non-informative treatment discontinua-
tion, Table 11 shows type I error rates and mean treatment effect estimates
under both the global null hypothesis (HRCV = RRHHF = 1) and the local
null hypothesis (RRHHF = 1, HRCV 6= 1)).

• All methods provide control of the type I error rate under the global
null hypothesis, with point estimates very close to 1.

• For Estimand 1 and a larger treatment effect on CVD (smaller HRCV ),
the type I error rates of all considered methods increase and exceed the
desired two-sided 5% significance level. The type I error inflation is
largest for LWYY, followed by WLW, PWP, NB and Cox. The main
reason for the type I error inflation is the fact that the point estimates
become larger than 1 with decreasing HRCV . As we use two-sided tests
this then leads to an increased number of false rejections of the null
hypothesis, but favoring the control treatment with no effect on CVD.
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Table 12: Settings with terminal event: Mean treatment effect estimates
and type I error rates for Estimands 1 and 2 with informative treatment
discontinuation based on 10’000 clinical trial simulations, RRHHF = 1 and
sample sizeN = 4350 (Trt.Disc. = Probability of treatment discontinuation).

Endpoint HRCV Method
Trt.Disc. = 0 % Trt.Disc. = 10 % Trt.Disc. = 20 %

Estimate
Type I

Estimate
Type I

Estimate
Type I

error error error

Estimand 1 (HHF)

0.6

Cox 1.055 0.115 1.055 0.116 1.055 0.116

NB 1.075 0.118 1.073 0.112 1.073 0.112
LWYY 1.127 0.267 1.110 0.216 1.110 0.182
WLW 1.102 0.214 1.095 0.191 1.095 0.174
PWP 1.049 0.138 1.048 0.137 1.048 0.132

0.8

Cox 1.030 0.066 1.029 0.066 1.029 0.067

NB 1.040 0.066 1.038 0.066 1.038 0.063
LWYY 1.063 0.100 1.055 0.089 1.055 0.080
WLW 1.052 0.089 1.048 0.084 1.048 0.079
PWP 1.025 0.071 1.024 0.070 1.024 0.070

1.0

Cox 1.004 0.048 1.004 0.048 1.004 0.048

NB 1.006 0.050 1.006 0.050 1.006 0.050
LWYY 1.006 0.046 1.006 0.046 1.006 0.046
WLW 1.005 0.049 1.005 0.049 1.005 0.049
PWP 1.002 0.050 1.002 0.050 1.002 0.050

Estimand 2 (HHF+CVD) 1.0

Cox 1.003 0.046 1.003 0.046 1.003 0.046

NB 1.005 0.046 1.005 0.046 1.005 0.046
LWYY 1.004 0.046 1.004 0.046 1.004 0.046
WLW 1.004 0.050 1.004 0.050 1.004 0.050
PWP 1.001 0.049 1.001 0.049 1.001 0.049

For informative treatment discontinuation, the corresponding summaries of
the simulations are shown in Table 12, and lead to the same conclusions.

5.2.3.3 Power Figures 9 and 10 show the power of Estimands 1 and 2
for selected scenarios with non-informative treatment discontinuation. The
main observation is that the recurrent event methods generally provide larger
power than the standard time-to-first-event model, with few exceptions. It
can also be seen that

• For the scenario HRCV = 0.8 and RRHHF = 0.7 the power is ordered
as follows: NB > LWYY > WLW > PWP > Cox. For Estimand 1 the
difference between NB and the other recurrent event methods is higher
than for Estimand 2.

• In case there is no treatment effect on CVD, i.e. HRCV = 1, LWYY and
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Figure 9: Setting with terminal event: Statistical power for Estimand 1
with non-informative treatment discontinuation based on 10’000 clinical trial
simulations, sample size N = 4350.
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WLW turn out to be more powerful than NB and PWP for Estimand 2.
The two graphs at the bottom of Figure 10 also indicate that LWYY
and WLW are only more powerful than NB in case the treatment effect
on CVD is low. For Estimand 1 NB provides the highest power in all
considered scenarios.

• It can also be seen in Figure 10 that for Estimand 2 LWYY and WLW
are almost uninfluenced by changes in HRCV . That gives them a higher
power than other methods in case of only a small or no treatment effect
on HRCV , but a lower power for a larger effect on CVD.

• The two graphs at the bottom of Figure 9 show that for Estimand 1 the
power of all methods increases with decreasing effect on CVD (HRCV

closer to 1), which is an undesirable behavior. It is due to the fact
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Figure 10: Setting with terminal event: Statistical power for Estimand 2
with non-informative treatment discontinuation based on 10’000 clinical trial
simulations, sample size N = 4350.
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that for large treatment effect on CVD, i.e. small HRCV , the point
estimates of all models overestimate the true RRHF (see Table 9)
because of dependent censoring and survivor bias.

• Comparing the power of Estimand 1 with Estimand 2, the latter has
a higher power if there is a large effect on CVD (HRCV is low), while
Estimand 1 has a higher power for HRCV close to 1.

Figures 11 and 12 show the power of Estimands 1 and 2 for selected scenarios
with informative treatment discontinuation.

• The results are generally similar to the results for non-informative treat-
ment discontinuation. As expected, the power of all recurrent event
methods decreases with a higher discontinuation probability, but in al-
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Figure 11: Setting with terminal event: Statistical power for Estimand 1 with
informative treatment discontinuation based on 10’000 clinical trial simula-
tions, sample size N = 4350.
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most all cases it is still higher than the one for the Cox model, even for
20% discontinuation probability.

• PWP seems to be most affected by a higher discontinuation rate, while
WLW is least affected. This seems plausible, as the treatment effect
would be, e.g., more diluted by discontinuations after the first HHF in
a time from first to second event analysis than in the analysis of time
from treatment start to second event.

5.2.3.4 Further simulation results Additional simulations were done
by varying the base case situations, and detailed results can be found in
Appendix E.5. No major discrepancies have been observed compared to the
results of the base case situations, with one exception. A type I error inflation
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Figure 12: Setting with terminal event: Statistical power for Estimand 2 with
informative treatment discontinuation based on 10’000 clinical trial simula-
tions, sample size N = 4350.
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was seen for NB when inter-event times followed a Weibull distribution, and
for an autoregressive event rate process. This is in line with expectations
as these scenarios deviate from the assumptions of NB, namely the constant
baseline rate.

5.2.4 Conclusions

The conclusion of the simulation study for the setting with terminal events
is essentially the same as for the one without terminal event: the recurrent
event methods were shown to be more efficient than a time-to-first-event
analysis, as they provided a higher power in almost all considered scenarios.

For Estimand 1 the higher power was accompanied by sometimes consid-
erably inflated type I error rates, if there was either a positive or negative
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treatment effect on CVD. This is due to Estimand 1 favoring the treatment
with a worse effect on CVD. At least with the investigated methods, the
use of Estimand 1 seems therefore not appropriate, unless it is reasonable to
assume that there is no or only a very small treatment effect on CVD. In
this case, analysis methods targeting Estimand 1 may be appropriate.

In contrast, no type I error rate increase was seen for Estimand 2. As for
the simulation without terminal event, NB and LWYY provide better in-
terpretable treatment effect estimates than WLW and PWP. When patients
have the same follow-up time, LWYY directly estimates a meaningful esti-
mand. LWYY also had the highest power for a small or no CVD effect, while
NB had the highest power for a larger treatment effect on CVD. Note that
NB can have a moderately inflated type I error if the assumption of a con-
stant baseline rate is violated. Knowledge on the magnitude of the treatment
effect on CVD might thus be helpful to choose among the different methods.
For an uncertain effect on CVD, it seems that LWYY is a good choice.

Although our simulations were motivated by HFpEF trials, similar results
may be expected in other indications with a non-negligible terminal event.

6 Conclusions

Chronic diseases are often characterized through the repeated occurrence of
events like relapses in RRMS or hospitalizations in CHF. Treatments for such
diseases are then expected to impact the first as well as subsequent recurrent
events. Hence, their effect is best characterized by using a recurrent event
endpoint rather than a time-to-first-event endpoint.

In many diseases where recurrent events reflect disease activity, deaths dur-
ing a clinical trial are rare. Examples include RRMS (recurrent relapses),
asthma or COPD (recurrent exacerbations), migraine (recurrent headache
attacks), and epilepsy (recurrent epileptic seizures); see Section 2.2. For
such diseases, rate ratios are well-established treatment effect measures (es-
timands) based on recurrent event endpoints (Section 3.1). These estimands
are clinically relevant and easy to interpret, as illustrated with a RRMS case
study (Section 4.1). Statistical analysis methods (estimators) targeting these
estimands include the commonly used NB and LWYY models (Section 3.1).
In contrast, estimands based on a time-to-first-event endpoint are rarely con-
sidered in such diseases, as they do not fully capture the clinically relevant
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information (Section 2.2). The simulation results show that recurrent event
methods are more efficient than a time-to-event analysis (Cox model) as the
latter provides considerably less power than the former (Section 5.1). Hence,
more precise inference on the treatment effect can be achieved when using
recurrent event endpoints, or the same precision can be obtained with less
patients enrolled into a clinical trial.

For chronic diseases, where deaths during a clinical trial are more common,
the situation is far more complex. A prime example is CHF, where recurrent
HHF characterize disease burden but the risk of death is not negligible (Sec-
tion 2.1). Although the clinical meaningfulness of recurrent HHF has been
recognized in the recent CHMP (2017) guideline on the clinical investigation
of medicinal products for the treatment of CHF, it is acknowledged that ex-
perience in this setting is limited. There are two main challenges. First, the
definition of a clinically interpretable treatment effect measure needs careful
attention. Various estimand proposals are described and discussed that cap-
ture potential treatment effects on both HHF and CV death (Section 3.2).
While all these estimands have limitations, those using a while-alive strategy
seem often to be appropriate. Second, finding suitable analysis methods (es-
timators) that target the estimand of interest is challenging. When targeting
e.g. the while-alive estimand, NB and LWYY seem adequate; see Sections 3.2
and 5.2 for a detailed discussion, and Section 4.2 for a CHF case study to il-
lustrate the concepts. Extensive simulations show that estimators including a
recurrent event endpoint, such as NB and LWYY, are typically more efficient
than a Cox model based on a time-to-first-event endpoint (Section 5.2).

The results described in this request support the claim that treatment effect
measures can be defined based on recurrent event endpoints that are clinically
interpretable and allow for efficient statistical analyses.
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A Statistical methodology

A.1 Overview of statistical methods for recurrent events
and time-to-first-event

A.1.1 Introduction

In this section, we discuss statistical considerations for the analysis of recur-
rent event data. As a special case we will touch upon the case where interest
lies primarily on the first event.

With regard to statistical considerations for recurrent event data, the follow-
ing characteristics of the data require attention and will be discussed in this
section or in related appendices:

• Dependence among repeated events on the same patient;

• Unexplained heterogeneity between patients;

• Early discontinuation from the trial, also called censoring, for various
reasons ranging from administrative reasons to lack of efficacy;

• Early termination of the recurrent event process due to death or other
so-called terminal events.

In Section A.1.2, we start by discussing potential trial designs and data
collection methods. Then follows an exploration of models for recurrent
event data, when the rate of terminal events is low, in Section A.1.3. Details
for the models are provided in the Appendix A.2. Consequences of censoring
and terminal events are discussed in Section A.1.4 and A.1.5, respectively.
Additional considerations, including the special case when focus only lies on
the first event, are given in Section A.1.6.

General references that discuss statistical considerations for recurrent event
data are Cook and Lawless (2007), Hougaard (2000) and Therneau and
Grambsch (2000).
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A.1.2 Study designs

The setup considered is a clinical trial following a set of patients during some
time interval. One typical trial design is that for each patient there is a pre-
defined observation period, e.g., one year. Ideally, all patients are followed
for this period with allowance for scheduling the final visit after one year
plus or minus a short period, say one or two weeks. However, due to early
discontinuation from the trial the actual period with event information may
be shorter than the intended period.

Patients can discontinue early for reasons that may or may not be related
to the occurrence of events. Also, patients may die, especially in long-term
studies involving patients suffering from a serious disease. There may also
be other events occurring, such as initiation of rescue medication, which may
influence the chance of future occurrences of the recurrent events. Further
related aspects will be discussed in Section A.1.4 and A.1.5, respectively.

Another possible trial design is to enroll patients over a time period and
follow them until terminating the trial. Similar to the first case, not all
patients will be followed to the end. The advantage of this second design
is that the patients enrolled first may be followed for relatively longer time
giving information on long-term drug use without delaying the end of trial.
Generally, the second design will have larger variation in length of follow-up
for the patients, but in most cases, the same analysis techniques can be used.

The recurrent events may be recorded in different levels of detail:

• Immediate recording of each event. This is the typical way of handling
the most severe events. Either the patient is admitted to the hospital
or required to call in to the clinical center and report that an event has
happened. This includes day and time of day as well as other relevant
information.

• Diary kept by the patient. The patient has to record the events in a
diary that is presented to the investigator at the next trial visit.

In the case of joint consideration of recurrent events and a terminal event, it
is most appropriate to have immediate recording of the events and therefore,
this is the case considered in this request.
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Figure 13: Recurrent events considered as a multi-state model.

State 0 - 1 Event - 2 Events - 3 Events -

A.1.3 The multi-state setup without terminal events

In Figure 13, we illustrate the basic setup of using a multi-state model to
describe the recurrent event data process over time for a single patient. The
process is assumed to start in ‘State 0’ at time 0.

An epidemiological trial of the lifetime risk of heart attacks could consider
time 0 as the time of birth of the patient, whereas the typical drug clinical
trial will define time 0 as enrolment of the patient in the trial (referring to
randomization or the first dose of the drug). A consequence of the latter
definition is that the outcome refers to events after start of treatment and
thus events happening before the trial are either neglected or included only
through covariates that in some sense reflect the event history before the
trial.

A statistical model for the multi-state set-up depicted in Figure 13 models
the transition hazards between the states; as illustrated by the arrows in
the figure. As intuitively clear from the illustration, the transition hazard
can depend on the number of events (j) that have already occurred for the
relevant patient before time t. In general, this transition hazard can even
depend on any aspect of the history of the process before time t for the
patient, meaning t, as well as T1, ..., Tj.

Dependent on the specific assumptions on the transition hazards, different
regression models for the recurrent event data process can be formulated.
More specifically, fully parametric models such as the Poisson model (Ap-
pendix A.2.2.1) and the NB model (Appendix A.2.2.4) or semi-parametric
models such as the Andersen-Gill (AG) model (Appendix A.2.2.2) and the
Prentice-Williams-Peterson (PWP) model (Appendix A.2.2.3) could be con-
sidered. All these models base on the proportional hazards assumption, i.e.
the transition hazards are assumed to be proportional for any two covariate
sets x and x

′
.
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In the context of (semi-) parametric models different distributional assump-
tion can be made for the event process of interest and some of these models
account for overdispersion while others do not, see Appendix A.2.2. Similarly,
some models make stronger or weaker assumptions with regard to censoring,
see Section A.1.4.

The event process over time can also be investigated in a non-parametric
fashion using the Nelson-Aalen estimator for the mean cumulative function
(MCF) over time, see Cook and Lawless (2007). At the point in time t, the
MCF shows the expected number of events per patient by time t. Examples
are provided in Section 4.

In this section, we focused on the multi-state setup and models based on
the transition hazards. Such models attempt to fully specify the counting
process depicted in Figure 13. Alternative frameworks that require fewer
assumptions focus only on marginal features, e.g., the expected number of
events by time t. Models which fall into this class of approaches include
the Lin-Wei-Yang-Ying (LWYY) model and the Wei-Lin-Weissfeld (WLW)
model, see also Appendix A.2.3.

A.1.4 Implications of censoring

Censoring means that the development for the patient is no longer followed
and always implies a loss of information, because we do not know what
happens to the patient after censoring. Censoring, however, should not be
confused with mortality and other terminal events, which will be separately
discussed in Section A.1.5.

When dealing with censoring in statistical analyses, the first priority is to
avoid bias and the second priority is to keep the unavoidable loss of precision
as small as possible. The aim is to appropriately estimate relevant charac-
teristics of the recurrent event process, e.g. the transition hazards or the
expected number of events by a certain time t, for the population of interest
based on incomplete, i.e. censored, data.

Some assumptions along the lines of the missing at random for continuous
longitudinal data are required:

1. The completely observed population should be well-defined;

2. Censoring should not leave us with a biased sample;
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3. Censoring should be non-informative.

The first requirement states that censoring should not prevent the possibility
of experiencing the event of interest. This implies that we need to distin-
guish between situations with and without terminal events. Situations with
terminal events will be discussed in Section A.1.5.

The second requirement is that of independent censoring. This means that
patients censored at any given time t should not be a biased sample of those
who are at risk at time t. In other words, the extra information that the
patient is uncensored at time t does not change the transition hazard. Inde-
pendent censoring should be thought of as ‘conditional on given covariates’.
This means that censoring may depend on covariates as long as these covari-
ates are accounted for in the statistical model of interest. As an example of
violating this assumption, one could consider censoring if patients are admit-
ted to a hospital. One could imagine that patients admitted to a hospital are
more seriously ill and thus have higher risk of many event types. Censoring
patients at admission would then lead to an underestimation of the risk of
events.

The third requirement states that there are no shared parameters between
the recurrent event process and the censoring process, see also Cook and
Lawless (2007).

Other types of incomplete observations including

• left censoring: event only known to have happen before a certain time;

• interval censoring: event only known to lie in an interval; and

• left truncation: patients only observed from a later entry time

will not be discussed further here.

Turning to the models which were mentioned in Section A.1.3, we note that
they provide valid inference under different assumptions for the censoring
mechanism. Some methods, e.g., Poisson and LWYY, allow for the cen-
soring to depend on the covariates in the model. Thus, the independence
assumption means that the probability of events after censoring, say at time
u, is the same as for uncensored patients continuing after time u with the
same value of the covariates.
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Some methods, e.g. NB and PWP, also allow for the censoring to depend on
the event history. The idea is that an event can give a burden that may make
a patient want to go out of the trial. For such a patient going out of the trial
at time u after having experienced j events, the independence assumption
implies that the chance of future events is the same as for patients continu-
ing after time u, which at time u have experienced exactly j events. As an
extreme case, one could decide to automatically censor patients after having
experienced a certain number of events, say 10. In this case, it is meaning-
less to compare censored patients with continuing patients and indeed the
relevant hazard functions cannot be identified without making untestable as-
sumptions specifying relationships to the hazard functions for patients with
fewer than 10 events. To make a more complex example, consider the NB
model or another frailty model (Appendix A.2.2.4), where the frailty is as-
sumed to refer to an unobserved disease severity leading to high or low risk
of events. Censoring dependent on the unobserved frailty leads to dependent
censoring, but censoring dependent on the actual number of events (which
indirectly depends on the frailty) leads to independent censoring.

A.1.5 Implications of terminal events

A consequence of the definition of censoring is that death is not covered by
censoring. Death is often referred to as terminal event or competing event.

After death no events will occur and therefore following the patient is logi-
cally the same as not following the patient. In other words, we do not lose any
information on the patient by not following him after death, because there
is no information that can be lost. However, the presence and frequency of
mortality has important conceptual consequences for deciding on the scien-
tific question of interest, the estimand (see Section 3), the analysis method
as well as for the interpretation of the results.

Other events than death can lead to similar implications and conceptual
challenges, e.g., intake of rescue medication may make it irrelevant to follow
the disease process further. In that case, one may consider the use of rescue
medication as a terminal event.

In terms of a modeling framework, the multi-state setup is also suitable in
the presence of terminal events such as mortality. One needs to add a state,
‘Dead’, corresponding to the occurrence of death or another terminal event,
i.e. with zero probability to return from the dead, see Figure 14.
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Figure 14: Recurrent events considered as a multi-state model with a ter-
minal event.

State 0 - 1 Event - 2 Events - 3 Events -

Dead

? ? ? ?

Each of the original states will then have a transition into the ‘Dead’ state.
These transition hazards as well as those between the original states will get
an extra condition stating that the patient is alive. To make an example,
the hazard of experiencing an event if the patient has previously experienced
three events, is then changed to describe the hazard of experiencing an event
if the patient is alive and has previously experienced three events. In the
case of rescue medication as terminal event, the extra condition is that the
patient has not initiated rescue medication.

Following general multi-state model principles, the hazard is conditional on
the history of the patient until the relevant time point. This can be illus-
trated by the transition hazard from going from the ‘2 Events’ state to the
‘3 Events’ state, which is the hazard of experiencing an event at time t given
that the patient has experienced exactly two events before time t and is alive
immediately before time t. The condition that the patient is alive immedi-
ately before time t is added compared to the setup of Section A.1.3. In such a
multi-state framework, it is possible to estimate the various hazard functions
and study their potential dependence on the number of events (j) as well as
treatment and other covariates (x). The general multi-state setup considered
here can also be reduced to fewer parameters by assuming a frailty model,
see Appendix A.2.4 for further discussion.

With terminal events the key issue is how to handle the termination of the
event process - not only in a statistical sense but also in a conceptual sense.
For example, the interpretation of a single event count, say Nt as discussed
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in Section A.1.3 becomes more difficult. The event count may be low for
two very different reasons, either because the risk of experiencing the event
is low or because the patient has died early and therefore not experienced
many events. The same applies to the corresponding population mean.

Different strategies to account for the termination of the recurrent event
process due to terminal events (here: death) are discussed in Section 3 but
we also touch upon some of them here, see also Chapter 17, Hernan and
Robins (2018):

• Consider the terminal event to be a form of censoring and try to ad-
just for the selection bias that may be introduced through the early
discontinuation of the patients. If successful, this approach effectively
simulates a population in which death is either abolished or indepen-
dent of the risk factors for the recurrent events. In either case, the
resulting estimates are hard to interpret and may not correspond to a
meaningful quantity. This is particularly true if the death is disease
related, see also the discussion on hypothetical estimands in Section 3
and related aspects presented in Appendix A.3.5.1.

• Do not consider the terminal event as a form of censoring and deter-
ministically set the time to the next event to infinity. That is, dead
patients are considered to have probability zero to have an additional
recurrent event between death and the administrative end of follow-up.
As mentioned before, this quantity may also not be a good reflection
of the treatment effect on the disease burden. The event count may be
low for two very different reasons, either because the risk of experienc-
ing the event is low or because the patient has died early and therefore
not experienced many events.

• If mortality and recurrent events are thought to reflect the same disease
process, one can define a composite endpoint that counts death just like
a new case of the recurring events, see discussion on composite estimand
in Section 3 and the CHF case study in Section 4.

• One could of course also study mortality irrespectively of the recurrent
events process. In case, this analysis shows a significant effect, whether
positive or negative, it is important information for the interpretation
of the relevance of the treatment. In case the effect is non-significant,
it is still relevant to investigate the treatment effect on the recurrent
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event process. For the latter investigation, we again need to decide how
to account for the terminal event.

A.1.6 Additional considerations

Time-to-first-event data: While recurrent event data are often collected, some-
times events after the first event are ignored. A comparison of test and
control treatment is then based on a time-to-event variable, e.g. ‘time-to-
first-relapse’ for RRMS or ’time-to-disease-related-death’ for a serious dis-
ease. Standard methods from the survival time literature, e.g. Therneau
and Grambsch (2000), can then be applied and are briefly summarized in
Appendix A.3. In terms of regression models for time-to-first-event data,
the Cox proportional hazards model which is a semi-parametric model is
often used. The treatment effect is then usually summarized using the haz-
ard ratio, see Appendix A.3.4 for a more detailed discussion. Note that the
first coordinates of WLW and PWP correspond to traditional time-to-event
analyses, see also Appendix A.2.3.2 and A.2.2.3.

It is worth noting that the challenges discussed in the presence of terminal
events also occur when interest lies in the first event only. Related discussions
and models usually run under the header competing risk and are presented
in Appendix A.3.5.

Sensitivity analysis: All models presented in this section base on some as-
sumptions, e.g., parametric assumptions for the counting process and the
frailty terms or assumptions for the censoring mechanism. To assess the ro-
bustness across a range of plausible assumptions it is advisable to perform a
sensitivity analysis, see also Section 3.

Consider the example of frailty models. We focus on models that use a con-
stant frailty which follows a gamma distribution. If one is in doubt as to
these assumptions, one can extend the model. If one is concerned about the
assumption of a gamma distribution, there are alternative frailty distribu-
tions that can be used instead. Keeping the general variation fixed, such
alternatives will have different right and left tails. Observing differences be-
tween the various models is most easy if the number of events is relatively
large. The doubt on assumption of constant frailty can be addressed by
time-dependent frailties. Most of the literature suggestions have considered
piecewise constant frailty, e.g., Paik et al. (1994).
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Duration of events: In this request, we consider the duration of events to be
so short that it makes no difference whether the duration is accounted for or
not. Some events may, however, have a duration that is so long that it makes
sense to account for it in some way. For example, if the event is admission to
a hospital, the duration of the hospitalization may be so long that it could
influence the results. One could modify the calculations recognizing that
patients are not at risk of being admitted to a hospital, if they already are at
the hospital. For most diseases, the duration of a hospitalization is so short
that this does not make a major issue. This problem has been considered by
Law et al. (2017).

A.2 Recurrent event methods

A.2.1 Notation

Patients will be indexed by i, but wherever possible, this index will be ne-
glected. Thus, the following will address only a single patient.

Time t is measured since the patient started in the trial (randomization or
first dose of drug). The cumulative number of events that the patient has
realized at time t will be denoted Nt. It is convenient to have a notation for
the event times, so the times of recurrent events will be denoted 0 < T1 <
T2 < .... To this, we add the convention that T0 = 0 and Tj = ∞, if the
patient is not observed to experience j− th events. With the convention, we
can state that Nt = j means Tj ≤ t < Tj+1.

The notation might give the impression that there will be infinitely many
events but this is not the case. First, no events can happen after death,
meaning that death will stop the development of the process. We will use
W to denote the time of death. Second, there may be other reasons that the
process stops. For example, a person can be immune to the events, implying
that no events will ever occur for that person, or become immune, implying
that after some time, there will not be new events. Third, something may
happen that make consideration of future events irrelevant for the purpose
at hand. This could, e.g., refer to use of rescue medication or in some cases,
withdrawal due to adverse events. Fourth, events may continue but are
not observed within the setting of the clinical trial. This case is denoted
censoring.

The patient is followed for events from time 0 to time V , which can be the
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time of censoring or refer to a terminal event (death), in which case V = W .
The total number of recurrent events observed for the patient will be denoted
k, meaning NV = k.

To keep control of the observation period, the at-risk function R(t) is intro-
duced being 1 when the patient can experience events (whether recurrent
events or death). Informally, this can be phrased as R(t) = 1{V ≥ t} (where
1{condition} refers to the indicator function being 1 when the condition is
satisfied and 0 when it is not) but formally the expression could be misunder-
stood, because the value of R(t) must be known at time t and it is expressed
using V , which is not known at time t as we allow for censoring being a
consequence of a random process developing in real time. A more detailed
consideration of the implications of mortality and censoring is presented in
Sections A.1.4 and A.1.5.

There is a p-dimensional covariate x1, ..., xp, which can also be expressed
as a vector x. The values are individual but following the convention, the
subscript i is not written in the formula. One or more of the covariates will
reflect the treatment group and the effect of this variable is the quantity of
key interest in the clinical trial. One of the covariates may be 1 in order
to have an intercept in the model. The hazard will typically be assumed to
depend on the covariates through the linear score β′x = β1x1 + ... + βpxp,
where β1, ..., βp are the regression coefficients corresponding to the covariates.
As phrased here, the covariates are independent of time but in some cases, the
setup works even when the covariates are time-dependent, reflecting either
an external process or the history of the actual process, meaning reflecting
the events that have taken place before the current time t. To discuss and
compare the various models in details, some models will use other symbols
for the regression coefficients.

Some models may consider gap times (time between events) instead (e.g. the
PWP model used in Section 4 and Section 5). These can be derived from the
basic time observations as ∆j = Tj−Tj−1. While this makes a simple unified
formula, it should be mentioned that it is only for j ≥ 2 that this is indeed
a gap time. As there is no requirement that there is an event happening at
time 0 (T0), time ∆1 is not a gap time but refers to time since trial start.
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A.2.2 Methods referring to the multi-state setup

The statistical model describes the transition hazards between the states and
is illustrated by the arrows in Figure 13. The hazard for state j is defined as

λj(t) =
Pr{Nt+dt = j + 1 | Nt− = j,Nv(0 < v < t)}

dt
, (1)

where the notation Nt− refers to the left limit of Nt and dt refers to an
infinitesimal small time interval.

This somewhat technical point is to make the quantities mathematically
precisely defined, so that Nt has jumps of size 1, and is continuous from
the right. Technically, λj(t) is defined for all t but for a single patient, the
expression is only used between event times number j and j + 1. So the risk
set is patients ongoing in the trial and with exactly j events at the relevant
time point. For a single patient, there may be a jump from λj(t) to λj+1(t),
when an event happens. There may, however, also be jumps at other times,
exemplified by a piecewise constant hazards model. In any case, the hazard
function has to be continuous from the left.

If the transition hazard only depends on the history through the accumulated
number of events (j), the process is a Markov process. The Cox proportional
hazards Markov model has transition hazard function

λj(t;x) = λj(t) exp(β′x). (2)

As described below, it is also possible to introduce patient-level random ef-
fects.

An alternative expression using the random variables is

λj(t) =
Pr{t ≤ Tj+1 < t+ dt | Tj < t;Tj+1 ≥ t;T1, ..., Tj}

dt
. (3)

In this expression, the term Tj+1 ≥ t should not be interpreted as Tj+1 being
known, only that it is known that the j+ 1-th event has not occurred before
time t.

The statistical model for the time-to-first-event can immediately be read off
this model. The distribution of this time follows automatically from the first
transition hazard (that is, by inserting j = 0 in Equation (2)). For the first
event, this gives the survivor function (meaning the probability of not having
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experienced any events in the interval (0, t])

S0(t;x) = exp{−
∫ t

0

λ0(v) exp(β′x)dv}. (4)

Expressions referring to other number of events are dependent on the actual
model and will therefore be presented later.

A.2.2.1 The Poisson model The Poisson model is the statistical model,
where the transition hazards do not depend on the history of the process;
that is, the hazard of experiencing an event is independent of j and T1, ..., Tj.
It can depend on covariates as shown below for the loglinear model

λj(t;x) = λ(t) exp(β′x). (5)

As this is the hazard function for any event, it is, in particular, also the
hazard for the first event, so studying the time-to-first-event is the same as
studying the distribution with the hazard function described in the formula.

The special case of a homogeneous Poisson process is obtained by assuming
constant hazard λ(t) = λ. Otherwise λ(t) can be a parametric or non-
parametric function.

The number of events experienced by a patient over a time period from 0 to
t follows a Poisson distribution with mean given as the integral of the hazard
function, that is,

ENt = exp(β′x)

∫ t

0

λ(v)dv = exp(β′x)Λ(t). (6)

When the hazard is constant, this expression simplifies to ENt = exp(β′x)λt.
The probability distribution of the number of events happening in the interval
(0, t] is

p(k) = Pr(Nt = k) = ρke−ρ/k!, (7)

where ρ = ENt.

The Poisson model is a classical model, but generally, it is insufficient for
application to recurrent events in clinical trials. It is based on the simple
assumption that all events occur completely independent of each other and
thus assumes that there are no patient differences and that occurrence of an
event does not change future risk. A consequence of these assumptions is
that variation is completely determined as V ar(Nt) = ENt.
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A.2.2.2 The Andersen-Gill model The model considered by Ander-
sen and Gill (1982), is the semi-parametric Poisson model of Equation (5).
However, the model allowed for time-dependent covariates, either reflecting
external variables or variables describing the history of the process, thus al-
lowing for dependence between the events. The standard practice when using
this model is to use covariates independent of time and estimate the regres-
sion parameters in the model by means of the corresponding Cox partial
likelihood. The distribution of the number of events is covered by Equations
(6) and (7).

To account for potential dependence and overdispersion, one does not use
the original variance estimate but instead estimate the uncertainty based on
a robust variance estimate, as suggested by Lin and Wei (1989) and Lin et al.
(2000). So this is still heavily based on the Poisson model, but the method
recognizes that the true variation is higher than suggested by the Poisson
model.

A.2.2.3 The Prentice-Williams-Peterson model This model, which
is often called the PWP model, was suggested by Prentice et al. (1981) and
is the model defined in Equation (2). Compared to the Poisson/AG model,
it presents the same hazard for the first event but builds event dependence
into the model by allowing the semi-parametric hazard to change each time
an event occurs. Based on general thinking, in most cases the hazard is
suggested to increase with j, meaning that if you have had events before,
your risk of future events is increased. The treatment effect in terms of
relative risk is the same whatever the number of events. This means that
if two patients with covariate vectors x1, respectively x2, have experienced
the same number of events (say j) at time t, the ratio of their hazards is
exp(β′(x1 − x2)). The model does not directly consider the ratio of hazards
in case the two patients have not experienced the same number of events.

It becomes more difficult to express the distribution of number of events
than in the Poisson model, so this is formulated without covariates. The
first probabilities follow from the formulas

p(0) = exp{−Λ0(t)}. (8)

p(1) =

∫ t

0

λ0(t1) exp[−Λ0(t1)− {(Λ1(t)− Λ1(t1)}]dt1, (9)
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where t1 refers to the time of the first event.

p(2) =

∫ t

0

∫ t

t1

λ0(t1)λ1(t2) exp[−Λ0(t1)−{Λ1(t2)−Λ1(t1)}−{Λ2(t)−Λ2(t2)}]dt2dt1,

(10)

where t1 and t2 refer to the time of the first and second event, respectively.
In general, there will be as many integrals as there are events happening.

There is no simple relation between the treatment effect in the defining model
and the treatment effect in the event count distribution which limits its
practical use in clinical trials.

A.2.2.4 The Negative Binomial Model and other frailty models
The frailty model, which essentially dates back to Greeenwood and Yule
(1920), extends the Poisson model by a patient-level random effect.

This type of model suggests that patients have different risks of events but
these differences cannot (or can only partially) be explained by the measured
covariates. This creates an over-dispersion compared to the Poisson model.
The random effect, denoted Zi for the i-th patient, is called the frailty and
has a multiplicative effect on the hazard, which is formulated conditionally
on Zi. The description below refers to a single patient, but with the subscript
i omitted.

The hazard can depend on covariates as shown below for the loglinear model

µ(t;x | Z) = Zµ(t) exp(ω′x). (11)

The notation for the baseline hazard function is changed from λ(t) to µ(t) to
emphasize that it is a conditional hazard. For the same reason the conditional
regression coefficients are denoted ω.

While in principle many different distribution families can be used for Z
in this expression, see Hougaard (2000), (Chapter 9), the classical gamma
model is sufficient for this request, so the density of z is assumed to be

f(z) = θδzδ−1 exp(−θz)/Γ(δ), (12)

where δ is the shape parameter and θ, the inverse scale parameter. In par-
ticular, this distribution has mean EZ = δ/θ. One obtains the same model
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by using this bivariate parameter as by restricting the mean to one (by re-
questing δ = θ) and then including a constant as one of the elements of the
covariate vector.

As the frailty is unobserved, it is natural to derive the distribution of the
observed quantities by integrating out the frailty. The distribution of the
number of events in an interval is conditionally Poisson, similar to Equation
(6), but after integration in the gamma frailty case, this becomes a NB
distribution with mean number of events

ENt = δ exp(ω′x)M(t)/θ, (13)

where M(t) =
∫ t

0
µ(v)dv.

This gives the event distribution

p(k) =
{θ/ exp(ω′x)M(t)}δΓ(δ + k)

{1 + θ/ exp(ω′x)M(t)}(δ+k)Γ(δ)k!
. (14)

One can similarly derive the hazard functions in the multi-state model. For
any frailty distribution, the multi-state model is of the Markov type and
for gamma frailty, the expressions are further simplified. The hazard of
experiencing a first event is

λ0(t;x) = µ(t) exp(ω′x)δ/{θ +M(t) exp(ω′x)}, (15)

Interestingly, the transition hazard to experience the j + 1-th event is

λj(t;x) = λ0(t;x)(δ + j)/δ. (16)

A consequence of this result is that the gamma frailty model shows pro-
portional hazards over the accumulated number of events. It also clearly
demonstrates that the more events you have experienced before, the more
events you are predicted to experience in the future.

However, the model does not present proportional hazards across covari-
ates. To assess the treatment effect, one can compare two different covariate
values, say x1 and x2, corresponding to, e.g., the case with and without
treatment. First, one can consider the ratio of the hazards in Equation (11),
which is popularly known as a within patient comparison meaning the ratio
for a specific patient if he tried the two different treatments. This ratio is
exp(ω′(x1 − x2)), which might be as expected. Second, one can consider
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the ratio of means in Equation (13), which is popularly known as a popu-
lation comparison meaning the ratio of the mean cumulative events in the
population after having averaged over patients if they tried the two different
treatments. Interestingly, this ratio is also exp(ω′(x1 − x2)). Third, one can
consider the ratio of hazards for the first event (Equation (15)), which is

exp(ω′(x1 − x2))
θ +M(t) exp(ω′x2)

θ +M(t) exp(ω′x1)
, (17)

which at time 0 equals exp(ω′(x1−x2)), but monotonically goes to 1 as time
increases. This shows a quantitative conflict between considering the first
event only and considering all events. This result has important consequences
as it implies that the treatment effect evaluated in a first event hazard will be
smaller (relative rates closer to 1) than the treatment effect in a multiple event
evaluation due to selection effect (meaning that high risk patients are quickly
removed from this first risk set). So this makes a theoretical explanation
that even though a treatment effect is present at all times, when assessed in
a recurrent events frame, it can disappear over time when considering only
the time to the first event. In this frame, the recurrent events data reflect
the disease better than time to the first event.

Obviously, this model can be extended, e.g., one can substitute the constant
frailty with a time-dependent frailty. However, this makes the whole setup
more complicated and implies a more complex interpretation, so this is not
considered here.

A.2.2.5 Estimation of models based on the multi-state setup Us-
ing standard survival data methods, see e.g. Therneau and Grambsch (2000),
there are no technical problems in calculating the estimates and other quan-
tities for the Poisson, AG and PWP models, whether the hazard has a para-
metric, semi-parametric form or is allowed to be non-parametric.

The only real requirement is that the relevant risk sets are non-empty. Ex-
actly which risk sets are relevant depend on the more detailed model as-
sumptions. For the non-parametric versions of the Poisson and AG models,
the overall risk set needs to be non-empty at all times from 0 to t. For the
non-parametric PWP model, the hazard λj(t) is only identifiable, when there
are patients at risk, who have experienced exactly j events earlier. As all
patients start with 0 events, this implies that for each j > 0 there is an ear-
liest time, where λj(t) can be identified. As the treatment effect is assumed
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shared over j and t, this does not really create problems for the treatment
effect estimate as it has contributions from all values of j and t, where the
j-th risk set includes patients from two or more treatment groups.

Also for the non-parametric versions of the frailty model, the overall risk
set needs to be non-empty at all times from 0 to t. To identify the frailty
distribution parameters, it is also important that at least some patients expe-
rience two or more events. The frailty model describes over-dispersion, so if
the actual data display under-dispersion, the estimate will correspond to the
boundary model of no frailty effect (degenerate frailty distribution). Even in
the case of no patients experiencing two or more events, the gamma frailty
model may be identifiable because Equation (17) shows converging hazard
ratio. This implies that for the first event time, the frailty describes non-
proportional hazards rather than over-dispersion. In practice, these points
do not create major problems. The risk set problem is handled by know-
ing in a clinical trial of duration eight weeks, say, one will not attempt at
concluding how the event risk will develop later than eight weeks. Whether
there are patients experiencing two or more events will also be clear from the
descriptive results.

Parametric models will partially or fully handle the above issues by extrap-
olating the relevant hazards into the areas with empty risk sets.

Data is most conveniently coded in the so-called counting process notation,
which has one record for each event and one record for a potential final time
period ending with censoring. The PWP approach will then have separate
strata for each event number.

The gamma (as well as lognormal) frailty model with non-parametric hazard
is covered by the basic R procedure coxph. The SAS procedure can similarly
handle non-parametric hazard, but allow only for the lognormal frailty. The
SAS procedure nlmixed can be instructed to handle the parametric case.

A.2.3 Methods not referring to the multi-state setup

A.2.3.1 LWYY model The LWYY model named after Lin and Wei
(1989) and Lin et al. (2000) aims to directly estimate ENt without relying
on the multi-state model. This means that one assumes the formula

ENt = exp(ω′x)H(t), (18)
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where H(t) is an increasing non-parametric function. This expression is
essentially the same formula as those in Equations (6) and (13) but without
considering that the derivation of those formulas was made under specific
model assumptions, respectively an independence model and a frailty model.

This model will consider events without relating to patient history. One
consequence is that the event number j has no role to play in the calculations.
The advantage of this approach is that fewer assumptions are implemented
but this comes at a price of not fully considering the intra-patient dependence
and thus the results may be inefficient and/or biased in some way. Another
consequence is that censoring has to be independent of the accumulated
number of events.

A.2.3.2 The Wei-Lin-Weissfeld marginal model An approach in a
marginal model frame is the so-called WLW model, named after Wei et al.
(1989). The idea is to first make an analysis of T1 in a survival data setting;
that is, allowing for censoring. This is indeed the classical way of analyzing
the time to the first event. This is technically the same as the PWP model
of Section A.2.2.3.

The result is an estimate of the treatment effect. The next step is to make
a similar analysis of T2. This is, however, controversial because the analysis
does not account for the fact that T1 < T2. In other words, patients are con-
sidered as being at risk for their second event also before having experienced
their first event. Similar analyses are then performed for T3, T4 and so on,
until the number of events experienced becomes too low to make the treat-
ment estimate informative. Each analysis (strata) leads to one treatment
effect estimate and these estimates are then pooled to make an overall effect
estimate. The standard errors used are the robust standard errors accounting
for the dependence.

An alternative approach is to estimate the overall treatment effect under an
assumption that the treatment regression coefficients across strata are the
same and again using robust standard errors for accounting for the depen-
dence.

There are two major problems with this approach. One problem is that it is
unclear what the treatment effect really estimates. Section A.2.2.4 showed
that the first event analysis estimate is different than the frailty model es-
timate. The first coordinate of the WLW estimate corresponds to the first
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event analysis. However, the other coordinates are estimating markedly dif-
ferent aspects of the recurrent events process making interpretation difficult.
The other problem is that censoring is not independent, e.g., the first event
has to happen before the second event is at risk.

A.2.4 Methods referring to the multi-state setup with a terminal
event

As explained in Section A.1.5, considering terminal events implies a switch
from the setup in Figure 13 to that of Figure 14 and this implies that the
interpretation of the hazard functions changes. However, the formula ex-
pressions for the hazard of the recurrent events may be chosen as in the case
without terminal events, such as in Equation (2) without a frailty term and
Equation (11) in the presence of frailty.

For the death hazard, an expression is needed. The death hazard from state
j could be expressed as

ξj(t;x) = ξj(t) exp(ϕ′x).

The simplest case is the non-differential mortality case, where this is in-
dependent of j and x, that is, of the form ξ(t). This gives the simplest
interpretation of the event hazards, λj(t;x). However, based on general prin-
ciples, we have to consider the possibility that mortality depends on both
treatment and the number of events that have occurred.

Being a multi-state model, it is, at least in principle, possible to derive the
transition probabilities starting from the hazard functions. This can give,
e.g., the probability that a patient is alive at time t and has experienced
exactly j events before time t. By adding over the corresponding dead and
alive states, one can also find the probability of having experienced exactly
j events before time t. Due to the possibility of death, the number of events
experienced will be smaller than that in the similar model without terminal
events. The problem with just looking at the number of events implies that
a treatment with high mortality will appear to be better than a treatment
with low mortality.

In the multi-state framework depicted in Figure 14, it is possible to estimate
the various hazard functions and study their potential dependence on the
number of events (j) as well as treatment and other covariates (x). The
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treatment may have different effect on the hazard for recurrent events and
death. This general setup can also be reduced to fewer parameters by as-
suming a frailty model. In this section, we will first discuss models without
frailty, then models with frailty and finally move to considering the treatment
effect.

A.2.4.1 Models without a frailty term For the recurrent event haz-
ard, there are two classical models to consider. First, the Poisson model,
where the event hazard is independent of the events already occurred, corre-
sponding to the expression in Equation (5). As this model does not address
the possibility of patient differences that are not described by covariates, it
will underestimate the variability in many cases.

Second, a more general model, corresponding to the expression in Equation
(2), where the hazard of future events may depend on the currently experi-
enced number of events. This corresponds to the PWP model using a time
scale of ”time since trial start”. This has higher flexibility than the Poisson
model, but it becomes more difficult to quantify the treatment effect, in the
sense that the overall number of events in the treatment groups may develop
differently than described by the hazard treatment effect (β) as the patient
population is a mixture of patients with different values of the accumulated
number of events (j) and this population changes over time (t).

Regarding the mortality, the thinking is that the recurrent events carry a risk
of death in a short as well as long time perspective. This suggests a death
hazard model of the form ξj(t;x), where it may be convenient to describe the
dependence on j by a parametric relationship.

A.2.4.2 Models with a frailty term In the case without terminal
events, it was shown how the general multi-state model as in Equation (1)
could be reduced to fewer parameters by assuming a frailty model of the form
in Equation (11). The frailty is interpreted as a patient-level random effect
in the hazard of experiencing recurrent events. A similar simplification can
be done in the case with terminal events.

The simplest possible model is to combine a hazard of recurrent events, as
described in Equation (11) with an assumption of non-differential death haz-
ards, defined as ξ(t) above. However, this assumption seems unrealistically
simplistic. In general terms, one would expect mortality to increase with
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disease severity and/or disease course.

Starting with the disease course, the thinking is that the recurrent events
carry a risk of death in a short as well as long time perspective, as described
above. This suggests a death hazard model of the form ξj(t;x), where it may
be convenient to describe the dependence on j by a parametric relationship.

An alternative approach based on a disease severity justification is to suggest
a frailty model that assumes the same frailty, say Z, for the mortality as
for the recurrent events, as suggested by Rogers et al. (2014a). This model
assumes that the recurrent events and mortality share parameters. Expressed
in popular terms, this model says that patients that have a double hazard
of recurrent events will also have double hazard of death. To make a more
flexible model, a correlated bivariate frailty (Z,U) could be suggested so that
Z is the value applicable for recurrent events and U is the value for death
risk, corresponding to a mortality hazard of the form

Uκ(t) exp(γ′x).

In this modelling setup, Z is well-defined because each patient can experience
the event several times. However, results regarding U are more sensitive to
the specific model used, because each patient cannot experience death more
than once. Therefore a compromise model may suggested, stating a relation
between Z and U , more precisely U = Zα, as suggested by Rogers et al.
(2016). The advantage of this model is that it uses all data, and for the
recurrent events it has a random effects interpretation, which in the multi-
state model without frailties leads to a hazard that increases with event
count (j), conceptually like the expression in Equation (16). The relation
described by the bivariate frailty implies that the death hazard conditional
on the accumulated number of events (analogous to ξj(t)) also increases with
j but not necessarily to the same extent.

A.2.4.3 Modeling and estimating treatment effects For the more
detailed models, a key question is how to model the treatment effect.

Considering the general clinical trial viewpoint that the results should be
adequately described by a single primary endpoint estimate, there are really
two choices. One choice is to have separate treatment effect parameters for
each type of events, above phrased by parameters β/ω for the recurrent events
and ϕ/γ for the death risk, in the model without/with a frailty term. The

104



primary analysis should then refer to the recurrent event parameter, β/ω,
whereas the death hazard parameter ϕ/γ, is only considered in a secondary
analysis. The other choice is to assume the same treatment effect across
endpoints in order to cover all treatment effects simultaneously. This implies
β = ϕ, respectively ω = γ.

To put the treatment effect in perspective, it may be desirable to quantify
the number of events experienced. In practice, this refers to ENτ for a
specified time point τ . In the case without terminal events, this is expressed
in Equation (6) for the Poisson model and Equation (13) for the frailty model.
In the PWP model, the similar quantity requires a sum of multi-dimensional
integrals and it may be convenient to only count events up to some limit.

In the presence of terminal events, one can evaluate the expected number in
the full multi-state model (that is, corresponding to the left side of Equa-
tion (6), and Equation (13)), meaning calculating all transition probabilities
and use these as input to a mean value calculation. This alternative is less
attractive because it gives an advantage to the treatment with the highest
mortality.

A better approach is to use the expression of the right hand side of Equation
(6) and Equation (13), but in that case, the interpretation as a mean is lost.
Popularly, one would denote this as studying recurrent events ‘conditional
on survival’ but this expression is not mathematically precise because the
expression is an integral over time. Survival until time τ is not required but
the hazard contribution at time t (0 < t ≤ τ) requires survival until time t.
The advantage of this approach is that a treatment with high mortality will
not present with a reduction in the measure of recurrent event risk. With a
frailty model for the recurrent events and a non-differential mortality ( where
the death hazard does not depend on the number of events or the frailty
but potentially on the treatment), the mean frailty, EZ, will stay constant
over time and the event hazard marginalized over Z will develop similar to
the hazards conditional on the frailty. In the joint frailty models suggested
by Rogers et al. (2014a) and Rogers et al. (2016), the mean frailty among
survivors will decrease over time due to the relation between frailty and
death hazard. The estimation method automatically accounts for this effect
so that the event hazard will refer to a person with fixed frailty (Z = 1).
Calculating the integrated hazard for each treatment can then be used to
assess the treatment effect on the risk of experiencing the recurrent events.
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Figure 15: Survival data illustrated as a two-state model with λ(t) as tran-
sition rate
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A.3 Time-to-first-event methods

A.3.1 Notation

Survival data are realizations of nonnegative random variables, and the object
of a survival analysis is to describe and understand the distribution of these
random variables or survival times T . This distribution can be described by
the survival function with t ≥ 0

S(t) = P (T > t)

or equivalently by the rate or hazard function

λ(t) = − d

dt
log(S(t)),

which has the attractive interpretation

λ(t)dt ≈ P (T < t+ dt | T ≥ t),

i.e. the conditional probability of dying in the next small time interval ([t, t+
dt)) given alive immediately before the beginning of the interval. Here, dt
refers to an infinitesimal time interval. Statistical models for continuous
survival data are most often formulated in terms of the hazard function.

Figure 15 illustrates survival data as a two-state model starting in state 0
(alive) at time t = 0 with the hazard function as the transition rate from
state 0 to state 1 (dead).

The integrated or cumulative hazard function is defined as

Λ(t) =

∫ t

0

λ(u)du.
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The survival function S(t) is the fraction of patients having survived until
time t and the hazard function λ(t) describes the instantaneous risk per time
unit of failing ’now’ given alive at time t. We have the following important
one-to-one relationship between survival probability and rate

S(t) = exp(−Λ(t)). (19)

For i = 1, . . . , n patients, let t1, . . . , tn be failure or censoring times and
d1, . . . dn the indicator (0 or 1) of a failure observed at those times. Let N(t)
be the counting process counting the number of failures observed before or
at time t

N(t) = #{i : ti ≤ t, di = 1}
The number of patients at risk just before time t (t−) is denoted by

Y (t) = #R(t),

where
R(t) = {i : ti ≥ t} (20)

is the risk set at time t identifying the patients still at risk in the trial.

To make the mathematical theory work, it is required that the event count
N(t) is continuous from the right, whereas the risk set R(t) as well as the
hazard functions (such as λ(t)) are continuous from the left, so this needs
introduction of the time symbol t− referring to the time immediately before
t, so that N(t−) refers to the left limit of N(t).

Individual covariates are given as xi = xi1, . . . , xip, which is a p-dimensional
vector.

A.3.2 Non-parametric methods

The survival distribution can be estimated by the Kaplan-Meier estimator

Ŝ(t) =
∏
ti≤t

(
1− ∆N(ti)

Y (ti)

)
, (21)

where ∆N(t) = N(t) − N(t−) is the number of failures at time t. The
cumulative hazard function can similarly be estimated by the Nelson-Aalen
estimator

Λ̂(t) =
∑
ti≤t

∆N(ti)

Y (ti)
. (22)
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Non-parametric comparison of the survival distributions in groups of patients
can be compared by e.g. logrank tests, Kalbfleisch and Prentice (2002).

A.3.3 Parametric models

The exponential distribution is the simplest lifetime distribution assuming a
constant hazard function

λ(t) = λ, Λ(t) = λt and S(t) = exp(−λt).

for all t ≥ 0. The maximum likelihood estimate for λ0 is

λ̂ =

∑
di∑
ti
,

also known as the occurrence/exposure rate.

An extension of the exponential distribution is obtained by assuming piece-
wise constant rates on a number (say Q) of pre-specified time intervals,

λ(t) = λq for cq−1 < t ≤ cq, q = 1, . . . , Q, c0 = 0.

This leads to interval-specific occurrence/exposure rates and provides the
basis for further analysis (e.g. Poisson regression). The piecewise constant
rate model provides a sensible and flexible summary of many phenomena and
is often used in epidemiology and large register studies.

Another extension of the exponential distribution is the Weibull model, which
provides a fairly flexible class of distributions

λ(t) = λρ(λt)ρ−1 and S(t) = exp(−(λt)ρ),

where λ > 0 is the inverse scale parameter and ρ > 0 is the shape parameter.
The exponential distribution is obtained for ρ = 1.

Under the assumption of independent censoring, the likelihood function for
the models becomes

L(θ) ∝
n∏
i=1

λ(ti; θ)
diS(ti; θ), (23)

where θ is a vector of the unknown parameters to be estimated. Standard
inference via score function and observed information is available, see e.g.
Andersen et al. (1993).
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A.3.4 Regression models

As previously noted, statistical models for continuous survival data are most
often formulated in terms of the hazard function. In particular, when study-
ing how survival time depends on covariates, like treatment and prognostic
variables. Let xi = xi1, . . . , xip be a p-dimensional baseline covariate vector
for each patient. The hazard is typically assumed to depend on the covariates
through the linear score

β′xi = β1xi1 + · · ·+ βpxip, (24)

where β is the vector of regression parameters.

The Cox proportional hazards model is a semi-parametric model defined by

λi(t) = λ0(t) exp(β′xi), (25)

where the baseline hazard function λ0(t) is an unspecified function of time.
The model assumes that the effects of covariates are additive and linear on
the log-rate scale and λi(t)/λv(t) (where i and v refer to two different pa-
tients) does not depend on time. The latter is an assumption of proportional
hazards. In particular, for a binary treatment covariate x1 with two cate-
gories treated (x1 = 1) and untreated (x1 = 0), exp(β1) is the hazard ratio
between treated and untreated.

The statistical analysis of the Cox model is based on the partial likelihood
function, which in the case of no ties of survival times is given by

L(β) =
n∏
i=1

(
exp(β′xi)∑

j∈R(ti)
exp(β′xj)

)di

, (26)

where R(ti) is the risk set defined previously (20). The partial likelihood
function may be obtained from the general likelihood function (23) by pro-
filing out the baseline hazard function λ0(t).

The cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du from the Cox

model can be estimated by the Breslow estimator

Λ̂0(t) =
∑
ti≤t

di∑
j∈R(ti)

exp(β̂′xj)
,

where β̂ is the maximum likelihood estimate of β. In case of no covariates,
the Breslow estimator equals the Nelson-Aalen estimator.
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The stratified Cox model can be used to include more than one baseline
hazard function, so that for a patient in stratum s, the hazard is

λi(t) = λ0s(t) exp(β′xi), (27)

where λ0s(t) for s = 1, . . . , S is the baseline hazard function in each of S
strata. This is useful if the proportional hazards assumptions is questionable
for some categorical covariate.

The survival function at time t is:

S(t | x) = exp(−Λ0(t))exp(β′x)

log(− log(S(t | x))) = log(Λ0(t)) + β′x. (28)

Importantly, the linear score (24) may be extended to depend on time t
by including time-dependent covariates. These covariates need to be left
continuous and be known in real time (meaning that at time t, the covariate
value x(t) needs to be known). The Cox model becomes

λi(t) = λ0(t) exp(β′x∗i (t)).

Here x∗i (t) is some summary of the covariate history (x(u);u < t). Time-
dependent covariates can be combined with stratified model and strata may
also be time-dependent.

Parametric proportional hazards regression models are obtained by replacing
the unspecified baseline hazard function λ0(t) by a parametric function, e.g.
one of those reviewed in Section A.3.3. The statistical inference is usually
based on a likelihood function analogous to (23). Other regression models
include Aalen’s additive hazard rate model and the accelerated failure time
regression model, see e.g. Martinussen and Scheike (2006) and Kalbfleisch
and Prentice (2002).

A.3.5 Implications of terminal events and associated models

A simple extension of the two-state model (Figure 15) is the competing risks
model where the terminal event state ’Dead’ is split into, say M , exclusive
causes of death as illustrated in Figure 16.
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Figure 16: Competing risks model illustrated by causes of death.
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A.3.5.1 Cause-specific hazard model In the competing risks model
there is a cause-specific hazard function, m = 1, . . . ,M , from state ’alive’ to
each of the causes of death

λm(t)dt ≈ Prob(state m time t+ dt | state 0 time t−).

The state occupation probabilities include the overall survival function

S(t) = P (alive at time t) = exp

(
−

M∑
m=1

∫ t

0

λm(u)du

)
= exp

(
−

M∑
m=1

Λm(t)

)
and the cumulative incidences m = 1, . . . ,M

Fm(t) = P (state m at time t) = P (T ≤ t,D = m) =

∫ t

0

S(u−)λm(u)du,

(29)
where D is an indicator for cause of death. The overall risk of dying becomes
a sum of all the cumulative incidences

F (t) = 1− S(t) =
M∑
m=1

Fm(t).
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As S(t) +
∑M

m=1 Fm(t) = 1 the cumulative incidences are sometimes called
sub-distribution functions to underline that they are not true distribution
functions.

The cumulative cause-specific hazard can be estimated from the Nelson-Aalen
estimator (22) using only failures from the relevant cause

Λ̂j(t) =
∑
ti≤t

∆N(ti)I(di = j)

Y (ti)
,

which is an increasing step function with steps at each observed time of
failure from cause j. This formula is only correct when there are no ties
among death times, but can be extended to cover ties as well. The overall
survival function can be estimated by the Kaplan-Meier estimator (21) and
the cumulative incidences can then be estimated by plugging-in estimates

F̂j(t) =
∑
ti≤t

Ŝ(t−i )
∆N(ti)I(di = j)

Y (ti)
, (30)

often called the Aalen-Johansen estimator.

Alternatively, it may be tempting to estimate the cumulative incidences by
calculating the Kaplan-Meier estimator for each of the transitions by applying
censoring for other transitions, which corresponds to assume that all other
cause-specific hazards continue after death with the same values, that is,
assuming that the hazard for all causes are the same after death as they
were before, which is obviously not meaningful. So this calculation fails
because, the requirement for the target population to be well-defined is not
full-filled, because we attempt to make inference for a potentially completely
observed population, where patients can survive also after having died from
other causes of death. Such a population is hypothetical. The risk will always
be overestimated if using ’1 - Kaplan-Meier’ instead of the Aalen-Johansen
estimator (30).

Another way to describe this point is that while the one-to-one relationship
(19) holds for the total mortality, it does not hold for the cause-specific in-
cidences in the competing risks model because all cause-specific intensities
are needed, when computing each of the cumulative incidences, Fm(t),m =
1 . . . ,M , as shown in Equation (29). Thus, exp{−Λm(t)} cannot be inter-
preted as a probability.
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In contrast to estimation of the cumulative incidences, inference for the cause-
specific hazards can be done using the standard hazard-based models for
survival data. Thus, semi-parametric and parametric regression models for
the cause-specific hazard function can be applied, e.g. a Cox model for cause
j (and omitting patient index i)

λj(t | x) = λ0j(t) exp(β′jx),

with separate baseline hazard functions and separate regression coefficients
for each cause. Differences between the hazard functions can be assessed and
by testing βj = 0, one can evaluate whether the covariate xj has an influence
on the hazard. This is particularly relevant for studying a treatment effect.

It is technically possible to fit Cox models for cause-specific hazards with
identical or proportional baselines for some causes and regression coefficients
that are shared between several causes. These features may be more relevant
for other multi-state models like recurrent events than the competing risks
model. Having models for the cause-specific hazards it is possible to estimate
the cumulative incidences by ’plugging-in’

F̂j(t | x) =

∫ t

0

Ŝ(u− | x)dΛ̂j(u | x),

where
Λ̂j(u | x) = Λ̂0j(u | x) exp(β̂′jx)

is the cumulative cause-j-hazard estimate from the Cox model and Ŝ(u | x)
the Cox model based estimator for the overall survival function, e.g.

Ŝ(u | x) = exp

(
−
∑
j

Λ̂j(u | x)

)
.

The way in which a covariate affects a rate can be different from the way
in which it affects the corresponding probability, as this will depend on how
the covariate affects the rates also for the competing causes. In conclusion,
comparing cause-specific hazards by hypothesis testing is immediate, but for
judging the clinical relevance, it is useful to consider both the integrated
cause-specific hazards and the cumulative incidence functions.

113



A.3.5.2 The Fine-Gray model The involvement of all causes into the
formula (Equation (29)) for the cumulative incidence for a single cause has
led to development of direct regression models for the cumulative incidences
of which the Fine-Gray model is the most widely used, Fine and Gray (1999).
Like the Cox model is a model for all-cause mortality (28), the Fine-Gray
model is a model for cumulative incidences

log(− log(1− Fj(t | x))) = log(Λ̃0j(t)) + β̃′x.

i.e. for

λ̃j(t) = − d

dt
log(1− Fj(t | x)).

That is, the transformation which for all-cause mortality takes us from cu-
mulative risk to hazard is used for a cumulative incidence in a competing
risks model. The resulting λ̃j(t) is denoted the sub-distribution hazard and
the Fine-Gray model is thus a proportional sub-distribution hazards model.
However, while a ’sub-distribution hazard’ sounds like a hazard, it is not,
and the resulting parameters exp(β̃) in the Fine-Gray model have an indi-
rect interpretation as ’sub-distribution hazard ratios’.

B Estimands for time-to-first-event endpoints

with competing terminal events

In this section, we will consider the case where interest lies in time-to-
disease-related-death, e.g. CVD, and where the intercurrent event of disease-
unrelated death is a competing terminal event. Very similar considerations
would also apply to the case where time-to-first-morbidity-event is of main
interest and subject to a terminal event, e.g. disease-related or unrelated
death.

B.1 Treatment policy estimand

As discussed in Section 3.2.1, a treatment policy estimand is not suitable for
terminal intercurrent events such as disease-unrelated death.
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B.2 Composite estimand

The composite strategy includes the intercurrent event of disease-unrelated
death in the variable definition. Using the four estimand attributes, the
composite estimand may be described as follows:

(A) The population is defined through appropriate inclusion/exclusion cri-
teria to reflect the targeted patient population for approval;

(B) The variable of interest is the time to disease-related or disease-unrelated
death up to two years;

(C) The intercurrent event of disease-unrelated death is captured through
the variable definition;

(D) The same summary measures as discussed in Section 3.1.2 can be con-
sidered.

By defining a composite endpoint this estimand assesses treatment effects
on any cause of death. Investigational treatments are usually not expected
to delay disease-unrelated deaths and the use of this strategy may thus re-
sult in a somewhat unspecific treatment effect measure. However, this esti-
mand choice may be relevant when a treatment is expected to improve time
to disease-related death while resulting in disease-unrelated deaths due to,
e.g., adverse reactions. More generally, this estimand choice may be suit-
able whenever we want to acknowledge that disease-unrelated death is an
unfavorable outcome that ought to be attributed to the treatments under
investigation.

A design that targets this estimand is a randomised parallel group design
where patients are followed up for two years or until death.

The analysis considerations for this estimand are the same as for the treat-
ment policy estimand in the absence of competing terminal events, see Sec-
tion 3.1.2.

B.3 Hypothetical estimand

This estimands shares the same estimand attributes (A) and (D) as the
composite estimand, but differs in the other attributes.
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(B) The variable of interest is the time to disease-related death up to two
years;

(C) Here we consider a hypothetical setting/world where death due to
disease-unrelated reasons was abolished.

Dependent on the specific setting at hand, this estimand may not be clinically
meaningful and relevant.

The design and analysis considerations for this estimand are the same as for
the hypothetical estimand in the absence of competing terminal events, see
Section 3.1.2.

B.4 Principal stratum estimand

The principal stratum estimand (Frangakis and Rubin, 2002) shares the same
attributes (B) and (D) as the hypothetical estimand. The population (prin-
cipal stratum) is defined as follows:

(A) Population: Defined through patients who would not die due to a disease-
unrelated cause over a period of two years, regardless of treatment as-
signment, within the targeted population defined by inclusion/exclusion
criteria.

As disease-unrelated deaths do not occur for this principal stratum popula-
tion, attribute (C) becomes

(C) Intercurrent events: The intercurrent event of disease-unrelated death
is captured through the population definition.

The principal stratum estimand has a causal interpretation as it refers to the
treatment effect in a subgroup properly defined by intercurrent events.

Considerations in terms of trial design and statistical analysis discussed for
the principal strata estimand and recurrent event endpoints in Section 3.2.1
also apply to this estimand.

B.5 While-alive estimand

The while-alive or while-on-treatment estimand focuses on the treatment
effect on disease-related death while patients are at risk of experiencing this
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event. Again, the definition of this estimand is similar to that for recurrent
event endpoints presented in Section 3.2.1, just the variable definition and
the summary measure need to be adjusted. Considering an effect at a certain
time point (e.g. at two years) is no longer of main interest as the variable of
interest is defined while a patient is alive - this can be shorter or longer than
two years.

In terms of statistical analysis, the Kaplan-Meier approach to obtain survival
probabilities at different time points should not be relied on when interest lies
in this estimand. Kaplan-Meier estimates are obtained by censoring patients
when they die from the competing event, assuming that they are still at risk
of dying from the event of interest even after they are censored, when in fact
they are at zero risk of dying twice. This leads to biased estimates as has
been discussed in various statistical publications; see, e.g., Hougaard (2000).

A more suitable summary measure can be based on the hazard function (at
different time points t) which is defined as the proportion of patients who
experience the event of interest at time t among those who are still alive at
time t. Weighted hazard ratios across relevant time windows can then be used
as summary measures. Cause-specific hazard models can be used to estimate
the (weighted) hazard ratios, see Appendix A.3.5.1. Although (weighted)
hazard ratios are problematic and may not offer a causal interpretation, they
may serve as intermediate step for the estimation of survival probabilities
and risks, see Hernan and Robins (2018).

C Published literature related to the simula-

tions

C.1 Simulation methods

Bender et al. (2005) proposed a general method for the simulation of uni-
variate survival data by applying inverse sampling. For simulating recurrent
event time data following a gap time model, this approach can be applied
to simulate the inter-event times. However, to simulate data following a
calendar-time model, the method by Bender et al. must be adapted; and cor-
responding simulation strategies have been proposed in Jahn-Eimermacher
et al. (2015). Alternative strategies (e.g. thinning homogeneous Poisson
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processes) are provided in Lewis and Shedler (1976, 1979). When a poten-
tial terminal event has to be considered in addition, methods for simulating
competing risk data (Beyersmann et al., 2009; Allignol et al., 2011) can be
combined with methods for simulating recurrent event data.

C.2 Selection effects

A trial population might be heterogeneous in the patients’ risk for events,
even conditional on the intervention and further covariates. In these situa-
tions, the mean event rate at time t of those patients that have been free
of any event until t (that is the at-risk-set in the Cox model) is changing
non-proportionally between both intervention groups. The violation of the
proportional hazards assumption causes the intervention effect estimates as
derived from a Cox model to be biased (selection bias). However, in a re-
current event setting, patients remain at risk after experiencing a first event,
and therefore no selection in the at-risk-set takes place. For this reason, the
AG model and its parametric counterparts, the NB model and the Poisson
model, can also provide unbiased intervention effect estimates in situations
with unmodeled heterogeneity. Selection bias in the Cox model has been - in
addition to others - analytically derived in Aalen et al. (2015) and has been
demonstrated in several simulation studies with data following homogeneous
or non-homogeneous mixed Poisson processes, that have been analyzed by
Cox, AG, NB, and Poisson models (Metcalfe and Thompson, 2006; Hen-
gelbrock et al., 2016; Cheung et al., 2010; Jahn-Eimermacher et al., 2017).
Results from clinical trial data (Rogers et al., 2014a; Ip et al., 2015; Mahé
and Chevret, 2001) further support the findings obtained in simulation stud-
ies. In addition to Aalen et al. (2015), accessible explanations of selection
bias can also be found in Jahn-Eimermacher et al. (2017) and Hengelbrock
et al. (2016). Whereas the aforementioned unstratified models for recurrent
event data can prevent selection bias, it will be reintroduced by stratifying
the analysis model by the event number as is done in the PWP modeling
approach (Metcalfe and Thompson, 2007; Kelly and Lim, 2000; Hengelbrock
et al., 2016; Therneau and Grambsch, 2000). For univariate data, frailty
models have been proposed for preventing selection bias. In the context of
HF studies, a comparison of the Cox model for time to death with results de-
rived from a frailty model indeed reveals differences between these estimates
(Rogers et al., 2016). Hengelbrock et al. (2016) further demonstrated that
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adding a frailty term to the PWP model will also remove selection bias.

C.3 Total intervention effects and carry-over effects

In stratified models, also called autoregressive models by some authors, the
risk of further events is changing after each event, thus violating the Poisson
assumption of the (in these situations misspecified) AG, NB and Poisson
models. The intervention effect estimates from such misspecified models
refer to a total intervention effect, as has analytically been derived for the
AG model in Cheung et al. (2010). In contrast, the stratified version (PWP)
estimates the direct intervention effect that is corresponding to the model
parameter. When risks increase with each event, preventing or delaying an
event also prevents or delays a patient from being at an increased risk for
further events. This so-called indirect intervention effect contributes to a
larger total effect as compared to an intervention’s direct effect on the risk
rates. For similar reasons, the total intervention effect decreases when risks
decrease with each event. Besides the analytical results in Cheung et al.
(2010), the estimates of total effects have been derived in many simulation
studies (Jahn-Eimermacher, 2008; Metcalfe and Thompson, 2006, 2007; Kelly
and Lim, 2000; Hengelbrock et al., 2016; Villegas et al., 2013; Therneau and
Grambsch, 2000). Furthermore, Cheung et al. (2010) showed in simulation
studies that the 95% confidence interval as derived from a misspecified AG
model keeps the 95% coverage probability for the total intervention effect.
Next to Cheung et al. (2010), accessible explanations of total versus direct
intervention effects can also be found in Jahn-Eimermacher et al. (2017)
and (Hengelbrock et al., 2016). Some clinical trial results further support
these findings (Ip et al., 2015; Mahé and Chevret, 2001). Also, the Wei-
Lin-Weissfeld model is in general misspecified, as the proportional hazards
assumption is violated within all but the first stratum. As a consequence,
the mean intervention effect estimates differ from the model parameters. The
so-called carry-over-effects(a delay of a first event causes a delay of all further
events) contribute to larger mean intervention effect estimates as compared to
the model parameters, as has been demonstrated in several simulation studies
(Kelly and Lim, 2000; Metcalfe and Thompson, 2007; Villegas et al., 2013;
Therneau and Grambsch, 2000). These studies also confirm that estimates
derived from a PWP model are not affected by carry-over-effects, as here a
different definition of the at-risk-set is applied.
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C.4 Parametric vs semi-parametric models

The NB and Poisson are parametric models. When all patient have the same
follow-up time, these may still be appropriate even with time-changing event
rates. When follow-up times are not the same in all patients, this is handled
through the inclusion of the log follow-up time as an offset, and essentially
relies on exponentially distributed inter-event-times (eventually conditional
on a random frailty term). The AG model is the semi-parametric counter-
part without a distributional restriction on inter-event-times. Several simu-
lation studies and real data examples show comparable results when derived
from semi-parametric and parametric models even when the exponential dis-
tributional assumption does not hold (Rogers et al., 2014a; Metcalfe and
Thompson, 2006; Jahn-Eimermacher, 2008; Duchateau et al., 2003)

C.5 Competing terminal event

In HF studies, CVD is a competing terminal event. When analyzing HHF
and CVD within a composite endpoint and intervention effects differ for the
two components, a mixed intervention effect is estimated. This has been
observed in some clinical trials (Rogers et al., 2012, 2014b). When the hospi-
talisations are analysed by applying the AG model and thus handling CVD
as an independent censoring event, the terminal event reduces the at-risk-sets
over time to the survivors only. For this reason, the resulting intervention
effect estimates are prone to selection bias in contrast to the situations with-
out a competing terminal event (Jahn-Eimermacher et al., 2017). The joint
frailty model can prevent selection bias. However, in clinical trial data, no
substantial differences between the results derived from the joint frailty and
marginal models (AG and Poisson model) have been observed (Rogers et al.,
2014b). Some simulation studies further compare different joint frailty mod-
els (Mazroui et al., 2012; Belot et al., 2014).

C.6 Time scale

Most of the considered statistical models can apply either a calendar time
scale or a gap time scale (Kelly and Lim, 2000). Only for exponentially dis-
tributed inter-event-times do both time scales refer to the same model as
underlies the Poisson and NB model (eventually conditional on the random
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term). Under more general distributional assumptions, statistical results de-
pend on the specification of the time scale as has been observed in simulation
studies (Metcalfe and Thompson, 2006; Villegas et al., 2013) and real data
(Duchateau et al., 2003).

C.7 Power comparisons

Comparing the power of statistical methods for rejecting a null hypothesis
H0 = {β = 0} is only well interpretable if the compared methods asymptoti-
cally provide the same β estimates. Otherwise, the differences in asymptotic
effect estimators will cause differences in power, which therefore no longer
relate to efficiency only. As most of the statistical methods described so far
differ in the treatment effect they are estimating, we focus here on the power
comparison between the Cox and AG model only. Power and sample size
formulas have been derived for data following a Poisson process (Schoenfeld,
1983; Bernardo and Harrington, 2001). For both methods (Cox, AG), the
number of observed events required to obtain a power of 1− γ for rejecting
the null hypothesis H0 = {β = 0} at the two-sided significance level of α
when comparing two equally sized groups is given as

L = 4 ·
(z1−α/2 + z1−γ

β

)2

As the AG model incorporates recurrent events and thus uses more events
than the Cox model, the AG approach will always be more efficient under
Poisson processes. Simulation results that show standard error estimates
support this finding (Kelly and Lim, 2000; Metcalfe and Thompson, 2006).
In these papers, the simulation results given for the first event under the PWP
method coincide with results that would be obtained from a Cox model. The
results further indicate, that the use of robust standard errors will not affect
the power under a Poisson process as they hardly differ from the naive ones.

When data follow a mixed Poisson process, the Cox but not the AG model
is prone to selection bias. Selection bias will cause a decrease in the power.
The power of the AG model also decreases as the robust standard error
estimates are increasing with increasing variance of the random effect. Some
simulation studies indicate, that the AG model is still more efficient under
the particularly investigated data generation processes (Kelly and Lim, 2000;
Metcalfe and Thompson, 2006).
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D Details for simulation studies in settings

without terminal events

D.1 Event-generating process

Let Tij be the waiting time between patients (j − 1)th and its jth event for
j > 1 and the time elapsed from starting point 0 to its first event for j = 1,
we generate recurrent event data under both homogeneous Poisson process
and non-homogeneous Poisson process.

1. Under homogeneous Poisson process that assumes constant control
ARR over time, we generate for each patient i, conditional on Zi = zi,
the inter-event times Tij from independent realizations of an exponen-
tial distribution with scale parameter λ = λ0zi exp(xiβ).

2. The non-homogeneous Poisson process accounts for a considerable vari-
ation of the control ARR over the last years (Nicholas et al., 2011). We
choose a log-linear baseline intensity function λ(t) = exp(α0 + α1t) =
λ0 exp(α1t) to model the relapse counts. To get an impression of the
sizes of α0 and α1 we visit the meta-analysis published by (Nicholas
et al., 2012), where they reported a decreasing trend of control relapse
rates over time within randomized clinical trials in relapsing MS, the
overall rate ratio of first year versus second year of the ARR from 1.1
to 1.6 correspond to a range of α1 from −0.1 to −0.5. Additionally,
we define α0 that leads to a baseline rate of λ0 = exp(α0) = 0.5. The
inter-event times Tij are generated based on the algorithm in (Lewis
and Shedler, 1976).

D.2 Treatment discontinuation

The planned follow-up time for each patient is T = 2 years, treatment dis-
continuation is treated as non-informative or informative.

1. Non-informative treatment discontinuation is simulated by randomly
assigning each patient a follow-up of length T (1− pili) with (pi)i=1,...,n

be independent realizations of binomial distribution with success prob-
ability 0.2, and (li)i=1,...,n be independent realizations of uniform dis-
tribution.
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2. Informative treatment discontinuation is simulated in two ways. First,
we model the recurrent event process and the treatment discontinua-
tion process jointly by a joint frailty model, so that times to informative
treatment discontinuation are generated from exponential distribution
with scale parameter r = r0zi exp(xiγ), where r0 = 0.2 is the baseline
treatment discontinuation rate, and γ is the coefficient of treatment ef-
fect on treatment discontinuation, which is not necessary equal to the
coefficient of treatment effect on recurrent event β. Second, the treat-
ment discontinuation process is generated conditional on the number
of recurrent events, the larger the number of recurrent events, the more
likely the patient being censored. This is achieved by generating a real-
ization of Bernoulli distribution with success probability 0.3 each time
an event occurs, and the patient discontinues right after the event in
case we get a realization of 1.

D.3 Numeric estimand values

In this section, we compute the numeric estimand value under four scenarios.
Here we only consider the homogeneous Poisson process, and the informative
treatment discontinuation where it is modeled jointly with recurrent event
process by a joint frailty model (see more details about treatment discontin-
uation in the Appendix D.2).

Suppose we are interested in the treatment effect defined as ratio of mean
event rate in treatment group over the control group. In order to derive the
numeric estimand values under four scenarios, first we denote the treatment
effect on recurrent event by eβ = 0.65, treatment discontinuation rate is
γ0 = 0.2, follow-up time is T = 2, dispersion parameter is θ = 0.25, and the
treatment effect on discontinuation is eγ = 0.65.

For hypothetical estimands (scenario 1 and 2), the numeric estimand value is
0.65 no matter the treatment discontinuation is informative or non-informative.
This is because this estimand represents the values as if the treatment had
continued.

For treatment-policy estimand, non-informative treatment discontinuation
(scenario 3), the analytic form of estimand is derived as (1 − γ0/2)eβ +
γ0/2, by plugging in the parameters, we get 0.685. For treatment-policy
estimand, informative treatment discontinuation (scenario 4), the analytic
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form of estimand is derived as 1 − (1−eβ)
γ0Teγ

[
1−

(
1

1+θγ0eγT

) 1
θ

]
, by plugging in

the parameters, we get 0.7002. Please see below for more detailed derivations.

D.3.1 Informative treatment discontinuation

The treatment effect on the recurrent event rate is eβ with rates zλ0 in control
group and zλ0e

β in treatment group up until treatment discontinuation and
the discontinuation rate is zγ0 in control group and zγ0e

γ in treatment group
for a patient with gamma random effect z.

The time spent at rate λ0ze
β is limited by the smaller of time to treatment

discontinuation and the length of trial T. Thus, the expected number of
events of treatment group given z is∫ T

0

zλ0e
βe−zγ0e

γtdt+

∫ T

0

zλ0

(
1− e−zγ0eγt

)
dt

= zλ0

{
T + (eβ − 1)

∫ T

0

e−zγ0e
γtdt

}
= zλ0

{
T + (eβ − 1)

(
1− e−zγ0eγT

)
/zγ0e

γ
}

Now we need to integrate out the frailty z, which follows a gamma distribu-
tion with shape parameter 1/θ and rate parameter 1/θ, having mean 1 and
variance θ∫ ∞

0

λ0

{
Tz +

(eβ − 1)

γ0eγ
(
1− e−zγ0eγT

)} 1

Γ(1/θ)

(z
θ

) 1
θ
−1

e−z/θ
dz

θ

= λ0T

{
1 +

(eβ − 1)

Tγ0eγ

[
1−

∫ ∞
0

1

Γ(1/θ)

(z
θ

) 1
θ
−1

e−z(γ0e
γT+1/θ)dz

θ

]}

= λ0T

{
1 +

(eβ − 1)

Tγ0eγ

[
1−

(
1

θ

) 1
θ

(γ0e
γT + 1/θ)−

1
θ

]}

= λ0T

{
1 +

(eβ − 1)

Tγ0eγ

[
1− (1 + θγ0e

γT )−
1
θ

]}
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So when we divide through by λ0T , the expected number of events in control
group, we end up with

1− (1− eβ)

γ0Teγ

[
1−

(
1

1 + θγ0eγT

) 1
θ

]

D.3.2 Non-informative treatment discontinuation

The treatment effect on the recurrent event rate is eβ with rates zλ0 in control
group and zλ0e

β in treatment group up until treatment discontinuation and
the discontinuation rate is γ0 in control group and γ0 in treatment group for
a patient with gamma random effect z. We assume 10% of the time patients
in the active arm are back on control (20% are censored, and each spends on
average half their time before and half after censoring).

The time spent at rate λ0ze
β is limited by the smaller of time to treatment

discontinuation and the length of trial T. Thus, the expected number of
events of treatment group given z is∫ T

0

zλ0e
β(1− γ0/2)dt+

∫ T

0

zλ0γ0/2dt

= zλ0T
{

(1− γ0/2)eβ + γ0/2
}

Now we need to integrate out the frailty z, which follows a gamma distribu-
tion with mean 1 and variance θ∫ ∞

0

zλ0T
{

(1− γ0/2)eβ + γ0/2
}
dz

= λ0T
{

(1− γ0/2)eβ + γ0/2
}

So when we divide through by λ0T , the expected number of events in control
group, we end up with

(1− γ0/2)eβ + γ0/2

D.4 Event specific estimates for WLW and PWP mod-
els

Table 13 presents the event specific treatment effect estimates for WLW and
PWP under four scenarios as above. This table just shows the result when
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baseline recurrent event rate λHHF = 0.5, dispersion parameter θ = 0.25.
For these two models, non-convergence can happen when both sample size
and the baseline event rate are small, so non-convergence percentage is also
presented. To compare WLW and PWP in terms of event specific treatment
effect estimates, we have the following findings:

• The treatment effect estimates of first event from PWP and WLW
correspond to Cox model; on each of the events beyond the first, WLW
gives smaller HR compared to PWP. All four scenarios have the same
pattern, but scenarios 2, 3 and 4 give larger event specific HR estimates
than scenario 1, which is consistent with the overall estimates.

• The HR estimates from the PWP are of markedly greater than 1 for
events beyond the first, increasingly so for successive events, since PWP
provides an indication of the direct effect of treatment upon each or-
dered event. However, PWP estimates are not based on comparisons
of full randomized groups, and so the resulting conclusions must be
suitably cautious.

• The distinctive treatment effect estimates obtained by WLW are a di-
rect result of the risk set definition in WLW. By allowing patients to
be at risk of the kth event before they have undergone the (k − 1)th
event, WLW has been seen as failing to accommodate the ordered na-
ture of recurrent events (Klein JP, 1992), (Cook and Lawless, 1997),
(Tuli et al., 2000). An alternative view of this issue is that the treat-
ment effect on event k will be ”carried over” to subsequent events, so
”biasing” the estimates of the treatment effects for those later events.

• When the baseline recurrent event rate is 0.5, the treatment effect
estimates for event 3 and 4 are not reliable for small sample size, e.g.
n < 150 per arm, since the non-convergence percentage is large.
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Table 13: Without terminal event: event specific mean treatment effects
estimate and non-convergence percentage of WLW and PWP under four
scenarios, with HR = 0.65, λ0 = 0.5, and θ = 0.25.

n=50 n=150 n=250
Method Event HR non-

converge(%)
HR non-

converge(%)
HR non-

converge(%)
Scenario 1: Non-informative WLW 1 0.7 0 0.68 0 0.675 0
(Hypothetical) 2 0.769 0.18 0.739 0 0.738 0

3 0.789 18.98 0.556 0.57 0.538 0.01
4 1.22 74.81 0.772 31.27 0.571 13.42

PWP 1 0.7 0 0.68 0 0.675 0
2 1.181 0.18 1.057 0 1.045 0
3 1.891 21.25 1.158 0.6 1.087 0.01
4 2.668 83.06 2.205 34.37 1.631 14.26

Scenario 2: Informative WLW 1 0.705 0 0.687 0 0.681 0
(Hypothetical) 2 0.79 0.19 0.752 0 0.745 0

3 0.855 23.89 0.596 1.1 0.561 0.1
4 1.147 81.87 0.851 39.6 0.643 19.88

PWP 1 0.705 0 0.687 0 0.681 0
2 1.212 0.19 1.072 0 1.049 0
3 2.019 27.04 1.207 1.19 1.115 0.1
4 2.337 89.41 2.343 44.58 1.809 21.43

Scenario 3: Non-informative WLW 1 0.726 0 0.708 0 0.703 0
(Treatment-policy) 2 0.796 0.04 0.773 0 0.771 0

3 0.784 10.91 0.608 0.14 0.591 0
4 1.171 63.92 0.758 18.14 0.594 5.58

PWP 1 0.726 0 0.708 0 0.703 0
2 1.184 0.04 1.078 0 1.066 0
3 1.725 12.02 1.18 0.12 1.124 0
4 2.589 72.9 1.941 19.98 1.484 5.88

Scenario 4: Informative WLW 1 0.729 0 0.713 0 0.709 0
(Treatment-policy) 2 0.818 0 0.793 0 0.789 0

3 0.839 9.47 0.664 0.1 0.644 0
4 1.217 60.07 0.826 13.98 0.67 3.88

PWP 1 0.729 0 0.713 0 0.709 0
2 1.22 0 1.107 0 1.091 0
3 1.797 10.13 1.247 0.08 1.192 0
4 2.49 68.9 1.949 15.48 1.509 4.04
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E Details for simulation studies in settings

with terminal events

E.1 Issues with implementation of the joint frailty model

Computational issues were encountered with the function frailtyPenal of the
R package frailtypack (Rondeau et al., 2012). This included biased estimates,
long run times of more than an hour for a single data set and massive mem-
ory occupation. The problems did not occur for every data set, but for a
not too small proportion of about 20%. For many individual data sets it
was possible to prevent these issues by choosing different starting values or
fine-tuning parameters like the number of knots or smoothing parameters
when using splines to model the baseline hazards. But no general setting
could be found that would have allowed running a simulation study with
many iterations. In a regulatory context it is also questionable to apply a
model whose application requires manual tuning of parameters and would
not allow pre-specification of detailed settings. We also tried the implemen-
tation of the joint frailty as described in Liu and Huang (2008) with PROC
NLMIXED in SAS, which uses piecewise constant baseline hazard functions
for HHF and CVD. The procedure generally converged relatively quickly
to meaningful values. At least when a normal random effect was assumed,
for the gamma frailty the convergence took about 30 minutes. But PROC
NLMIXED sometimes stopped before reaching the global maximum of the
log-likelihood. This could be prevented by either restarting the algorithm
with the ‘final’ values or by using a time scale in years instead of months.
The latter increased the value of the parameters and prevented numerical
issues in the fitting process. Since the rest of the simulation study was done
on a parallel server with R, the joint frailty model in SAS is not included
in the results, as transferring the simulated data to SAS and running them
there would have required a long time.

In summary, the joint frailty model remains an attractive model in a setting
with recurrent events and a terminal event. The NLMIXED implementation
seems to work ok, but care must be taken that convergence to the global
maximum of the log-likelihood function was achieved. Further investigations
of this model and possibly improved software implementations are of interest.
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E.2 Event-generating process

As a first step the enrollment timepoints were assigned equally-spaced across
the 3 years of enrollment. Treatment groups were randomly assigned. In case
no terminal event such as CVD or non-CVD occurred, patients were admin-
istratively censored at the end of the trial (5 years overall trial duration).

For the base case scenario the time from enrollment to CVD and to the next
HHF for patient i, i = 1, ..., n, were generated using a joint frailty model,
where the inter-event times are exponentially distributed conditional on the
gamma distributed frailties zi (mean 1 and variance θ) with rates given as

λ∗CV = λCV zαi exp(xiβCV ), (31)

λ∗HHF = λHHF zi exp(xiβHHF ), (32)

where λCV and λHHF are the respective rates in the control group, α defines
the correlation between the two processes, xi is the individual treatment
identifier (xi = 1 for the active treatment group, xi = 0 for the control group)
and exp(βCV ) = HRCV , exp(βHHF ) = RRHHF are the treatment effects on
CVD and HHFs, respectively. Depending on the respective scenario the
frailty correlation was set to α = 0.5, 0.75 or 1.

The control rates λCV and λHHF as well as the frailty variance θ were chosen
so that the observed annualized control CVD rate is 4% (number of events per
patient-year at risk), the observed annualized control rate of first composite
event is 9% and the overall observed ratio of all to first events is 1.8. These
parameters were adapted accordingly for the variations of the base case in
order to observe the above mentioned annualized rates and ratio of all to
first events. Table 14 gives the respective parameters for each considered
scenario.

Time from enrollment to non-CVD was independently simulated according to
an exponential distribution, where the rate λNCV (same in both treatment
groups) was chosen such that the proportion of non-CVD of all deaths is
around 30%. For all considered scenarios this was achieved with an annual
rate of λNCV = 0.01716.

Time from enrollment to treatment discontinuation was varied to be either
independent of the joint frailty process for CVD and HHFs or to depend
on the hospitalization events (and indirectly on treatment). In the inde-
pendent case it was simulated as an exponential process with rate λTD =
− log(0.95) = 0.05129 so that the proportion of treatment discontinuation
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Table 14: Exact parameter values for the annual control rates λ0,CV and
λ0,HHF as well as the frailty variance θ for all considered scenarios to obtain
an observed annualized control CVD rate of 4%, an observed annualized
control rate of first composite event of 9% and an overall observed ratio of
all to first events of 1.8.

Scenario λCV λHHF θ

Base case 0.07032 0.15444 5.7
Inter-event Weibull 0.168 0.3228 5.1
Autoregressive κ = 1.1 0.0678 0.1386 5.2
Autoregressive κ = 1.2 0.06492 0.1254 4.7
Frailty correlation α = 0.5 0.07752 0.13956 6.0
Frailty correlation α = 1 0.0612 0.1692 5.7
Numerical estimand 0.06036 0.16788 5.7

after 1 year is 5%. In the case of treatment discontinuation depending on
hospitalizations, it was assumed that treatment is only discontinued directly
after a hospitalization event, i.e. the higher the number of recurrent events
the more likely treatment is discontinued. This was achieved by generating a
realization of a Bernoulli distribution with success probability 0%, 5%, 10%,
15% or 20% each time an event occurs. After treatment discontinuation it
was assumed that active treated patients ’jump’ to the respective rate of the
control group.

As one variation of the base case the inter-event times for patient i was
assumed to be Weibull distributed conditional on the gamma distributed
frailties with shape γ = 0.75 for both treatment groups and scale parameters
equal to the rate parameters for the exponential case given in (31) and (32).
The parametrization of the Weibull distribution used is such that with scale
parameter λ and shape parameter γ the cumulative hazard function is given
as Λ(t) = λtγ. As mentioned above the respective control rates λCV and
λHHF as well as the frailty variance θ were adapted accordingly in order to
obtain the required annualized rates and ratio of all to first events.

For the scenario with autoregressive event rate the same joint frailty process
as for the base case scenario was chosen, except for the rates of the conditional
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exponential process for patient i which were defined as

λ∗CV (t) = λCV κNi(t) zαi exp(xiβCV ), (33)

λ∗HHF (t) = λHHF κNi(t) zi exp(xiβHHF ). (34)

Here, Ni(t) defines the number of hospitalizations that have already occurred
for patient i until time t and κ defines the increase of the rates after each
hospitalization which was set to κ = 1.1, 1.2. That means, the rates for both
the time to CVD and the time to the next HHF are increasing after each
hospitalization.

The exact parameter values for the determination of the numerical estimand
with fixed follow-up time of 3.5 years and frailty correlation α = 1 that
resulted in the required annualized control rates and ratio of all to first events
are also listed in Table 14.

E.3 Numeric estimand values

In this section, we compute the numeric estimand values under four scenarios.
We consider here only the setting where all the patient have a fixed follow-up
time of 3.5 years and use a correlation between the frailty of HHF and CVD
of 1.

E.3.1 Assumptions and notations

• N1(t): number of HHF a patient has experienced by time t in treatment
group

• N0(t): number of HHF a patient has experienced by time t in control
group

• M1(t): number of HHF and CVD a patient has experienced by time t
in treatment group

• M0(t): number of HHF and CVD a patient has experienced by time t
in control group

• Z: frailty for recurrent event, has a gamma distribution with mean 1
and dispersion parameter θ = 5.7, so the probability density function
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is

fZ(Z) =
1

Γ(1/θ)

(
Z

θ

) 1
θ
−1

e−Z/θ
1

θ

• U = Zα: frailty for CVD, α = 1

• λHHF = 0.16788: baseline recurrent event (hospitalization) rate

• λCV = 0.06036: baseline CVD rate

• λNCV = 0.01716: baseline non-CVD rate

• λTD = 0.05129: treatment discontinuation rate

• RRHHF = eβ = 0.7: rate ratio of recurrent event (hospitalization)

• HRCV = eγ = 0.8, 1.0, 1.25: hazard ratio of CVD

• E{dN∗1 (t)/dt} = λHHFZe
β: expected event rate for patients in treat-

ment group

• E{dN∗0 (t)/dt} = λHHFZ: expected event rate for patients in control
group

• S1(t): overall survival in treatment group

• S0(t): overall survival in control group

• SCV 1(t, Z) = exp(−λCVZαeγt): survival function for CVD in treatment
group

• SCV 0(t, Z) = exp(−λCVZαt): survival function for CVD in control
group

• SNCV (t) = exp(−λNCV t): survival function for non CVD, SNCV (t) is
independent of Z

• STD1(t) = exp(−λTDt): survival function for non-informative treat-
ment discontinuation

• STD21(t, Z) = E{
∏

s≤t(1 − qdN∗1 (s))|Z} =
∏

s≤t(1 − qλHHFZeβds) =

exp(−qλHHFZeβt): survival function for informative treatment discon-
tinuation in treatment group, q = 10%
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• STD20(t, Z) = E{
∏

s≤t(1 − qdN∗0 (s))|Z} =
∏

s≤t(1 − qλHHFZds) =
exp(−qλHHFZt): survival function for informative treatment discon-
tinuation in control group, q = 10%

E.3.2 Analytic formula of summary measures

The summary measure for the two estimands are:

• Estimand 1 (HHF): RR1 =
E{N1(T )}/

∫ T
0 S1(t)dt

E{N0(T )}/
∫ T
0 S0(t)dt

. This could also be writ-

ten as the product of two estimands: a). effect on recurrent events:
E{N1(T )}
E{N0(T )} ; b). effect on mortality:

∫ T
0 S0(t)dt∫ T
0 S1(t)dt

= RMST0(T )
RMST1(T )

, where RMST =∫ T
0
S(t)dt is the restricted mean survival time.

• Estimand 2 (HHF+CVD): RR2 =
E{M1(T )}/

∫ T
0 S1(t)dt

E{M0(T )}/
∫ T
0 S0(t)dt

.

In the following we will derive the analytic formula of summary measures for
the two estimands under two types of treatment discontinuation.

E.3.2.1 Estimand 1 (HHF) The summary measure isRR1 =
E{N1(T )}/

∫ T
0 S1(t)dt

E{N0(T )}/
∫ T
0 S0(t)dt

.

E.3.2.1.1 Non-informative treatment discontinuation

E{N1(T )}∫ T
0 S1(t)dt

=

∫ T
0

∫∞
0 {SCV 1(t, Z)SNCV (t)STD1(t)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD1(t)]λHHFZ}fZ(Z)dZdt∫ T
0

∫∞
0 {SCV 1(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZSCV 1(t, Z)SNCV (t)[STD1(t)(eβ − 1) + 1]}dZdt∫ T

0

∫∞
0 {SCV 1(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZ exp(−λCV Zαeγt) exp(−λNCV t)[exp(−λTDt)(eβ − 1) + 1]}fZ(Z)dZdt∫ T

0

∫∞
0 {exp(−λCV Zαeγt) exp(−λNCV t)}fZ(Z)dZdt

E{N0(T )}∫ T
0 S0(t)dt

=

∫ T
0

∫∞
0 {SCV 0(t, Z)SNCV (t)STD1(t)λHHFZ + SCV 0(t, Z)SNCV (t)[1− STD1(t)]λHHFZ}fZ(Z)dZdt∫ T

0

∫∞
0 {SCV 0(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZSCV 0(t, Z)SNCV (t)}fZ(Z)dZdt∫ T
0

∫∞
0 {SCV 0(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZ exp(−λCV Zαt) exp(−λNCV t)}fZ(Z)dZdt∫ T
0

∫∞
0 {exp(−λCV Zαt) exp(−λNCV t)}fZ(Z)dZdt

Now integrate out Z, it is only integratable when α = 1. Let
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A =

∫ ∞
0

Z exp(−λCV Zeγt)fZ(Z)dZ

=

∫ ∞
0

( 1
θ

)
1
θ

Γ(1/θ)
Z

1
θ exp(−

1

θ
Z) exp(−λCV eγtZ)dZ

=
( 1
θ

)
1
θ

Γ(1/θ)
×

Γ(1 + 1/θ)

(λCV eγt+ 1
θ

)
1
θ
+1

∫ ∞
0

(λCV e
γt+ 1

θ
)
1
θ
+1

Γ(1 + 1/θ)
Z

1
θ exp{−(

1

θ
+ λCV e

γt)Z}dZ

= (
1

λCV eγθt+ 1
)
1
θ
+1

B =

∫ ∞
0

Z exp(−λCV Zt)fZ(Z)dZ = (
1

λCV θt+ 1
)
1
θ
+1

C =

∫ ∞
0

exp(−λCV Zeγt)fZ(Z)dZ = (
1

λCV eγθt+ 1
)
1
θ

D =

∫ ∞
0

exp(−λCV Zt)fZ(Z)dZ = (
1

λCV θt+ 1
)
1
θ

Therefore

E{N1(T )}∫ T
0 S1(t)dt

=

∫ T
0 A exp(−λNCV t)[exp(−λTDt)(eβ − 1) + 1]dt∫ T

0 C exp(−λNCV t)dt

=

∫ T
0 ( 1

λCV e
γθt+1

)
1
θ
+1 exp(−λNCV t)[exp(−λTDt)(eβ − 1) + 1]dt∫ T

0 ( 1
λCV e

γθt+1
)
1
θ exp(−λNCV t)dt

E{N0(T )}∫ T
0 S0(t)dt

=

∫ T
0 B exp(−λNCV t)dt∫ T
0 D exp(−λNCV t)dt

=

∫ T
0 ( 1

λCV θt+1
)
1
θ
+1 exp(−λNCV t)dt∫ T

0 ( 1
λCV θt+1

)
1
θ exp(−λNCV t)dt

E.3.2.1.2 Informative treatment discontinuation

E{N1(T )}∫ T
0 S1(t)dt

=

∫ T
0

∫∞
0 {SCV 1(t, Z)SNCV (t)STD21(t, Z)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD21(t, Z)]λHHFZ}fZ(Z)dZdt∫ T
0

∫∞
0 {SCV 1(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZSCV 1(t, Z)SNCV (t)[STD21(t)(eβ − 1) + 1]}fZ(Z)dZdt∫ T

0

∫∞
0 {SCV 1(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZ exp(−λCV Zαeγt) exp(−λNCV t)[exp(−qλHHFZeβt)(eβ − 1) + 1]}fZ(Z)dZdt∫ T

0

∫∞
0 {exp(−λCV Zαeγt) exp(−λNCV t)}fZ(Z)dZdt

E{N0(T )}∫ T
0 S0(t)dt

=

∫ T
0

∫∞
0 {SCV 0(t, Z)SNCV (t)STD20(t, Z)λHHFZ + SCV 0(t, Z)SNCV (t)[1− STD20(t, Z)]λHHFZ}fZ(Z)dZdt∫ T

0

∫∞
0 {SCV 0(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZSCV 0(t, Z)SNCV (t)}fZ(Z)dZdt∫ T
0

∫∞
0 {SCV 0(t, Z)SNCV (t)}fZ(Z)dZdt

=

∫ T
0

∫∞
0 {λHHFZ exp(−λCV Zαt) exp(−λNCV t)}fZ(Z)dZdt∫ T
0

∫∞
0 {exp(−λCV Zαt) exp(−λNCV t)}fZ(Z)dZdt

Now integrate out Z, it is only integratable when α = 1. Let

134



G =

∫ ∞
0

Z exp(−λCV Zeγt) exp(−qλHHFZeβt)fZ(Z)dZ = (
1

(λCV eγ + qλHHF eβ)θt+ 1
)
1
θ
+1

Therefore, we have

E{N1(T )}∫ T
0 S1(t)dt

=

∫ T
0 exp(−λNCV t)[G(eβ − 1) +A]dt∫ T

0 C exp(−λNCV t)dt

=

∫ T
0 (exp(−λNCV t)[( 1

(λCV e
γ+qλHHF e

β)θt+1
)
1
θ
+1(eβ − 1) + ( 1

λCV e
γθt+1

)
1
θ
+1]dt∫ T

0 ( 1
λCV e

γθt+1
)
1
θ exp(−λNCV t)dt

E{N0(T )}∫ T
0 S0(t)dt

=

∫ T
0 B exp(−λNCV t)dt∫ T
0 D exp(−λNCV t)dt

=

∫ T
0 ( 1

λCV θt+1
)
1
θ
+1 exp(−λNCV t)dt∫ T

0 ( 1
λCV θt+1

)
1
θ exp(−λNCV t)dt

E.3.2.2 Estimand 2 (HHF+CVD) The summary measure is RR2 =
E{M1(T )}/

∫ T
0 S1(t)dt

E{M0(T )}/
∫ T
0 S0(t)dt

.

E.3.2.2.1 Non-informative treatment discontinuation There are four
terms in the following formula, the first two on line 1 represent HHF, the
second two on line 2 represent CVD.

• First term, the probability of patients who did not die from CVD or
non-CVD times the probability of patients did not discontinue at time
t, times the event rate of hospitalization in treatment group.

• Second term, the probability of patients who did not die from CVD
or non-CVD times the probability of patients discontinued at time t,
times the event rate of hospitalization in control group.

• Third term, the probability of patients who did not die from non-CVD
times the probability of patients did not discontinue at time t, times
the probability of CVD in treatment group.

• Fourth term, the probability of patients who did not die from non-
CVD times the probability of patients discontinued at time t, times
the probability of CVD in control group.
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E{M1(T )} =

∫ T

0

∫ ∞
0
{SCV 1(t, Z)SNCV (t)STD1(t)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD1(t)]λHHFZ}fZ(Z)dZdt

+

∫ ∞
0

∫ T

0
{SNCV (t)STD1(t)d(−SCV 1(t, Z))/dt+ SNCV (t)[1− STD1(t)]d(−SCV 0(t, Z))/dt}fZ(Z)dZ

=

∫ T

0

∫ ∞
0
{SCV 1(t, Z)SNCV (t)STD1(t)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD1(t)]λHHFZ

+ SCV 1(t, Z)SNCV (t)STD1(t)λCV Z
αeγ + SCV 0(t, Z)SNCV (t)[1− STD1(t)]λCV Z

α}fZ(Z)dZdt

=

∫ T

0
exp(−λNCV t)

∫ ∞
0
{λHHFZ exp(−λCV Zαeγt)[exp(−λTDt)(eβ − 1) + 1]

+ exp(−λTDt)λCV Zαeγ exp(−λCV Zαeγt) + (1− exp(−λTDt))λCV Zα exp(−λCV Zαt)}fZ(Z)dZdt

E{M0(T )} =

∫ T

0

∫ ∞
0
{SCV 0(t, Z)SNCV (t)STD1(t)λHHFZ + SCV 0(t, Z)SNCV (t)[1− STD1(t)]λHHFZ}fZ(Z)dZdt

+

∫ ∞
0

∫ T

0
{SNCV (t)STD1(t)d(−SCV 0(t, Z))/dt+ SNCV (t)[1− STD1(t)]d(−SCV 0(t, Z))/dt}fZ(Z)dZ

=

∫ T

0

∫ ∞
0
{SCV 0(t, Z)SNCV (t)λHHFZ + SCV 0(t, Z)SNCV (t)λCV Z

α}fZ(Z)dZdt

=

∫ T

0
exp(−λNCV t)

∫ ∞
0
{λHHFZ exp(−λCV Zαt) + λCV Z

α exp(−λCV Zαt)}fZ(Z)dZdt

Now integrate out Z, it is only integratable when α = 1.

E{M1(T )} =

∫ T

0
exp(−λNCV t)

∫ ∞
0
{Z exp(−λCV Zeγt)[λHHF (exp(−λTDt)(eβ − 1) + 1) + exp(−λTDt)λCV eγ)]

+ (1− exp(−λTDt))λCV Z exp(−λCV Zt)}dZdt

=

∫ T

0
exp(−λNCV t){A[λHHF exp(−λTDt)(eβ − 1) + 1) + exp(−λTDt)λCV eγ)] + (1− exp(−λTDt))λCV B}dt

E{M0(T )} =

∫ T

0
exp(−λNCV t)

∫ ∞
0
{Z exp(−λCV Zt)(λHHF + λCV )}

=

∫ T

0
exp(−λNCV t){B(λHHF + λCV )}dt

Therefore, we have

E{M1(T )}∫ T
0 S1(t)dt

=

∫ T
0 exp(−λNCV t){A[λHHF (exp(−λTDt)(eβ − 1) + 1) + exp(−λTDt)λCV eγ)] + (1− exp(−λTDt))λCV B}dt∫ T

0 C exp(−λNCV t)dt

E{M0(T )}∫ T
0 S0(t)dt

=

∫ T
0 exp(−λNCV t){B(λHHF + λCV )}dt∫ T

0 D exp(−λNCV t)dt
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E.3.2.2.2 Informative treatment discontinuation

E{M1(T )} =

∫ T

0

∫ ∞
0
{SCV 1(t, Z)SNCV (t)STD21(t, Z)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD21(t, Z)]λHHFZ}fZ(Z)dZdt

+

∫ ∞
0

∫ T

0
{SNCV (t)STD21(t, Z)d(−SCV 1(t, Z))/dt+ SNCV (t)[1− STD21(t, Z)]d(−SCV 0(t, Z))/dt}fZ(Z)dZ

=

∫ T

0

∫ ∞
0
{SCV 1(t, Z)SNCV (t)STD21(t, Z)λHHFZe

β + SCV 1(t, Z)SNCV (t)[1− STD21(t, Z)]λHHFZ

+ SCV 1(t, Z)SNCV (t)STD21(t, Z)λCV Z
αeγ + SCV 0(t, Z)SNCV (t)[1− STD21(t, Z)]λCV Z

α}fZ(Z)dZdt

=

∫ T

0
exp(−λNCV t)

∫ ∞
0
{λHHFZ exp(−λCV Zαeγt)[exp(−qλHHFZeβt)(eβ − 1) + 1]

+ exp(−qλHHFZeβt)λCV Zαeγ exp(−λCV Zαeγt) + (1− exp(−qλHHFZeβt))λCV Zα exp(−λCV Zαt)}fZ(Z)dZdt

E{M0(T )} =

∫ T

0

∫ ∞
0
{SCV 0(t, Z)SNCV (t)STD20(t, Z)λHHFZ + SCV 0(t, Z)SNCV (t)[1− STD20(t, Z)]λHHFZ}fZ(Z)dZdt

+

∫ ∞
0

∫ T

0
{SNCV (t)STD20(t, Z)d(−SCV 0(t, Z))/dt+ SNCV (t)[1− STD20(t, Z)]d(−SCV 0(t, Z))/dt}fZ(Z)dZ

=

∫ T

0

∫ ∞
0
{SCV 0(t, Z)SNCV (t)λHHFZ + SCV 0(t, Z)SNCV (t)λCV Z

α}fZ(Z)dZdt

=

∫ T

0
exp(−λNCV t)

∫ ∞
0
{λHHFZ exp(−λCV Zαt) + λCV Z

α exp(−λCV Zαt)}fZ(Z)dZdt

Now integrate out Z, it is only integratable when α = 1. Let

H =

∫ ∞
0

Z exp(−λCV Zt) exp(−qλHHFZeβt)fZ(Z)dZ = (
1

(λCV + qλHHF eβ)θt+ 1
)
1
θ
+1

Therefore, we have

E{M1(T )}∫ T
0 S1(t)dt

=

∫ T
0 exp(−λNCV t){λHHF [G(eβ − 1) +A] + λCV e

γG+ λCV (B −H)}dt∫ T
0 C exp(−λNCV t)dt

E{M0(T )}∫ T
0 S0(t)dt

=

∫ T
0 exp(−λNCV t)B(λHHF + λCV )dt∫ T

0 D exp(−λNCV t)dt

(35)

E.3.3 Numeric values

After numerical integration on t and plugging in all the parameters in the
summary measure of the two estimands, we get Table 15.

137



Table 15: Numerical estimand values for two estimands with two types of
treatment discontinuation. Data is generated with RRHHF = 0.7, HRCV =
0.8, 1.0, 1.25

Estimand value
HRCV 0.8 1.0 1.25
Scenario 1: Estimand 1 (HHF), non-informative 0.767 0.721 0.672
Scenario 2: Estimand 1 (HHF), informative 0.767 0.719 0.669
Scenario 3: Estimand 2 (HHF+CVD), non-informative 0.812 0.815 0.820
Scenario 4: Estimand 2 (HHF+CVD), informative 0.790 0.793 0.800

E.4 Event specific estimates for WLW and PWP mod-
els - terminal event

The event specific mean treatment effects of WLW and PWP for the base case
are shown in Table 16 for Estimand 1 (HHF) and Estimand 2 (HHF+CVD).

• For the PWP event specific estimates it can be observed that with
increasing event number the event specific estimates are increasing (this
applies to both Estimand 1 (HHF) and Estimand 2 (HHF+CVD) and
all considered scenarios).

• For the WLW event specific estimates are decreasing with increasing
event numbers in most considered scenarios. However, in case the treat-
ment effect on CVD is high compared with the treatment effect on
HHFs (HRCV < RRHHF ), it is the other way around.

• In addition, the WLW effect estimates for the 4th event are decreasing
when HRCV converges to 1. The PWP estimates for the 4th event are
generally very close to 1.

• The reason for the differences between the event specific estimates of
the WLW model is that 2nd, 3rd and 4th events are highly influenced
by dependent censoring.

• Unlike for the scenario without terminal event no cases of non-convergence
were observed here, presumably because of the larger sample size.
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Table 16: Event specific mean treatment effect estimates of WLW and PWP
for the composite endpoint (CVD & HHFs) and the recurrent endpoint (only
HHFs) in the base case scenario with sample size N = 4350.

Endpoint RRHHF Method Event HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

WLW 1 0.780 0.755 0.731
2 0.684 0.637 0.595
3 0.541 0.467 0.407
4 0.397 0.307 0.243

PWP 1 0.780 0.755 0.731
2 0.811 0.785 0.763
3 0.865 0.844 0.828
4 0.959 0.945 0.940

0.8

WLW 1 0.928 0.902 0.878
2 0.910 0.857 0.807
3 0.891 0.788 0.694
4 0.884 0.714 0.572

PWP 1 0.928 0.902 0.878
2 0.939 0.917 0.893
3 0.966 0.950 0.926
4 1.009 1.002 0.990

1.0

WLW 1 1.055 1.030 1.004
2 1.121 1.062 1.008
3 1.277 1.142 1.023
4 1.578 1.295 1.071

PWP 1 1.055 1.030 1.004
2 1.051 1.026 1.005
3 1.055 1.035 1.017
4 1.068 1.054 1.045

Estimand 2 (HHF+CVD)

0.6

WLW 1 0.770 0.811 0.851
2 0.675 0.674 0.673
3 0.531 0.481 0.439
4 0.386 0.305 0.245

PWP 1 0.770 0.811 0.851
2 0.800 0.831 0.863
3 0.851 0.870 0.892
4 0.936 0.942 0.952

0.8

WLW 1 0.859 0.896 0.932
2 0.851 0.850 0.847
3 0.844 0.778 0.715
4 0.847 0.698 0.572

PWP 1 0.859 0.896 0.932
2 0.878 0.910 0.938
3 0.916 0.938 0.954
4 0.972 0.984 0.993

1.0

WLW 1 0.936 0.971 1.003
2 1.011 1.009 1.005
3 1.179 1.095 1.018
4 1.494 1.251 1.053

PWP 1 0.936 0.971 1.003
2 0.949 0.975 1.003
3 0.975 0.993 1.012
4 1.014 1.021 1.031
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E.5 Simulation results for variations of the base case

The most interesting findings for the variations are summarized below, we
only consider non-informative treatment discontinuation for all variations of
the base case. Further details of the results are displayed by each variation.

• Inter-event Weibull: Regarding power the relative behavior of the
methods is similar as in the base case. There is a somewhat higher
power for small HRCV , especially for NB but to a lesser extent also for
PWP and Cox. The mean treatment effect estimates tend to be further
away from 1 than in the base case for all methods. This is especially pro-
nounced for NB in the case of small HRCV , e.g., mean R̂RHHF = 0.649
for Estimand 2 (HHF+CVD) with HRCV = RRHHF = 0.7. There is
an increased type I error of 0.066 for the composite and of 0.064 for Es-
timand 1 (HHF) for NB in the case RRHHF = HRCV = 1 which is not
seen for the other methods. Reason for this probably is the deviation
from the distributional assumptions of the NB model (mixed Poisson-
gamma), which doesn’t influence the other semi-parametric models as
the inter-event Weibull scenario fulfills the proportional hazards as-
sumption.

• Autoregressive event rate: Overall similar behavior as for the base
case. For Estimand 2 (HHF+CVD) there is a higher relative power
for NB for HRs closer to 1, and higher relative power for Cox, WLW
and PWP for HRs further away from 1. For Estimand 1 (HHF) there
is a lower relative power for LWYY. For both Estimand 1 (HHF) and
Estimand 2 (HHF+CVD) the mean treatment effect tends to be a bit
further away from 1, most pronounced for NB. Small increase in type
I error up to 0.056 for Estimand 2 (HHF+CVD) in the case RRHHF =
HRCV = 1 for LWYY, WLW and PWP with the multiplicative factor
1.2, a bit higher increase in type I error of 0.065 for NB. For Estimand
1 (HHF) the type I error inflation of NB is even higher, e.g. 0.079 for
RRHHF = HRCV = 1. This is probably due to the deviation from the
constant baseline rate assumption of the NB model.

• Detrimental CVD effect: Trends seen for positive to neutral CVD
effect in the base case continue for a detrimental CVD effect. In the case
of power, for HRCV above 1 there are further increases for Estimand
1 (HHF). For Estimand 2 (HHF+CVD), there is only a small decrease
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in power for LWYY and WLW and a strong decrease for the other
methods.

• Frailty correlation: For Estimand 2 (HHF+CVD) there is generally
higher power for smaller exponent α. Relative to the other methods NB
and PWP seem to have higher power for small α. For fixed RRHHF ,
LWYY and WLW have slightly decreasing power as HRCV approaches
1 for α = 0.5 and roughly constant power for α = 1.0. There are
only minor differences to the base case for Estimand 1 (HHF). For
Estimand 2 (HHF+CVD) treatment effect estimates are further away
from 1 for α = 0.5 and small HRCV , while for α = 1.0 they are closer
to 1. This is similar for Estimand 1 (HHF), but less pronounced. For
smaller correlation (α = 0.5) all recurrent event methods tend to be
more conservative than for larger correlation (α = 1.0). In particular
for Estimand 1 (HHF) with small HRCV the type I error inflation
becomes significantly smaller with smaller correlation (α = 0.5). This
observation is most likely caused by a decreased influence of dependent
censoring for smaller correlation between CVD and HHFs.

E.5.1 Inter-event Weibull

141



Table 17: Mean treatment effect estimates for Estimand 1 (HHF) and Es-
timand 2 (HHF+CVD) for inter-event Weibull with sample size N = 4350,
with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.760 0.735 0.712

NB 0.602 0.580 0.560
LWYY 0.683 0.640 0.603
WLW 0.699 0.661 0.626
PWP 0.776 0.752 0.728

0.8

Cox 0.917 0.892 0.867

NB 0.827 0.800 0.775
LWYY 0.911 0.852 0.801
WLW 0.909 0.861 0.818
PWP 0.924 0.899 0.875

1.0

Cox 1.053 1.027 1.002

NB 1.065 1.035 1.006
LWYY 1.146 1.069 1.004
WLW 1.106 1.052 1.003
PWP 1.050 1.025 1.001

Estimand 2 (HHF+CVD)

0.6

Cox 0.750 0.798 0.843

NB 0.551 0.625 0.701
LWYY 0.678 0.694 0.710
WLW 0.692 0.715 0.736
PWP 0.765 0.809 0.850

0.8

Cox 0.842 0.886 0.927

NB 0.691 0.769 0.851
LWYY 0.843 0.848 0.855
WLW 0.839 0.856 0.873
PWP 0.854 0.892 0.931

1.0

Cox 0.922 0.963 1.002

NB 0.834 0.919 1.006
LWYY 1.012 1.006 1.003
WLW 0.977 0.990 1.002
PWP 0.930 0.966 1.001
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Figure 17: Statistical power for Estimand 1 (HHF) for inter-event Weibull
with sample size N = 4350, with non-informative treatment discontinuation.
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Figure 18: Statistical power for Estimand 2 (HHF+CVD) for inter-event
Weibull with sample size N = 4350, with non-informative treatment discon-
tinuation.
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Table 18: Mean treatment effect estimates and type I error rates for Esti-
mand 1 (HHF) and Estimand 2 (HHF+CVD) with RRHHF = 1 for inter-
event Weibull and sample size N = 4350, with non-informative treatment
discontinuation.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.053 0.099

NB 1.065 0.104
LWYY 1.146 0.285
WLW 1.106 0.210
PWP 1.050 0.138

0.8

Cox 1.027 0.063

NB 1.035 0.078
LWYY 1.069 0.110
WLW 1.052 0.088
PWP 1.025 0.076

1.0

Cox 1.002 0.050

NB 1.006 0.065
LWYY 1.004 0.053
WLW 1.003 0.050
PWP 1.001 0.050

Estimand 2 (HHF+CVD) 1.0

Cox 1.002 0.051

NB 1.006 0.064
LWYY 1.003 0.051
WLW 1.002 0.050
PWP 1.001 0.051
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E.5.2 Autoregressive event rate

Table 19: Mean treatment effect estimates for Estimand 1 (HHF) and Esti-
mand 2 (HHF+CVD) for autoregressive event rate (factor 1.1) with sample
size N = 4350, with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.769 0.744 0.721

NB 0.640 0.610 0.585
LWYY 0.692 0.648 0.612
WLW 0.708 0.670 0.637
PWP 0.784 0.759 0.736

0.8

Cox 0.921 0.896 0.872

NB 0.861 0.823 0.790
LWYY 0.914 0.856 0.806
WLW 0.911 0.866 0.825
PWP 0.928 0.903 0.880

1.0

Cox 1.055 1.028 1.003

NB 1.099 1.049 1.006
LWYY 1.148 1.069 1.005
WLW 1.103 1.051 1.004
PWP 1.051 1.026 1.002

Estimand 2 (HHF+CVD)

0.6

Cox 0.759 0.804 0.846

NB 0.606 0.658 0.712
LWYY 0.687 0.701 0.716
WLW 0.701 0.722 0.743
PWP 0.773 0.814 0.853

0.8

Cox 0.849 0.890 0.929

NB 0.752 0.804 0.856
LWYY 0.850 0.853 0.858
WLW 0.845 0.861 0.876
PWP 0.860 0.897 0.932

1.0

Cox 0.930 0.966 1.002

NB 0.906 0.955 1.006
LWYY 1.021 1.009 1.004
WLW 0.980 0.992 1.003
PWP 0.936 0.969 1.002
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Figure 19: Statistical power for Estimand 1 (HHF) for autoregressive event
rate (factor 1.1) with sample size N = 4350, with non-informative treatment
discontinuation.
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Figure 20: Statistical power for Estimand 2 (HHF+CVD) for autoregressive
event rate (factor 1.1) with sample size N = 4350, with non-informative
treatment discontinuation.
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Table 20: Mean treatment effect estimates and type I error rates for Estimand
1 (HHF) and Estimand 2 (HHF+CVD) for autoregressive event rate (factor
1.1) with RRHHF = 1 and sample size N = 4350, with non-informative
treatment discontinuation

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.055 0.111

NB 1.099 0.176
LWYY 1.148 0.302
WLW 1.103 0.206
PWP 1.051 0.142

0.8

Cox 1.028 0.063

NB 1.049 0.088
LWYY 1.069 0.102
WLW 1.051 0.085
PWP 1.026 0.070

1.0

Cox 1.003 0.046

NB 1.006 0.060
LWYY 1.005 0.049
WLW 1.004 0.048
PWP 1.002 0.048

Estimand 2 (HHF+CVD) 1.0

Cox 1.002 0.047

NB 1.006 0.057
LWYY 1.004 0.048
WLW 1.003 0.049
PWP 1.002 0.049
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Table 21: Mean treatment effect estimates for Estimand 1 (HHF) and Esti-
mand 2 (HHF+CVD) for autoregressive event rate (factor 1.2) with sample
size N = 4350, with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.758 0.734 0.713

NB 0.622 0.591 0.565
LWYY 0.680 0.635 0.599
WLW 0.697 0.660 0.628
PWP 0.775 0.750 0.728

0.8

Cox 0.915 0.890 0.867

NB 0.861 0.814 0.775
LWYY 0.917 0.850 0.797
WLW 0.906 0.860 0.819
PWP 0.923 0.898 0.875

1.0

Cox 1.052 1.027 1.003

NB 1.126 1.059 1.006
LWYY 1.168 1.076 1.005
WLW 1.102 1.051 1.004
PWP 1.050 1.025 1.002

Estimand 2 (HHF+CVD)

0.6

Cox 0.749 0.797 0.843

NB 0.592 0.643 0.695
LWYY 0.675 0.689 0.705
WLW 0.691 0.715 0.737
PWP 0.764 0.807 0.849

0.8

Cox 0.841 0.885 0.927

NB 0.750 0.796 0.844
LWYY 0.848 0.847 0.851
WLW 0.837 0.856 0.873
PWP 0.853 0.892 0.930

1.0

Cox 0.923 0.964 1.002

NB 0.921 0.960 1.005
LWYY 1.032 1.013 1.003
WLW 0.974 0.989 1.003
PWP 0.930 0.966 1.001
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Figure 21: Statistical power for Estimand 1 (HHF) for autoregressive event
rate (factor 1.2) with sample size N = 4350, with non-informative treatment
discontinuation.

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●

●
●
●

●

●

●●
●

●

●

●●
●

●

●

●
●●

●

●

●●
●

0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000

Sample size

P
ow

er

HR = 0.8   RR = 0.7

●●●●●

●

●
●●●

●

●

●
●
●

●

●

●●●

●
●
●●●

0.6 0.7 0.8 0.9 1.0

Rate ratio

HR = 1.0   n = 4350

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●
●●●

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.7 0.8 0.9 1.0

Hazard ratio

P
ow

er

RR = 0.7   n = 4350

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●
●

0.6 0.7 0.8 0.9 1.0

Hazard ratio

RR = 0.8   n = 4350

Method
●

●

●

●

●

Cox

LWYY

NB

PWP

WLW

151



Figure 22: Statistical power for Estimand 2 (HHF+CVD) for autoregressive
event rate (factor 1.2) with sample size N = 4350, with non-informative
treatment discontinuation.
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Table 22: Mean treatment effect estimates and type I error rates for Estimand
1 (HHF) and Estimand 2 (HHF+CVD) for autoregressive event rate (factor
1.2) with RRHHF = 1 and sample size N = 4350, with non-informative
treatment discontinuation.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.052 0.104

NB 1.126 0.243
LWYY 1.168 0.335
WLW 1.102 0.202
PWP 1.050 0.138

0.8

Cox 1.027 0.064

NB 1.059 0.110
LWYY 1.076 0.113
WLW 1.051 0.084
PWP 1.025 0.068

1.0

Cox 1.003 0.049

NB 1.006 0.073
LWYY 1.005 0.052
WLW 1.004 0.050
PWP 1.002 0.048

Estimand 2 (HHF+CVD) 1.0

Cox 1.002 0.050

NB 1.005 0.064
LWYY 1.003 0.052
WLW 1.003 0.049
PWP 1.001 0.053
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E.5.3 Detrimental CVD effect

Table 23: Mean treatment effect estimates for Estimand 1 (HHF) and Esti-
mand 2 (HHF+CVD) for detrimental CVD effect with sample size N = 4350,
with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 1/0.9 HRCV = 1/0.8 HRCV = 1/0.7

Estimand 1 (HHF)

0.6

Cox 0.718 0.703 0.686

NB 0.594 0.578 0.561
LWYY 0.610 0.588 0.564
WLW 0.629 0.608 0.584
PWP 0.732 0.717 0.699

0.8

Cox 0.865 0.849 0.829

NB 0.790 0.772 0.749
LWYY 0.794 0.767 0.735
WLW 0.810 0.785 0.755
PWP 0.871 0.856 0.837

1.0

Cox 0.991 0.976 0.955

NB 0.989 0.969 0.943
LWYY 0.978 0.946 0.906
WLW 0.982 0.954 0.919
PWP 0.990 0.976 0.956

Estimand 2 (HHF+CVD)

0.6

Cox 0.872 0.898 0.930
NB 0.759 0.796 0.844
LWYY 0.735 0.745 0.757
WLW 0.757 0.768 0.782
PWP 0.874 0.898 0.928

0.8

Cox 0.952 0.975 1.004

NB 0.898 0.936 0.985
LWYY 0.870 0.876 0.883
WLW 0.887 0.895 0.906
PWP 0.951 0.973 1.000

1.0

Cox 1.021 1.043 1.069

NB 1.036 1.075 1.124
LWYY 1.005 1.007 1.008
WLW 1.010 1.016 1.023
PWP 1.018 1.038 1.063
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Figure 23: Statistical power for Estimand 1 (HHF) for detrimental CVD
effect with sample size N = 4350, with non-informative treatment discontin-
uation.
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Figure 24: Statistical power for Estimand 2 (HHF+CVD) for detrimental
CVD effect with sample size N = 4350, with non-informative treatment
discontinuation.
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Table 24: Mean treatment effect estimates and type I error rates for Estimand
1 (HHF) and Estimand 2 (HHF+CVD) for detrimental CVD effect with
RRHHF = 1 and sample size N = 4350, with non-informative treatment
discontinuation.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

1/0.9

Cox 0.991 0.052

NB 0.989 0.053
LWYY 0.978 0.061
WLW 0.982 0.059
PWP 0.990 0.053

1/0.8

Cox 0.976 0.067

NB 0.969 0.066
LWYY 0.946 0.104
WLW 0.954 0.093
PWP 0.976 0.075

1/0.7

Cox 0.955 0.105

NB 0.943 0.106
LWYY 0.906 0.217
WLW 0.919 0.181
PWP 0.956 0.131

Estimand 2 (HHF+CVD) 1.0

Cox 1.003 0.046

NB 1.005 0.046
LWYY 1.004 0.046
WLW 1.004 0.050
PWP 1.001 0.049
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E.5.4 Frailty correlation

Table 25: Mean treatment effect estimates for Estimand 1 (HHF) and Esti-
mand 2 (HHF+CVD) for frailty correlation 0.5 with sample size N = 4350,
with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.777 0.756 0.736

NB 0.653 0.633 0.615
LWYY 0.688 0.658 0.630
WLW 0.710 0.681 0.655
PWP 0.788 0.771 0.754

0.8

Cox 0.922 0.901 0.880

NB 0.854 0.831 0.810
LWYY 0.892 0.854 0.819
WLW 0.901 0.868 0.836
PWP 0.922 0.905 0.888

1.0

Cox 1.046 1.024 1.003

NB 1.054 1.029 1.005
LWYY 1.093 1.048 1.004
WLW 1.077 1.040 1.004
PWP 1.035 1.018 1.002

Estimand 2 (HHF+CVD)

0.6

Cox 0.755 0.806 0.856

NB 0.617 0.675 0.735
LWYY 0.681 0.706 0.730
WLW 0.698 0.726 0.754
PWP 0.767 0.811 0.855

0.8

Cox 0.840 0.888 0.934

NB 0.749 0.810 0.870
LWYY 0.830 0.849 0.868
WLW 0.834 0.860 0.884
PWP 0.852 0.894 0.933

1.0

Cox 0.912 0.958 1.002

NB 0.879 0.941 1.004
LWYY 0.977 0.990 1.003
WLW 0.958 0.981 1.003
PWP 0.924 0.963 1.001
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Figure 25: Statistical power for Estimand 1 (HHF) for frailty correlation 0.5
with sample size N = 4350, with non-informative treatment discontinuation.
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Figure 26: Statistical power for Estimand 2 (HHF+CVD) for frailty cor-
relation 0.5 with sample size N = 4350, with non-informative treatment
discontinuation.
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Table 26: Mean treatment effect estimates and type I error rates for for
Estimand 1 (HHF) and Estimand 2 (HHF+CVD) for frailty correlation 0.5
with RRHHF = 1 and sample size N = 4350, with non-informative treatment
discontinuation.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.046 0.088

NB 1.054 0.081
LWYY 1.093 0.152
WLW 1.077 0.132
PWP 1.035 0.087

0.8

Cox 1.024 0.063

NB 1.029 0.061
LWYY 1.048 0.076
WLW 1.040 0.070
PWP 1.018 0.061

1.0

Cox 1.003 0.049

NB 1.005 0.050
LWYY 1.004 0.049
WLW 1.004 0.050
PWP 1.002 0.048

Estimand 2 (HHF+CVD) 0.6

Cox 1.002 0.051

NB 1.004 0.046
LWYY 1.003 0.049
WLW 1.003 0.048
PWP 1.001 0.048
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Table 27: Mean treatment effect estimates for Estimand 1 (HHF) and Esti-
mand 2 (HHF+CVD) for frailty correlation 1.0 with sample size N = 4350,
with non-informative treatment discontinuation.

Endpoint RRHHF Method HRCV = 0.6 HRCV = 0.8 HRCV = 1.0

Estimand 1 (HHF)

0.6

Cox 0.783 0.753 0.727

NB 0.664 0.629 0.600
LWYY 0.717 0.667 0.627
WLW 0.725 0.679 0.639
PWP 0.796 0.764 0.736

0.8

Cox 0.932 0.903 0.875

NB 0.879 0.837 0.800
LWYY 0.933 0.869 0.816
WLW 0.929 0.874 0.826
PWP 0.941 0.909 0.879

1.0

Cox 1.061 1.032 1.003

NB 1.096 1.049 1.006
LWYY 1.148 1.071 1.005
WLW 1.120 1.060 1.004
PWP 1.063 1.032 1.002

Estimand 2 (HHF+CVD)

0.6

Cox 0.782 0.815 0.848

NB 0.629 0.677 0.727
LWYY 0.717 0.721 0.728
WLW 0.725 0.733 0.743
PWP 0.796 0.826 0.856

0.8

Cox 0.872 0.902 0.930

NB 0.768 0.817 0.866
LWYY 0.874 0.869 0.866
WLW 0.870 0.874 0.877
PWP 0.881 0.908 0.934

1.0

Cox 0.951 0.978 1.003

NB 0.906 0.956 1.005
LWYY 1.031 1.016 1.004
WLW 1.005 1.005 1.003
PWP 0.955 0.979 1.002

162



Figure 27: Statistical power for Estimand 1 (HHF) for frailty correlation 1.0
with sample size N = 4350, with non-informative treatment discontinuation.
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Figure 28: Statistical power for Estimand 2 (HHF+CVD) for frailty cor-
relation 1.0 with sample size N = 4350, with non-informative treatment
discontinuation.

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●
●

●

●

●
●
●

●

●

●●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

2000 3000 4000 5000

Sample size

P
ow

er

HR = 0.8   RR = 0.7

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

0.6 0.7 0.8 0.9 1.0

Rate ratio

HR = 1.0   n = 4350

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.7 0.8 0.9 1.0

Hazard ratio

P
ow

er

RR = 0.7   n = 4350

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.6 0.7 0.8 0.9 1.0

Hazard ratio

RR = 0.8   n = 4350

Method
●

●

●

●

●

Cox

LWYY

NB

PWP

WLW

164



Table 28: Mean treatment effect estimates and type I error rates for for
Estimand 1 (HHF) and Estimand 2 (HHF+CVD) for frailty correlation 1.0
with RRHHF = 1 and sample size N = 4350, with non-informative treatment
discontinuation.

Endpoint HRCV Method Estimate Type I error

Estimand 1 (HHF)

0.6

Cox 1.061 0.130

NB 1.096 0.164
LWYY 1.148 0.364
WLW 1.120 0.280
PWP 1.063 0.206

0.8

Cox 1.032 0.070

NB 1.049 0.076
LWYY 1.071 0.122
WLW 1.060 0.103
PWP 1.032 0.085

1.0

Cox 1.003 0.051

NB 1.006 0.056
LWYY 1.005 0.054
WLW 1.004 0.053
PWP 1.002 0.050

Estimand 2 (HHF+CVD) 1.0

Cox 1.003 0.050

NB 1.005 0.052
LWYY 1.004 0.054
WLW 1.003 0.054
PWP 1.002 0.053
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