Signal assessment report on Embolic and Thrombotic events (SMQ) with COVID-19 Vaccine Janssen (Ad26.COV2-S [recombinant])

EPITT no: 19689

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation assessment report</td>
<td>3rd April 2021</td>
</tr>
<tr>
<td>Adoption of first PRAC Recommendation</td>
<td>9th April 2021</td>
</tr>
<tr>
<td>Submission of responses by MAH</td>
<td>15th April 2021</td>
</tr>
<tr>
<td>Preliminary assessment report</td>
<td>19th April 2021</td>
</tr>
<tr>
<td>Deadline for comments</td>
<td>19th April 2021 (8pm CET)</td>
</tr>
<tr>
<td>Updated Rapporteur assessment</td>
<td>20th April 2021 (9am)</td>
</tr>
<tr>
<td>Adoption of 2nd PRAC recommendation</td>
<td>20th April 2021</td>
</tr>
<tr>
<td>Submission of responses by MAH</td>
<td>22nd April 2021</td>
</tr>
<tr>
<td>Rapporteur assessment</td>
<td>30th April 2021</td>
</tr>
<tr>
<td>Deadline for comments</td>
<td>30th April 2021 (8pm CET)</td>
</tr>
<tr>
<td>Updated Rapporteur assessment report</td>
<td>3rd May 2021</td>
</tr>
<tr>
<td>Adoption of 3rd PRAC recommendation</td>
<td>06th May 2021</td>
</tr>
</tbody>
</table>

Medicinal Product no longer authorised
Administrative information

<table>
<thead>
<tr>
<th>Active substance(s) (invented name)</th>
<th>COVID-19 Vaccine (Ad26.COV2-S [recombinant]) – COVID-19 Vaccine Janssen suspension for injection (Other viral vaccines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength(s)</td>
<td>All</td>
</tr>
<tr>
<td>Pharmaceutical form(s)</td>
<td>All</td>
</tr>
<tr>
<td>Route(s) of administration</td>
<td>All</td>
</tr>
<tr>
<td>Indication(s)</td>
<td>COVID-19 Vaccine Janssen is indicated for active immunisation to prevent COVID-19 caused by SARS-CoV-2 in individuals 18 years of age and older</td>
</tr>
<tr>
<td>Marketing authorisation holder(s)</td>
<td>Janssen-Cilag International NV</td>
</tr>
<tr>
<td>Authorisation procedure</td>
<td>☒ Centralised</td>
</tr>
<tr>
<td></td>
<td>☐ Mutual recognition or decentralised</td>
</tr>
<tr>
<td></td>
<td>☐ National</td>
</tr>
<tr>
<td>Adverse event/reaction:¹</td>
<td>Embolic and Thrombotic events (SMQ)</td>
</tr>
</tbody>
</table>

Signal validated by:	EMA
Date of circulation of signal validation report:	1 April 2021
Date of confirmation:	3 April 2021
PRAC Rapporteur appointed for the assessment of the signal:	Ulla Wändel Liminga, SE
Table of contents

Administrative information... 2

1. Background.. 4

2. Initial evidence ... 5
 2.1. Signal validation .. 5
 2.2. Signal confirmation .. 9
 2.3. Proposed recommendation ... 14
 2.4. Comments from other PRAC members ...15
 2.5. Adopted PRAC recommendation ..17

3. Additional evidence ...19
 3.1. Assessment of additional data ..19
 3.1.1. MAH response as of 15th April 2021 ..19
 3.1.2. Case reports from EudraVigilance/received through VAERS ..63
 3.1.3. EVDAS Search Summary ...68
 3.1.4. PRAC Rapporteur discussion updated ..76
 3.2. Rapporteur’s proposed recommendation ..80
 3.2.1. Issues for an oral explanation at the PRAC ...82
 3.2.2. Request for supplementary information ..82
 3.3. Comments from other PRAC members and MAH ...83
 3.3.1. Response from MAH (submitted 19 April 2021) ..88
 3.4. Updated rapporteur’s proposed recommendation ...89
 3.5. Adopted PRAC recommendation ..92

Annex ...97
1. Background

Covid-19 Vaccine Janssen (also referred to as Ad26.COV2.S) is a monovalent, recombinant, replication incompetent adenovirus type 26 (Ad26) vectored vaccine encoding the severe acute respiratory syndrome coronavirus 2 (SARS CoV2) spike (S) protein.

It received a conditional marketing authorisation (CMA) throughout the EU on the 11th March 2021 for the active immunisation to prevent COVID-19 caused by SARS-CoV-2 in individuals aged 18 years and older. As of this date, initiation of vaccination within the EU with Covid-19 Janssen, has not commenced.

“Venous thromboembolism” has been included as an important potential risk in the list of safety concerns in the risk management plan for Covid-19 Janssen vaccine. This was due to a numerical imbalance observed in the pivotal phase 3 trial (VAC31518COV.3001) regarding venous thromboembolic events. At time of approval, data up to 22 January 2021 had been provided, and this numerical imbalance corresponded to 11 subjects in the vaccine group (n=21,895) vs. 4 in the placebo group. In the vaccine group, there were: 6 DVT type events, 4 pulmonary embolism, 1 transverse sinus thrombosis (including 6 SAEs & 1 non-serious related AE; 8 events occurred within 28 days following vaccination). In the placebo group (n=21,888), there were: 2 DVT events, 1 pulmonary embolism, 1 thrombosed haemorrhoid (including 1 related SAE & 1 none-related SAE, all within 28 days of vaccination).

Based on an overview of thromboembolic events submitted by the MAH to the EMA on the 29th March, with a cut off of 17 March 2021, the following summary was provided:

| Table 1: Thrombotic and Thromboembolic Events in Study COV3001 |
|------------------|------------------|------------------|
| **Full Analysis Set** | **Ad26.COV2.S N=21,895** | **Placebo N=21,888** |
| Total participants with any event (percentage) | 29 (0.1) | 22 (0.1) |
| **Venous thromboembolic events** | | |
| Deep vein thrombosis | 11 | 3 |
| Pulmonary embolism | 7 | 3 |
| Cerebral sinus thrombosis | 1 | 1 |
| Retinal vein thrombosis | 1 | 0 |
| Thrombophlebitis | 1 | 1 |
| Venous stent occlusion | 0 | 1 |
| Thrombosed haemorrhoid | 0 | 1 |
| Total participants with venous events | 21 | 9 |
| **Arterial thromboembolic events** | | |
| Cerebrovascular events | 6 | 9 |
| Cardiovascular events | 3 | 4 |
| Arterial stent occlusion | 0 | 1 |
| Total participants with arterial events | 8 | 14 |

Data until March 17th, 2021

1 Includes one event reported as ‘venous thrombosis limb’ and one event reported as ‘embolism venous’
2 One patient reported both deep vein thrombosis and pulmonary embolism as separate terms
3 Two events reported in 1 participant
4 One participant reported 2 events of stent occlusion (1 venous, 1 arterial)
On the 12th March 2021, a signal of Embolic and Thrombotic events was confirmed for VAXZEVRIA/COVID-19 AstraZeneca vaccine, another adenoviral vectored vaccine. Following further evaluation, the focus of the signal has been on atypical coagulopathies characterised by thrombosis, often in unusual location, together with thrombocytopenia. At this point in time the signal is currently ongoing.

2. Initial evidence

2.1. Signal validation

To date, three reports have been received by EMA concerning events of thrombosis co-reported with thrombocytopenia in association with Covid-19 Janssen vaccine. Of the 3 reports, one originates from the pivotal phase 3 trial (VAC31518COV.3001) and two concern spontaneous reports from the US. Of the three reports, 2 concern female patients (age ranges 38-48 & 52-62 years) while one concerns a male patient (18-28 years). Of the 3 reports, one is fatal. Time to offset included 11 days (n=2) and 19 days (n=1). Thrombotic events reported included transverse sinus thrombosis, cerebral venous sinus thrombosis and bilateral iliac and femoral deep vein thromboses. Although thrombocytopenia was reported in one case, platelet counts were not provided. In the remaining two cases, platelet counts were specified as 64,000 (units not specified) and 15,000 (units not specified).

The case narratives are presented below.

-Spontaneous

Case 1

This serious case concerns a fatal report regarding a female patient aged between 38-48 years. Other illnesses at the time of vaccination and up to one month prior included depression. Concomitant medications included fluoxetine. The adverse event started 7 days after vaccination.

Diagnosis included cortical vein thrombosis, massive intracerebral haemorrhage with tentorial herniation and thrombocytopenia (value not specified).

One week after receiving the Janssen Covid-19 vaccine, the patient developed gradually worsening headache. The patient presented to the hospital with dry heaving, sudden worsening of headache and left-sided weakness. Evaluation with head computed tomography (CT) revealed a large right temporoparietal intraparenchymal haemorrhage with 1.3cm midline shift. She was intubated for worsening mental status. On evaluation, upon arrival in the medical centre, she was noted to exhibit extensor posturing. Repeat imaging revealed worsening midline shift to 1.6cm. CT angiography showed cortical vein thrombosis involving the right transverse and sigmoid sinus with tentorial herniation. The patient developed brain herniation. Brain death was subsequently pronounced.

CT angiography (CTA) of the head: the supraclinoid internal carotid arteries (ICAs) are patent bilaterally. The right middle cerebral artery (MCA) is elevated by the large right hemispheric haematoma. There is no occlusion or significant stenosis involving the right MCA. The left MCA and bilateral anterior cerebral arteries (ACAs) are within normal limits. The intracranial vertebral arteries, left posterior inferior cerebellar artery (PICA), basilar artery and both posterior cerebral arteries (PCAs) are patent. There is no aneurysm or arteriovenous malformation (AVM). The evaluation of the venous
structures is limited on this CTA but there is no opacification of the right transverse and sigmoid sinuses suggestive of dural sinus thrombosis.

Large right hemispheric haematoma is demonstrated with significant right-to-left midline shift measuring approximately 16mm. Effacement of the right lateral ventricle and dilation of the left lateral ventricle. Right-sided transtentorial herniation is noted.

Impression: suspect right transverse and sigmoid sinus dural sinus thrombosis. This can be confirmed with CTV (i.e. CT cerebral venography) if clinically necessary. No evidence of aneurysm of AVM to account for the right hemispheric intraparenchymal haematoma. Significant right-to-left and downward transtentorial herniation is noted.

Case 2

This serious case concerns a female patient aged between 52-62 years. Other illnesses at the time of vaccination and up to one month prior include diarrhoea.

Concomitant medication included (levodopa/carbidopa), (formoterol/budesonide), (clonazepam), (citalopram), (lemborexant), (icosapent), (diclofenac), (sumatriptan), (ropinirole), (quetiapine), Celecoxib, Albuterol inhaler, Omeprazole, (levothyroxine), (hydrocodone), low dose aspirin. The report notes that the patient had allergies to tetracycline and voroxetine.

The adverse event started 11 days after vaccination. The patient had 5 days of bruising and left leg swelling prior to presenting to the emergency department. She was found to have an extensive, occlusive deep vein thrombosis (DVT) of the left lower extremity as well as thrombocytopenia of 15,000 (units not specified).

That evening she had an inferior vena cava (IVC) filter placed. The next day, the patient began to have paraesthesia’s and discoloration of the right lower extremity. Ultrasound showed high-grade occlusion of the right proximal, superficial femoral artery. The patient was pre-treated with platelets. In addition to the right superficial femoral artery (SFA) there is also thrombotic occlusion of the bilateral iliacs. The patient had bilateral thrombectomy and bilateral common iliac stent placement. The following day she developed gross haematuria. At the time of the report (i.e. 28th March 2021), the patient had not recovered from the event.

-Clinical trial case

Case 3:

This case concerns a male subject aged between 18-28, with no significant past medical history who was hospitalised with life threatening sinus venous transverse thrombosis and secondary cerebral haemorrhage, on day 19 day following vaccination with Ad26.COV2. Concomitant medications included naproxen and ibuprofen. The subject was administered Ad26.COV2 in the upper left arm. Afterwards, the subject reported mild fatigue, nausea, headache (moderate) and myalgia along with a fever (body temperature: 38.2 deg C, 101 deg F). Most of the symptoms resolved by the third day with the exception of the headache which eventually resolved the following day.

On day 9, the subject reported feeling unwell with viral-like symptoms of headache, fatigue, nausea, constipation, weakness, abdominal pain, sore throat, myalgias, chills, shaking and fever (body temperature: 38.4 deg C). At that time, he took ibuprofen (dose and times not reported). That same day his oxygen saturation via pulse oximetry was 94%. The next day, he began with rhinorrhoea, faintness and nasal congestions and body temperature increased to 39.2 deg C.
On day 11, he reported continued fatigue, weakness, rhinorrhoea, myalgia, faintness, abdominal pain, nausea and headache. He denied any other neurological symptoms. His symptoms met the protocol prescribed trigger for obtaining nasal swabs for Covid-19 and swabs were collected, all of which were reported negative. Upon clinical examination, he had a fever (38.4 deg C), oxygen saturation 98% and blood pressure 98/64mmHg. The subject’s symptoms gradually improved without treatment as all symptoms except for the headache had resolved over the next 7 days. The subject reported that the headache improved but never completely resolved.

On day 19, he experienced visual disturbances and was observed to pass out with subsequent tonic-clonic seizures. Upon hospitalisation, laboratory tests included: platelet count was 64,000 (unit and reference range not provided), prothrombin time (PT): 17.7, international normalised ration (INR): 1.46, fibrinogen: 154, white blood cell count: 12.4, haemoglobin: 12.7 and haematocrit: 36.1 (units and normal ranges were not provided).

A SARS-CoV-2 PCR (nasal swab) test was not performed as he reported two recent negative tests. Computed tomography (CT) scan without contrast showed right posterior lobe haematoma approximately 5ml in size. CT scan with contrast performed 2 hours later which showed an enlarged prior right posterior lobe haematoma with peripheral oedema. A CT angiography and magnetic resonance image (MRI) showed a cerebral haemorrhage (right temporal occipital haematoma). The investigator, added that the acute parenchymal haemorrhage in the right posterior temporal lobe, measured 2.0 x 2.4cm in diameter and estimated volume was 5ml. There was no midline shift. There was no evidence of hydrocephalus and no skull fracture identified. There was no acute sinusitis or mastoiditis.

On (day 20), platelet count was 60x10e3/mcL at 01:13 hours and 113 x10e3/mcL at 17.55 hours, prothrombin time was 15.7 seconds (NR: 11.5-15) and INR was 1.29 (NR: 0.80-1.20). day 21, peripheral blood smear showed neutrophilic leucocytosis, no blasts were identified. Red blood cell count and morphology were within normal limits and thrombocytopenia with rare large platelet forms were seen.

During the hospitalisation, a venogram showed a clot in the cerebral transverse sinus. The subject was given a diagnosis of severe transverse sinus venous thrombosis and underwent a thrombectomy on (day 22). The interventional radiologist who performed the thrombectomy reported that the subject had significant stenosis in his right sigmoid sinus and thus placing him at high risk for thrombosis. At that time an angioplasty was also performed on the stenosed sinus and treatment with acetylsalicylic acid was initiated.

On day 23, the subject developed nausea and dizziness when standing. His headache continued to worsen in intensity and a repeat venogram was performed which showed the presence of a new clot in the transverse sinus resulting in recurrent occlusion of the right transverse sinus with no flow identified in the sigmoid sinus or jugular bulb. The subject then underwent a second thrombectomy with venoplasty and was started on a low molecular weight heparin for 24 hours as well as intravenous (IV) tissue plasminogen (tPA) and heparin drips. MRI ruled out arterio-venous malformation and aneurysm. Laboratory testing showed that methylenetetrahydrofolate reductase mutation test and Beta 2 glycoprotein 1 antibodies (IgG and IgM) were negative. Lupus anticoagulant was negative and lactate dehydrogenase was 304unit/L (NR:135-225).

On day 24, repeat venogram showed that the transverse sinus was free of thrombus with brisk venous flow. All catheters were removed, tPA was discontinued and heparin was continued with a plan to begin apixaban.
Of note, the interventional radiologist reported observing rapid thrombus formation during the two thrombectomy procedures that is consistent with a hypercoagulable state clinically. He also stated that the transverse sinus thrombosis most likely occurred days before the subject’s clinical presentation with a seizure, and that the seizure was a consequence of a secondary bleed caused by the elevated venous pressure from the venous flow obstruction. He further reported that the subject’s apparent hypercoagulable clinically (based on observation that blood appeared to be re-clotting before his eyes during the thrombectomy) is similar to what he has seen with hypercoagulable COVID-19 patients. Another SARS-CoV2 PCR test was negative, activated partial thromboplastin time (APTT) was 136.9 seconds (critical) at 17.36 hours (NR: 23.5-37.5), fibrinogen was 274mg/dl (NR: 200-450), phospholipid IgG and IgM antibodies were negative.

On day 25, CT of the brain revealed right temporo-occipital haematoma which appeared slightly more prominent than on the previous scan. Epstein Barr-virus (EBV) IgG was positive and EBV IgM was negative, EBNA antibody positive, APTT was 57.0 seconds (high) at 01.09 hours, 118.8 seconds (critical) at 08.42 hours and 30.3 seconds at 16.22 hours. SARS-CoV2 test was negative.

Multiple laboratory tests were performed during the hospitalization.

Seven days after initial hospitalization 26 days post vaccination the subject was discharged from the hospital on apixaban, butalbital/acetaminophen/caffeine, levetiracetam, tramadol, acetaminophen and aspirin to the care of the investigator. Discharge diagnosis included non-traumatic intracerebral haemorrhage, transverse sinus thrombosis, seizure, thrombocytopenia (possibly naproxen induced), acute headache, nausea with vomiting and constipation. At discharge, he had sore throat, problem swallowing and speaking and slight headache but no neurologic deficit. According to the investigator his symptoms were improving. With ongoing soreness and difficulty swallowing he had lost 15 pounds during the hospitalization. At discharge, laboratory data included white blood cell count 9.2 x10e3/mcl, haemoglobin 9.9g/fl (low), haematocrit 27.3% (low) and platelet count 204 x10e3/mcl. It was reported that individualized dose optimization technique was used for procedures performed. The subject was evaluated by the investigator on day 29. On examination he appeared weak and mildly febrile (37.8 degrees C) with normal blood pressure. Posterior oropharynx showed mild erythema, no exudate and minimal oedema peripherally. The uvula appeared normal without oedema or erythema. Heart and lung exam were normal. No lymphadenopathy on head and neck exam. No rash. Pallor noted. This was followed by a low grade fever (99.4-99.6 degrees F) for 2-3 days. He had gained a couple of pounds but continued to have a persistent mild, intermittent headache. A barium swallow test (report not provided) did not show any findings that explained his swallowing problems. The assessment showed, there was no functional reasons for swallowing and speech issues, and it was due to muscle fatigue. The subject was seen by a neurologist (report not provided). The subject was seen by a speech therapist and he had been drinking fluids with no issues and some issues still existed with the solid food. The fatigue was getting better and there was no fever.

MAH’s Expert consultation within the clinical trial

1. Academic experts in infectious disease, haematology and neurology were consulted by the company. They concurred with the diagnosis of transverse sinus thrombosis with reactive cerebral haemorrhage. Individually each consultant concluded that the event resulted from a combination of factors including: 1. An anatomic abnormality of cerebral transverse sinus stenosis that predisposes the subject to thrombosis;

2. A pre-existing or secondary hypercoagulable state;
3. An infectious event which started on the 29 Sept 2020 (day 9) that triggered inflammation and induced a hypercoagulable state or worsened a pre-existing hypercoagulable state;

Although a specific infection has not been identified, and Covid-19 infection was effectively ruled out with multiple negative PCR tests, the consultants all concurred that the viral-like symptoms from 29 Sept 2020 through to 08 Oct 2020 likely represented an infection that triggered a cascade resulting in the event of transverse sinus thrombosis. The consultants also provided recommendations for continued infectious disease and haematology work up.

The consultants also individually concluded that there is no evidence of the study vaccine causing this event of cerebral sinus thrombosis with reactive haemorrhage.

Investigator causality assessment: The events of transverse sinus thrombosis and cerebral haemorrhage were not related to Ad26. Cov2.

Company causality assessment: The events of transverse sinus thrombosis and cerebral haemorrhage were not related to Ad26. Cov2.

Source of Information

Reports from the US Vaccine Adverse Event Reporting System (VAERS) and also pivotal phase III trial, VAC31518COV.3001: A randomised, double-blind, placebo-controlled phase 3 study to assess the efficacy and safety of Ad26. COV2.S for the prevention of SARS-CoV2 mediated Covid-19 in adults aged 18 years and older.

Signal validator conclusion

To date, three reports have been received by EMA of thrombosis co-reported with thrombocytopenia in association with Covid-19 Janssen vaccine. While the data at this stage is preliminary, it is considered that further evaluation is warranted given that “venous thromboembolism” is listed as an important potential risk within the summary of safety concerns of the RMP and that a signal of Embolic and Thrombotic events is currently ongoing for VAXZEVRIA/COVID-19 AstraZeneca vaccine. However, it should be emphasised that a precautionary approach is being adopted.

2.2. Signal confirmation

In light of the important potential risk in the RMP for Covid-19 Vaccine Janssen of VTE, as well as the raised concern regarding events of thrombosis in combination with thrombocytopenia in association with another Covid-19 adenovirus vector vaccine, the MAH was, on 26 March 2021, asked the following:

Study VAC31518COV3001

- For the cases of thrombosis reported in this clinical trial, following review of narratives summarised in a document on AESI, it is noted in no laboratory data are available. Please provide all available data for all cases of thrombosis as well as bleeding reported in the clinical trial, and it is of particular importance to obtain any measurements of complete blood count including platelets.

- Please provide summaries of thrombocyte levels in subjects in the study, and for subjects with thrombocytopenia, please provide case narratives.

Current post marketing experience
Please provide an estimate on the current post marketing use.

Please provide a cumulative review of cases of thrombosis in combination with thrombocytopenia reported in the post marketing setting.

On 29 March, the MAH provided a short response which included case narratives for all thrombotic events, but not for the bleeding events.

Due to inconsistencies in the response such as it was stated that there was no case in study VAC31518COV3001 of thrombosis in combination with thrombocytopenia, while it was evident from the case narrative (see description above), that the man developing transverse sinus thrombosis also had thrombocytopenia.

As a follow up to that, MAH was agreed to provide additional information from an ongoing review of the individual case reports of thrombotic and thromboembolic events for concurrent occurrence of thrombocytopenia.

On 31 March, the MAH provided the following:

The following methodology was used to assess if reports of thrombotic or thromboembolic events also included thrombocytopenia.

Janssen’s Global Medical Safety (GMS) Database was first searched using the below search criteria and identified 132 reports:

- SMQ Hematopoietic cytopenias
- SMQ Haemorrhages
- SMQ Embolic and thrombotic events

Text string search of the case reports showed, 15 of 132 cases had platelet counts reported (some had actual lab values, and some had statements that just said “platelet counts normal” with no actual labs values specified). Of these:

- 8 of 15 reports had platelet counts in normal range
- 7 of 15 had platelet counts that were low

Of the 7 reports with low platelet counts, 1 was a spontaneous report and 6 were from trials (3 placebo/2 active/1 blinded).

Of the 4 cases that had low platelet counts reported on active (2), blinded (1), or spontaneous (1), only one case reported a thromboembolic event along with confirmed thrombocytopenia as summarized below.

Clinical trial case on active (see detailed narrative description above): a male subject between the ages of 18-28 experienced transverse sinus thrombosis resulting in cerebral haemorrhage on Day 19 after receiving a single dose of blinded study vaccine (Day 1) for prevention of SARS-CoV-2 virus infection. After experiencing flu-like illness starting Day 9, the subject was hospitalized on Day 19 following a tonic-clonic seizure. Upon hospitalization, his platelet count was 64,000 with a nadir of 60k. Upon discharge his platelet count was normal at 334.

The remaining 3 case summaries are provided below for completeness:
Spontaneous case: a female between the ages of 65-75 with COPD, smoker experienced “low platelet count” 5 days after receiving vaccine. Platelet count was reported as 138k (LL Normal is 150k). No symptoms/other events reported.

Clinical trial case blinded: A female between the ages of 63-73 hospitalized for Pancytopenia and determined to have Acute Myeloid Leukemia (AML) 135 days after first vaccine dose and 6 days after second dose. She had a grade 3 platelet count of 26k.

Clinical trial case on active: a male between the ages of 65-75, who experienced COVID-19, Acute kidney injury, embolism venous and Hypoxia. On 35 days post vaccination he had the acute kidney injury, venous embolism, and hypoxia. The platelet count in this participant was not verifiable as it was reported as “11.7” with no normal range or units.

MAH Conclusion:

The review of cases of thrombotic or thromboembolic events and low platelets revealed that there is only one case report that has both a thrombotic or thromboembolic event and low platelets as described above.

On 2 April 2021; the MAH submitted the following summary regarding thrombotic and thromboembolic events from spontaneous reporting irrespective of thrombocytopenia:

A search of Janssen’s Global Medical Safety (GMS) Database was performed on 31 March 2021 for completed spontaneous cases using the Standardised MedDRA Query (SMQ) of Embolic and thrombotic events.

The search identified 13 serious spontaneous case reports (0 non-serious case reports) with the following 14 events from the SMQ:

- 2 Pulmonary embolism (PE);
- 1 Deep vein thrombosis (DVT) (this patient also experienced a Pulmonary embolism);
- 3 Myocardial infarction (MI);
- 5 Cerebrovascular accident (CVA);
- 1 Hemiparesis;
- 1 Hemiplegia;
- 1 Blindness transient;

Case specifics are detailed in Table 1 below and CIOMS forms were provided.

Pulmonary embolism: Both cases were reported from health care providers. For the 2 cases, one case had a risk factor of family history of PE and DVT; the other had minimal information to make a meaningful medical assessment.

Deep Vein Thrombosis: One of the above Pulmonary embolism cases also reported an associated DVT; the patient had risk factors of family history of PE and DVT.

Myocardial infarction: All 3 cases were reported from non-health care providers. Two of the 3 cases had diagnostics that were negative for myocardial infarction. The third case had a fatal outcome with insufficient information (no diagnostics reported) to make a meaningful medical assessment.
Cerebrovascular accident: All 5 cases were reported from non-health care providers. Two had minimal information reported. Two provided risk factors for stroke, including age in the 80s. One fatal case has an autopsy pending to provide a final diagnosis with cause of death.

Hemiparesis: This case was reported from a non-health care provider who described left sided weakness on the side of injection. There was no diagnosis of CVA, and the subject quickly recovered on the same day.

Hemiplegia: This case was reported from a non-health care provider who described "mild hemiplegia" [sic] at injection site with "sore arm" and "injection site stinging". No suggestion/diagnosis of CVA was made.

Blindness transient: This case was reported from a non-health care provider. No diagnosis of CVA was made. No medical care was sought, and the patient recovered.

MAH Conclusion: The search of the Global Medical Safety Database resulted in cases with limited information. Only one of the cases had a confirmed diagnosis reported from a physician who described a single patient with DVT/PE with known risk factors. No other cases had medically confirmed diagnoses. Based on the currently available information and/or lack of diagnostic evidence for the reported events, no conclusions can be reached from this dataset.

Table 1: Case Details

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Latency (days)</th>
<th>Preferred Term</th>
<th>Outcome</th>
<th>MAH Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>48-58</td>
<td>unspecified</td>
<td>Pulmonary embolism; Deep vein thrombosis</td>
<td>unspecified</td>
<td>Report from a physician. Risk factor of family history of DVT and PE.</td>
</tr>
<tr>
<td>female</td>
<td>unspecified</td>
<td>3</td>
<td>Pulmonary embolism</td>
<td>unspecified</td>
<td>Report from pharmacist. Female of unknown age reported pulmonary embolism 3 days after vaccination.</td>
</tr>
<tr>
<td>female</td>
<td>48-58</td>
<td>unspecified</td>
<td>Myocardial infarction</td>
<td>Fatal</td>
<td>Report from non-health care provider. 48-58 yo female died of "heart attack" an unknown time period after vaccination. Unknown if autopsy performed.</td>
</tr>
<tr>
<td>female</td>
<td>unspecified</td>
<td>1</td>
<td>Myocardial infarction</td>
<td>unspecified</td>
<td>Report from non-health care provider. Hospitalized with "heart attack symptoms" 1 day after vaccination. All diagnostic tests came back normal.</td>
</tr>
<tr>
<td>male</td>
<td>unspecified</td>
<td>7 hours</td>
<td>Myocardial infarction; Pyrexia</td>
<td>Recovered</td>
<td>Patient reported on himself. All diagnostics were normal as per patient report, including EKG, CAT scan, Nuclear stress test, and Transesophageal echo. Symptoms included fever. Confounded by history of aortic valve repair, and an unspecified heart disorder.</td>
</tr>
<tr>
<td>female</td>
<td>unspecified</td>
<td>unspecified</td>
<td>Cerebrovascular accident; Blindness</td>
<td>unspecified</td>
<td>Report from non-health care provider. Female of unknown age reported stroke and blindness unknown time period after vaccination.</td>
</tr>
<tr>
<td>female</td>
<td>unspecified</td>
<td>unspecified</td>
<td>Cerebrovascular accident; Blindness</td>
<td>unspecified</td>
<td>Report from non-health care provider.</td>
</tr>
<tr>
<td>male</td>
<td>78-88</td>
<td>10 hours</td>
<td>Cerebrovascular accident</td>
<td>Recovered</td>
<td>Report from non-health care provider. Risk Factors: Age of 78-88 and male sex.</td>
</tr>
<tr>
<td>female</td>
<td>78-88</td>
<td>1</td>
<td>Cerebrovascular</td>
<td>Not</td>
<td>Report from non-health care provider. Risk Factors: History of prior stroke;</td>
</tr>
</tbody>
</table>
Signal assessment report on Embolic and Thrombotic events (SMQ) with COVID-19 Vaccine Janssen (Ad26.COV2-S [recombinant])

- **EMA/268126/2021**

Table: MAH's Estimated post marketing exposure:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Latency (days)</th>
<th>Preferred Term</th>
<th>Outcome</th>
<th>MAH Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>58-68</td>
<td>2</td>
<td>Cerebrovascular accident; Fatigue; Malaise</td>
<td>Fatal</td>
<td>Report from non-health care provider. Risk Factors: age of 58-68; hypertension; family history of stroke and hypertension. An autopsy is pending.</td>
</tr>
<tr>
<td>female</td>
<td>28-38</td>
<td>Same day</td>
<td>Hemiparesis; Pain; Musculoskeletal stiffness; Chest pain; Pyrexia; Injection site pain</td>
<td>Recovered</td>
<td>Report from non-health care provider. Experienced numerous events of stiffness, chest pain, fever, and soreness at injection site along with the left side of body weakness likely related to reactogenicity. There was no diagnosis of stroke, and the subject quickly recovered on the same day.</td>
</tr>
<tr>
<td>female</td>
<td>unspecified</td>
<td>unspecified</td>
<td>Hemiplegia; Injection site pain; Pain in extremity</td>
<td>unspecified</td>
<td>Report from non-health care provider. Report of “mild hemiplegia” and injection site stinging and forearm both of which resolved.</td>
</tr>
<tr>
<td>female</td>
<td>78-88</td>
<td>Same day/3 days</td>
<td>Blindness transient; Deafness; Chills</td>
<td>Recovered</td>
<td>Report from non-health care provider. 78-88 year old with vision loss x 1 hour on day of vaccine, then hearing loss 3 days later. Vision loss recovered, outcome of hearing loss not reported.</td>
</tr>
</tbody>
</table>

PRAC Rapporteur comment:

At the approval of the CMA on 11 March 2021, "Venous thromboembolism" was included as important potential risk in the RMP, due to a numerical imbalance of venous thromboembolism observed in the main clinical study, VAC31518COV3001.

On 12 March 2021, a signal procedure regarding thrombotic and embolic events was started for another adenovirus vector Covid-19 vaccine, which is currently ongoing. During the assessment of this signal, very rare cases showing a combination of thrombosis and thrombocytopenia, and in some cases accompanied by bleeding, have gained particular attention.

For the Covid-19 Vaccine Janssen, we are currently aware of three cases with such unusual characteristics. This includes one case with concomitant thrombosis and thrombocytopenia in study VAC31518COV3001 and two post-marketing cases with concomitant thrombosis and thrombocytopenia, which have been reported from the US market. Of the three reports, 2 concern female patients while one concerns a male patient. Of the 3 reports, one is fatal. Time to onset included 11 days (n=2) and 19 days (n=1). Thrombotic events reported included transverse sinus thrombosis, cerebral venous sinus thrombosis and bilateral iliac and femoral deep vein thromboses. Although thrombocytopenia was reported in one case, platelet counts were not provided. In the remaining two cases, platelet counts were specified as 64,000 (units not specified) and 15,000 (units not specified). For further details of these cases, see above.

Signal assessment report on Embolic and Thrombotic events (SMQ) with COVID-19 Vaccine Janssen (Ad26.COV2-S [recombinant])

EMA/268126/2021
Some preliminary information has also been received from the MAH during the last days of March / first days of April; namely in short:

- The post marketing exposure is estimated to approximately 3.2 million doses by 31 March;
- A review of the MAH safety data base regarding thrombotic and thromboembolic events from spontaneous reporting irrespective of thrombocytopenia, resulted in identification of 13 serious spontaneous case reports (0 non-serious case reports). For many of these, limited information was available. None described a combination of thrombocytopenia.
- The review of cases of thrombotic or thromboembolic events and low platelets revealed that there is only one case report that has both a thrombotic or thromboembolic event and low platelets.

Taken together, there are currently three cases of thrombosis together with thrombocytopenia within the clinical trial and post marketing data base, having occurred within 2-3 weeks after vaccination with Covid-19 vaccine Janssen. For the two post marketing cases, information is relatively limited. Nevertheless, taking into account that VTE is an important potential risk in the RMP, and there are in total three reports, it is considered warranted to further review thrombotic and embolic events SMQ within a signal prompt procedure.

Given that there are three cases of this unusual clinical picture, it may be considered warranted to already as a first step update the product information with a short description of the observed cases as well as advice to prescribers and vaccinated individuals.

2.3. Proposed recommendation

The MAH should address the following:

1. The cumulative post-marketing exposure, divided by age groups if available.
2. Presentation of retrieved laboratory values on complete blood count including platelets for cases with venous or arterial thrombosis in all clinical studies with the Covid-19 vaccine Janssen.
3. Presentation of retrieved laboratory values on complete blood count including platelets for cases with bleeding in all clinical studies with the Covid-19 vaccine Janssen
4. A cumulative review of cases observed in clinical studies with the Covid-19 vaccine Janssen; in clinical studies with other vaccines using the same Ad26 platform as well as post-marketing cases occurring within a month after vaccination reporting
 a. Thrombosis (any)
 b. thrombosis (any) and concomitant thrombocytopenia/low platelet count
 c. thrombocytopenia/low platelet count regardless of symptoms

The presentation should include concomitant disease and medications, COVID-19-testing, time to onset, clinical course and outcome and diagnostic work-up, as available.
5. Discussion on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia, addressing possible mechanisms. This should include any support from non-clinical data and address any potential role of the adenoviral gene transfer vector.

6. The MAH view on whether the current data warrant for further updates of the product information as well as if there is a need for additional risk minimisation measures. [to be adapted depending on proposed option below]

7. The MAH is asked to address how this issue can be further studied both in the non-clinical and clinical setting.

Regarding the next steps and timelines; there are different options such as:

- During the PRAC April Meeting, agree a short warning statement (SmPC section 4.4, and section 2 of the package leaflet) describing the observed cases, and include advice to prescribers and vaccinated individuals. Adopt the above questions and continue the signal procedure, possibly by further conclusions at the PRAC meeting in May. A draft wording for section 4.4 is given below.

- Adopt the above questions during the PRAC meeting in April, and ask the MAH to respond promptly, to allow for further PRAC discussion on approximately 15 April or at PRAC ORGAM on 22 April with the aim to agree preliminary conclusions, including potential label updates.

Draft proposal for section 4.4

Thrombocytopenia and coagulation disorders

A combination of thrombosis and thrombocytopenia has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes thrombosis at unusual sites such as cerebral venous sinus thrombosis, and fatal outcome. The majority of these cases occurred within the first two to three weeks following vaccination.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Package leaflet – to be updated accordingly.

2.4. Comments from other PRAC members

Please find here below comments from a member state regarding this signal assessment report on Embolic and Thrombotic events (SMQ) in association with COVID-19 Janssen Vaccine (Ad26.COV2-S [recombinant]) (EPITT 19689).

In order to have the same level of information in the Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 Vaccine, Janssen could be asked to provide the same
scientific reflections/discussions on the non-clinical data as those asked for Vaxzevria. This would allow to study the mechanistic aspect in a more extensive way.

Proposal for new pre-clinical studies after assessment of the possible mechanistic explanations The MAH should address the following:

[...]

5. Discussion on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia, addressing possible mechanisms. This should include any support from non-clinical data and address any potential role of the adenoviral gene transfer vector.

- The MAH should propose a study to test in-vitro expression of the S protein of Janssen vaccine (these are already available for the other already authorised SARS-CoV-2 vaccines with a different S protein without showing concerns).

- The MAH should consider to perform in-vitro study to test the interaction of the Janssen vaccine with blood components (i.e. thrombocytes, erythrocytes, leucocytes etc., coagulation factors, natural IgM antibodies) both in the presence and absence of pre-existing immunity to recombinant, replication-incompetent adenovirus type 26 (Ad26) vector.

- The MAH should consider collecting more extensive non-clinical data namely but not limited to animal models. The MAH should provide further animal data namely on Ad26 vector. The potential effects of Ad26 vector to human should also be addressed.

- The MAH should propose further studies to elucidate the role of the spike antigen in these events specifically whether the Spike protein is antigenic (i.e. taking the role of heparin and binding with platelet factor 4).

- The MAH should propose any further non-clinical studies aimed at elucidating the mechanism that trigger platelet activation and subsequent thrombotic effects.

PRAC rapporteur comments; these comments have been taken into account in the updated LoQ.

Late breaking information submitted to EMA

Within the context of the oral explanation that was provided by Janssen-Cilag International NV to the PRAC on the 7th April 2021, the MAH referred to a case of cerebral thrombosis. Of, note the MAH specified that the case was subject to limited information and that at that point it had not yet been adjudicated as to whether the cerebral thrombosis concerned arterial or venous thrombosis. They also specified that no information regarding platelet count had been received.

On the 8th of April, the MAH sent a CIOMS form concerning the case in question.

A description of the case is provided below:

Case concerns a female patient between the ages of 18-28 from the US which was received from a pharmacist. The patient had no known allergies, was a non-smoker, was not on any concomitant medications including combined oral contraceptives, had no medical history or familial history of clotting disorders.
16 days after the vaccination she developed headache, vomiting and mental status changes. Her family noted she was "staring" or "spacey". She was brought to the hospital where MRI and CT scan of the brain revealed sagittal sinus thrombosis and haemorrhage. She was admitted to ICU. Platelet count on presentation was 18,000 (units not specified), fibrinogen was noted to be low and fibrin D-dimer was elevated. Platelet count remains at 22,000 to 24,000. Sixteen days after vaccination, the patient developed seizures, was intubated, sedated and placed on unspecified anti-epileptic drugs (AEDs). She was treated according to the "British Guidelines", was given a platelet transfusion in advance of thrombectomy and was anticoagulated (specific agent not provided). Following platelet transfusion and thrombectomy, the patient's platelet count rose to 160,000, fibrinogen normalised, and both remained stable for 1-2 days. Treatment with un-specified AEDs was continued. The patient remained intubated and sedated and thus her mental and neurologic status was not re-evaluated. At the time of the report it was noted that the patient had recovered from thrombocytopenia, but the outcome of sagittal sinus thrombosis, cerebral haemorrhage and seizures was not reported.

PRAC rapporteur comments; this is another case with an unusual clinical picture of a serious sagittal sinus thrombosis, in combination with thrombocytopenia, occurring in a healthy young woman, about 2 weeks after vaccination. This case strengthens the current signal in need of further prompt in depth review.

2.5. Adopted PRAC recommendation

Having considered the available evidence from both spontaneous reports and clinical trials, the PRAC has agreed that at this stage, there is insufficient evidence to warrant an update to the product information. Nevertheless, there are a number of issues in relation to thrombotic and embolic events that need further review, and therefore the signal procedure should proceed.

The MAH for COVID-19 Vaccine Janssen (Janssen-Cilag International NV) is therefore requested to submit, responses to the following list of questions:

- The cumulative post-marketing exposure, stratified by age, if feasible.

- Presentation of retrieved laboratory values on complete blood counts including, but not limited to, platelets, anti-platelet factor 4 antibodies, fibrinogen, ADAMTS13, anti-phospholipid antibodies and D-dimer, for cases with venous or arterial thrombosis in all clinical studies with the Covid-19 vaccine Janssen.

- Presentation of retrieved laboratory values on complete blood counts including, but not limited to platelets, anti-platelet factor 4 antibodies for cases of haemorrhage in all clinical studies with the Covid-19 vaccine Janssen.

- A detailed cumulative review of cases observed in clinical studies with i) the Covid-19 vaccine Janssen, ii) other vaccines using the same Ad26 platform; as well as of iii) cases originating from the post-marketing setting of
 - a. thrombosis (any);
 - b. thrombosis (any) and concomitant thrombocytopenia/low platelet count;
 - c. thrombocytopenia/low platelet count regardless of symptoms

The presentation should include all available information regarding concomitant disease and medications, COVID-19 testing, time to onset, clinical course and outcome and diagnostic work-up, as available. Full case narratives should also be provided.

- Observed to expected analyses of cases of
 - a. Cerebral venous thrombosis without thrombocytopenia (i.e. using all relevant PTs such as cerebral venous thrombosis, superior sagittal sinus thrombosis, transverse sinuses...
thrombosis, aseptic cavernous sinus thrombosis, cerebral venous thrombosis and also events of cerebral thrombosis that are adjudicated to be related to venous thrombosis), also stratified by age bands (i.e. 10 years) should be provided. Background rates for events of CVST without thrombocytopenia should be used within the analysis.

b. Cerebral venous thrombosis with thrombocytopenia (i.e. using all relevant PTs such as cerebral venous thrombosis, superior sagittal sinus thrombosis, transverse sinus thrombosis, aseptic cavernous sinus thrombosis, cerebral venous thrombosis and also events of cerebral thrombosis that are adjudicated to be related to venous thrombosis), also stratified by age bands (i.e. 10 years), should be provided. Background rates for CVST with thrombocytopenia should be used within the analysis.

- Discussion on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia, addressing possible pathophysiological mechanism, including potential for platelet activation. This should include all relevant non-clinical data and clinical data and address any potential role of the adenoviral gene transfer vector.

- The MAH is asked to discuss how, beyond the already agreed studies in the PhV plan, the important potential risk venous thromboembolism, including the potential occurrence of the combination of thrombosis and thrombocytopenia can be further studied. Ways of gaining further mechanistic data, both non-clinical and clinical, regarding potential interactions of the Covid-19 vaccine Janssen and the coagulation system should specifically be addressed; and the following commented:

- Study the in-vitro expression of the spike protein of the Janssen Covid-19 vaccine, and the relative proportions of the spike protein expressed in the pre-fusion and post-fusion state after administration of the vaccine.

- Study the interaction of the Janssen Covid-19 vaccine with blood components such as thrombocytes, erythrocytes, leucocytes etc., as well as coagulation factors, natural IgM antibodies; both in the presence and absence of pre-existing immunity to recombinant, replication-incompetent adenovirus type 26 (Ad26) vector.

- Discuss how additional non-clinical as well as human studies can provide further data regarding potential effects of the i) Ad26 vector; ii) the spike protein on the coagulation system, including potential triggers of platelet activation and subsequent thrombotic effects. This should include addressing whether the Ad26 vector may active platelets via interaction with the cell adhesion molecule CAR (i.e. coxsackie and adenovirus receptors), or affect the structure of PF4

- For on-going clinical studies, should cases of thrombocytopenia and/or thrombosis occur, a thorough laboratory testing should be performed including, but not limited to: complete blood count incl platelets, haemolysis parameters, D-dimer, fibrinogen, PTT, PT/INR, antiphospholipid antibodies and anti-PF4 antibodies.

- Considering the findings of the review, the MAH should discuss the need for amendment to the Product Information and/or Risk management plan, for the latter, including, but not limited to, the list of safety concerns and studies specified within the pharmacovigilance plan.

The PRAC will perform the assessment within a 30-day timeframe.
3. Additional evidence

3.1. Assessment of additional data

On 15 April 2021, the MAH submitted responses to Question 1-8 outlined above. Furthermore, on 15 April 2021, the PRAC Rapporteur has received Eudravigilance data and analyses from the EMA. The latter was updated on 17 April 2021.

The PRAC Rapporteur assessment to be sent to the PRAC on 19 April 2021, is the first step in the further evaluation of this signal. As agreed with the EMA on 15 April 2021, the aim of this first step is to review of cases of unusual thrombosis in combination with thrombocytopenia, and taking experience gained from a recently finalised signal evaluation\(^2\), and based on that, evaluate the need for updates of the product information, as well as the need for additional risk minimisation measures. For the AR to be sent out on 19 April, 17 April 2021 is the cut-off for new data.

A more in-depth evaluation of any mechanistic aspects, as well as of the pharmacovigilance plan, and thereby the responses to Q7, will be undertaken in the second step of the assessment of the MAH responses. In addition, review of laboratory results from clinical studies and post-marketing on conditions not predominantly related to the combination of thrombosis and thrombocytopenia will be assessed in more depth in the second step as well.

A timeline for that second step is to be finally agreed, but tentatively planned for the PRAC meeting in May 2021.

3.1.1. MAH response as of 15th April 2021

The safety databases (A) used to identify reports of thrombotic or thromboembolic events with concurrent thrombocytopenia, the search criteria used (B), and laboratory results (C) were:

Safety Databases:

Ad26.COV2.S Clinical Database. This contains safety data (including both nonserious adverse events [AEs] and serious adverse events [SAEs]) from all ongoing and completed COVID-19 vaccine Janssen Ad26.COV2.S Phase 1, Phase 2 and Phase 3 clinical studies, including VAC31518COV1001, hereby referred to as COV1001; VAC31518COV1002, hereby referred to as COV1002; VAC31518COV2001, hereby referred to as COV2001; VAC31518COV3001, hereby referred to as COV3001, and VAC31518COV3009, hereby referred to as COV3009.

Global Medical Safety Database. This contains all reports of SAEs from Ad26.COV2.S clinical studies conducted by Janssen, as well as spontaneous post-marketing reports of both nonserious AEs and SAEs:

Study VAC31518COV3012, hereby referred to as COV3012 Sisonke open-label single-arm Phase 3b implementation study to monitor the effectiveness of the single-dose Ad26.COV2.S COVID-19 vaccine among health care workers in South Africa. This is a collaborative study, sponsored by the South African Medical Research Council (SAMRC). SAEs only will be captured.

SAEs reported in collaborative studies and vaccination programs conducted with Ad26.ZEBOV (Ebola program; 10 studies) for which SAEs are followed in the GMS database. SAEs reported in these studies and programs will only appear in the GMS Database. These include VACS2150EBL005, EBL1007, EBL2004, EBL2006, EBL2007, EBL2008, EBL2009, EBL3008, EBL3010 and EBL4002.

The following trials/programs are conducted as a collaborative non-Janssen sponsored initiative:

EBL1005: Phase 1 Randomized, open-label trial conducted in healthy adults (18 to 50 years of age) to assess the safety and reactogenicity of 2-dose vaccine regimens. Sponsor: Oxford University

EBL1007: Phase 1 Randomized, uncontrolled, double-blind trial conducted in healthy adults (18 to 45 years of age) to assess the safety and reactogenicity of 2-dose vaccine regimens and third vaccination. Sponsor: National Institute of Allergy and Infectious Diseases (NIAID)

EBL1008: A Systems Biology Phase 1 Evaluation of the Safety, Reactogenicity, and Immunogenicity of Chimpanzee Adenovirus Type 3- vectored Ebolavirus Zaire (ChAd3-EBO-Z) and Modified Vaccinia Ankara- vectored Multivalent Filovirus (MVA-BN®-Filo) Vaccine Candidates. Sponsor: NIAID

EBL2004: Phase 2 Randomized, placebo controlled, double-blind trial conducted in healthy adults (≥18 years), adolescents (12 to 17 years of age), and children in 2 age groups (1 to 11 years of age). To assess the safety and reactogenicity of 2-dose vaccine regimens; To compare the 2-dose vaccine regimen with the matched placebo regimen for antibody response 3 months after randomization (approximately 28 days after Dose 2 vaccination). Sponsor: NIAID.

EBL2006: Phase 2 Open-label trial in participants who received investigational Ebola vaccines (ChAd3-EBO-Z, MVA-BN-Filo, MVA-EBO-Z, or Ad26.ZEBOV) administered in previous studies led by the Oxford Vaccine Center (EBL1001, EBL1004, and EBL1005). To assess the persistence of humoral and cellular immunity against EBOV glycoprotein with or without a booster dose of Ad26.ZEBOV administered 2 to 5 years after adenoviral and MVA-vectored Ebola vaccine schedules. Sponsor: Oxford University

EBL2007: Phase 2 Open-Label trial conducted in health care providers in the Democratic Republic of the Congo who are at risk of exposure to Ebola in the event of a future Ebola outbreak. To assess the immunogenicity and safety of a prophylactic vaccination by administration of the heterologous vaccine regimen. In addition, after randomization (1:1) a booster of Ad26.ZEBOV will be offered at respectively 1 year or 2 years after the first dose. Sponsor: University of Antwerp/University of Kinshasa.

EBL2008: Phase 2 Open-label trial conducted in participants previously enrolled in the EBL2006 study led by IRESSEF and UOXF investigators. To assess humoral and cellular immunity against EBOV glycoprotein at 1 year following a late booster dose of Ad26.ZEBOV administered 3 to 4 years after receiving heterologous Dose 1 or Dose 2 of ChAd3- EBO-Z /MVA-EBO-Z administered at Day 1 and Day 8. Sponsor: Oxford University

EBL2009: Phase 2 Non-randomized, uncontrolled, open-label trial in adult health care or frontline workers to characterize the humoral immune response to the Ebola surface glycoprotein (GP) and the
persistence of antibodies after IM administration of a 2-dose vaccine regimen. Sponsor: The London School of Hygiene & Tropical Medicine and Uganda Virus Research Institute.

EBL3008: Ongoing Phase 3 open-label trial conducted in nonrandomized Adults (≥18 years of age) and children (≥1 year of age) to assess the 2-dose regimen for effectiveness and safety in the Democratic Republic of Congo during the ongoing Ebola outbreak. Sponsor: The London School of Hygiene & Tropical Medicine

EBL3010: Ongoing Phase 3 trial in healthy pregnant women (≥18 years of age) in Rwanda to assess the 2-dose regimen for safety, reactogenicity and immunogenicity. Partner: Emory University and Rwanda Institution

It is important to note that as many of the clinical studies are currently ongoing, the clinical database and the GMS database have not been fully reconciled, hence the number of SAEs reported may differ depending on the source. Whereas a search of the clinical database will provide information on both cases of nonserious AEs and SAEs, the GMS database will only contain reports of SAEs.

Post-marketing safety assessment of AEs spontaneously reported have well-known limitations that often preclude an accurate and meaningful medical assessment, including: insufficient case detail such as clinical course/laboratory data/ diagnostics, lack of medical accuracy due to non-health care provider reporters (e.g. consumers/patients), and an inability to follow-up secondary to multiple factors such as contact details or reluctance by reporters to provide authorization or contacting the health care provider. Data obtained from the Food and Drug Administration (FDA) and CDC’s co-managed US national Vaccine Adverse Events Reporting System (VAERS), which is the principal source of spontaneously reported AEs, has an unspecified delay in data entry from time of receipt by the FDA, which in turn delays visualization by the company. Case details can only be obtained following Freedom of Information Act request by the company and have an undefined time period before being released).

Search Criteria

A comprehensive search was performed on the Janssen’s Global Medical Safety (GMS) Database and the Janssen Clinical Databases for adverse events of interest using the following Standardised MedDRA Query (SMQ) version 23.1 broad search terms, where applicable (the clinical database and the GMS database have not been fully reconciled, hence the number of SAEs reported may differ depending on the source. Whereas a search of the clinical database will provide information on both cases of nonserious adverse events (AEs) and serious adverse events (SAEs), the GMS database will only contain serious events (SAEs):
The search was performed on the following clinical trials databases, containing both serious adverse events (SAEs) and non-serious adverse events (AEs):

The data lock points (DLP) used for the searches performed in the different databases where the following: COV1001 (DLP 01 April 2021); COV1002 (DLP 31 March 2021) – Data are blinded; COV2001 (DLP 17 March 2021) – Data are blinded; COV3001 (DLP 24 March 2021); COV3009 (DLP 01 April 2021) – Data are blinded; The Ad26 Platform Clinical Database (AdVac report, Version 6.0, DLP 31 December 2020). The post-marketing reports for Ad26.COV2.S had a DLP 09 April 2021. EBL1007, EBL2004, EBL2006, EBL2008, EBL2007, EBL2009, EBL3008, EBL3010 and EBL4002 (DLP 09 April 2021).

Laboratory Results

In the clinical trials, analysis of blood count, including platelets was not routinely performed, except in the phase 1 studies COV1001 (only abnormality flag, no actual values) and COV1002 where baseline and post-vaccination samples were collected for Laboratory assessments. Protocols do specify that abnormal laboratory values, when available, are reported as unsolicited adverse events (AEs). Overall, in most cases of venous or arterial thrombosis (reported as AE or SAE) complete blood count including platelets is not be available. The MAH has contacted the study sites to retrieve possible individual laboratory data from source document. Analysis of the available data showed limited reports of thrombocytopenia and other coagulopathies.

To address the important potential risk of venous thromboembolism data generated in COV2001 will be used to assess potential vaccine-induced anti phospholipid syndrome and potential vaccine-induced activation of coagulation in adults aged 18 to ≤55 years and adults aged ≥65 years. Protocol required hematology laboratory assessments include Lupus anticoagulants, Anti-β2 glycoprotein, Anti cardiolipin and D-dimer. Results of the ongoing study COV2001 are expected to become available at the end of April 2021.

PRAC Rapporteur assessment comment

The background data on safety databases, the search criteria used, and laboratory results are noted.
QUESTION 1

The Cumulative post-marketing exposure, stratified by age, if feasible.

Janssen cumulative (US) post-marketing exposure according to the Center of Disease Control (CDC) as of the 15 April 2021, is a total of 7,688,499 doses of the COVID-19 vaccine Janssen. As of 12 April 2021 (of a total of 6,453,740 doses), it is estimated, that approximately 66.5.% of recipients of the Janssen COVID-19 vaccine were in the 18 to 59-year age group and approximately 33.5% of recipients were in the ≥60-year age group. Age group percentages are derived from the exposure numbers published daily by the CDC at https://covid.cdc.gov/coviddata-tracker/#vaccination-demographic.

The percentages are based on:

Calculation of post-marketing exposure, stratified by age, according to the CDC is based on the overall age group percentages across all COVID-19 vaccines authorized for us in the US, and therefore may not represent the best current estimate of the actual age by distribution for the COVID-19 vaccine Janssen.

COVID-19 vaccine Janssen received Emergency Use Authorization (EUA) for use in the US on 27 February 2021, and vaccination of the US population initiated on 08 March 2021. As of 13 April 2021, a total of approximately 2,489,153 individuals are within the 21-day post vaccination period. The company estimates that more than 100,000 individuals were being vaccinated each day in the US with COVID-19 vaccine Janssen immediately prior to the pause initiated on 13 April 2021. As of 12 April 2021: Janssen has 6 post-authorization cases of CVST (4 of 6 with low platelets, 2 unknown) with 6.8 million individuals vaccinated.
The clinical study exposure is detailed in Table 1 below:

Table 1: Clinical Trial Exposure Data for Ad26.COV2-S

<table>
<thead>
<tr>
<th>Clinical Trial: Ad26.COV2-S</th>
<th>DLP (cut-off date)</th>
<th>Blinding status</th>
<th>Ad26 5e10</th>
<th>Ad26 1e11</th>
<th>Placebo</th>
<th>Blinded</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV1001</td>
<td>01 April 2021</td>
<td>Unblinded (cohorts 1 and 3)</td>
<td>323</td>
<td>319</td>
<td>161</td>
<td>271</td>
<td>1076</td>
</tr>
<tr>
<td>COV1002</td>
<td>21 March 2021</td>
<td>Blinded</td>
<td>279</td>
<td>250</td>
<td>9</td>
<td>256</td>
<td>465</td>
</tr>
<tr>
<td>COV2001</td>
<td>17 March 2021</td>
<td>Blinded</td>
<td>395</td>
<td>395</td>
<td>511</td>
<td>511</td>
<td>1301</td>
</tr>
<tr>
<td>COV3001</td>
<td>24 March 2021</td>
<td>Unblinded (cohorts 2a and b)</td>
<td>21895</td>
<td>21818</td>
<td>43783</td>
<td></td>
<td>43783</td>
</tr>
<tr>
<td>COV3009</td>
<td>01 April 2021</td>
<td>Blinded</td>
<td>24421</td>
<td>24421</td>
<td></td>
<td></td>
<td>24421</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>22218</td>
<td>22051</td>
<td>45351</td>
<td></td>
<td>50851</td>
</tr>
<tr>
<td>COV3012</td>
<td>30 March 2021</td>
<td>Open-label</td>
<td>26878</td>
<td>26878</td>
<td></td>
<td></td>
<td>26878</td>
</tr>
<tr>
<td>Total estimated clinical exposure*</td>
<td></td>
<td></td>
<td>26096</td>
<td>319</td>
<td>12201</td>
<td>2553*</td>
<td>33403</td>
</tr>
</tbody>
</table>

Abbreviations: DLP = Date Lock Point; N = number; NA = not applicable

* Note: Clinical studies COV1002, COV2001 and COV3009, as well as cohorts 2a and b of study COV1001 are blinded so number receiving Ad26.COV2.S is an estimate based on randomisation ratio.

* Total estimated exposure from the clinical trial data. Data for Ad26.COV2.S. This does not include post-marketing exposure, ongoing blinded Ad26 clinical trials which have not been integrated or collaborative studies.

Studies: COV1001 = VCL3154BVCOV1001; COV1002 = VCL3154BVCOV1002; COV2001 = VCL3154BVCOV2001; COV3001 = VCL3154BVCOV3001; and COV3009 = VCL3154BVCOV3009

Study COV3012 is the VCL3154BVCOV3012 double-blind randomised study in South Africa. Further data analysis forms (CRFs) are available for this study.
Table 3 relates to the Ad26 platform exposure data from all completed and ongoing clinical trials using Ad26-based vaccines excluding COVID-19 (see Table 1 for COVID-19). The table relates to the Ad26 platform exposure data for the Janssen Collaborative Ebola studies, including the Ebola vaccination campaign in Democratic Republic of the Congo (DRC-EB-001 / VAC52150EBL3008) and Rwandan government-led Ebola vaccination campaign under conditional approval (UMURINZI / VAC52150EBL4002) with cut-off dates for individual studies/programs provided, as listed in the GMS safety database.

PRAC Rapporteur assessment comment

Regarding cumulative (US) post-marketing exposure, the MAH refers to the Center of Disease Control (CDC), which reports a total of 7,688,499 doses of the COVID-19 vaccine Janssen being used as of 15 April 2021.

As of 12 April 2021 (of a total of 6,453,740 doses), it is estimated, that approximately 66.5.% of recipients of the Janssen COVID-19 vaccine were in the 18 to 59-year age group and approximately
33.5% of recipients were in the ≥60-year age group. However, this estimation appears based on use of all vaccines, and is therefore uncertain.

The MAH has also specified the approximate number of individuals being within the 21-day post vaccination period as of 13 April; namely 2,489,153 individuals. Although not entirely clear what is meant, review of the cumulative presentation above, this exact number of subjects appear to have been vaccinated more than three weeks ago, and thus possibly having past the main risk window for this unusual clinical event.

By end of March 2021, the clinical study exposure is estimated to about 286 000 subjects with the Covid-19 Vaccine Janssen, and more than 200 000 individuals with the Ad26 platform. However, it should be noted that the vast majority of these data for the Covid-19 vaccine Janssen have not yet been assessed by EMA. In the evaluation supporting the CMA on 11 March 2021, approximately 27,200 vaccinated subjects had been assessed in clinical studies for death and SAEs,3 and is thus the most relevant clinical study safety database.

QUESTION 2.

Presentation of retrieved laboratory values on complete blood counts including, but not limited to, platelets, anti-platelet factor 4 antibodies, fibrinogen, ADAMTS13, anti-phospholipid antibodies and D-dimer, for cases with venous or arterial thrombosis in all clinical studies with the Covid-19 vaccine Janssen.

In the clinical studies (COV1001, COV1002, COV2001, COV3001, COV3009), under the SMQ term “Embolic and thrombotic events”, the following events have been reported: 33 cases were reported among 22,218 (0.1%) participants that received Ad26COV2.S vaccine at the 5x1010 vp dose level. 1 case was reported among 319 (0.3%) participants that received Ad26COV2.S vaccine at 1x1011 vp dose level. 26 cases were reported among 22,051 (0.1%) participants that received placebo. 18 cases were reported among 25,537 (0.1%) participants that are blinded to treatment. Refer to Table 4 below for further details. Among those cases, the number of cases of venous or arterial thrombosis have been retrieved from the clinical trials and are summarized in Table 5.

For each study (COV1001, COV1002, COV2001, COV3001, COV3009) the number of subjects with an AE of Interest System Organ Class and Preferred Term are presented in the Subject Listings within the

3 EPAR for COVID-19 Vaccine Janssen, INN-Ad26.COV2-S, recombinant (europa.eu)
Appendices. Table 5 provides the number of cases of embolic and thrombotic events of interest. As already reported for the COV3001 clinical study results (the main efficacy trial), there is a numerical imbalance for DVT cases with the Ad26COV2.S vaccine (10 cases in the Ad26 5x10^10 recipients, 1 case in Ad26 1x10^11 recipient, 2 cases that are still blinded and 3 cases in the placebo arm). For CVST, there was no imbalance in terms of cases reported in the clinical trials. Nevertheless, as stated in answer to Question 8, venous thromboembolism (VTE) is considered an Important Potential Risk for the EU-RMP, and relevant events for VTE have been identified and are monitored as Adverse Events of Special Interest (AESI). Please refer also to Question 4 for further description of thrombosis events.

Table 5: Ad26.COV2.S Clinical Studies: Number of Subjects with selected AEs of Interest by SMQ term

<table>
<thead>
<tr>
<th>SOC by Preferred Term</th>
<th>Ad26.COV2.S 5x10^10 (study)</th>
<th>Ad26.COV2.S 1x10^11 (study)</th>
<th>Placebo (study)</th>
<th>Blinded (study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep vein thrombosis</td>
<td>10 (COV3001)</td>
<td>1 (COV1001)</td>
<td>3 (COV3001)</td>
<td>2 (COV3009)</td>
</tr>
<tr>
<td>Cerebral thrombosis</td>
<td></td>
<td></td>
<td>1 (COV1002)</td>
<td></td>
</tr>
<tr>
<td>Cerebral venous sinus thrombosis</td>
<td></td>
<td></td>
<td>1 (COV3001)</td>
<td></td>
</tr>
<tr>
<td>Haemorrhoids thrombosed</td>
<td>0</td>
<td></td>
<td>1 (COV3001)</td>
<td></td>
</tr>
<tr>
<td>Retinal vein thrombosis</td>
<td>1 (COV3001)</td>
<td></td>
<td>1 (COV3001)</td>
<td></td>
</tr>
<tr>
<td>Transverse sinus thrombosis</td>
<td>1 (COV3001)*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral artery thrombosis</td>
<td></td>
<td></td>
<td>1 (3009)</td>
<td></td>
</tr>
<tr>
<td>Venous thrombosis limb</td>
<td>1 (COV3001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full analysis set</td>
<td>22895</td>
<td>319</td>
<td>22051</td>
<td>25537</td>
</tr>
<tr>
<td>Total number (%)</td>
<td>13 (0.1%)</td>
<td>0</td>
<td>5 (<0.1%)</td>
<td>4 (<0.1%)</td>
</tr>
</tbody>
</table>

Abbreviations: SOC = System Organ Class
MedDRA version 23.1
* Further details on the case of Venous Transverse Sinus Thrombosis and Cerebral Hemorrhage reported following administration of Ad26.COV2.S in COV3001 can be found in the attached CIOMS I form.

In most cases of venous or arterial thrombosis (reported as AE or SAE) complete blood count including platelets is not available. The MAH has contacted the study sites to retrieve possibly individual laboratory data from source document. For arterial and venous thrombosis cases, available data are presented and no conclusion can be drawn from the limited available information. Finally, for studies COV1001 and COV1002 complete blood counts, including platelets was performed at baseline and post-vaccination timepoints. For both studies, only normal or abnormality status are collected for pre and post vaccination timepoints. The results are available for study COV1001 and described below.

Analysis of the laboratory assessments performed in the COV1001 clinical study revealed that there were no trends/abnormalities observed in platelet numbers as compared to placebo at Day 8 (7 days post-dose 1) or at Day 57 and Day 64 (post-dose 2). Similar there was no trend/abnormalities in levels of activated partial thromboplastin time or in prothrombin time (Table 4). It should be noted that these reported laboratory values are not reported as consequence of an adverse event but are used to see trends when comparing pre and post-vaccination timepoints. Overall, there is no impact of the vaccine on platelet counts: there was no notable change in platelets counts observed at the post vaccination timepoints.
Table 6: Laboratory results for subject in clinical trials COV1001, COV1002, COV2001, COV3001 for subjects with vein and arterial thrombotic events

<table>
<thead>
<tr>
<th>Study</th>
<th>Vaccine/Placebo</th>
<th>Risk period</th>
<th>Age (years)/Gender/Race</th>
<th>System Organ Class</th>
<th>Serious/relatedness</th>
<th>PCR positive</th>
<th>AE onset/end date</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Ad26.COV2S 1×10^{11}</td>
<td>≥28</td>
<td>68-78/M</td>
<td>Embolic and thrombotic events /Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS</td>
<td>No</td>
<td>NR</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>Blind</td>
<td>58-68/M</td>
<td>Embolic and thrombotic events /Nervous system disorders /Cerebral thrombosis /CEREBRAL THROMBOSIS</td>
<td>Yes</td>
<td>NR</td>
<td>(05 post-dose 2 161 post-dose 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>48-58/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS IN LOWER LEFT LEG</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>58-48/M</td>
<td>Vascular disorders /Deep vein thrombosis /RIGHT LEG /DEEP VEIN THROMBOSIS</td>
<td>11 Feb 2021</td>
<td>DVT & PE</td>
<td>PT=257 (RR 1-40-420) PT normal INR=1.12 PT normal INR=1 aPTT 31.4 (H) (RR 22.4-29.3) PLT=251 (RR 1-40-420) D-dimer 5.55 (H) (RR 0-0.5 mg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>68-96/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS IN HEMORAL VEIN</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>58-48/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS</td>
<td>20 Dec 2020</td>
<td>PT/INR = normal 11.3 sec/1.1 APTT = normal 23 sec Normal CBC = normal platelets = 204 $\times 10^3$/dL (RR 140-400), the WBC was elevated to 11.59 $\times 10^3$/dL, with slight increase in IMM GRAN ABSOLUTE = 0.07 $\times 10^3$/dL and MONOCYTE ABSOLUTE COUNT = 1.24 $\times 10^3$/dL, and with low Mean Cell Hemoglobin Concentration 31.3 g/dL CMP = all normal Lactic acid = 0.8 mmol/L D-dimer and fibrinogen were not evaluated Follow up CBC CBC is unremarkable, normal Platelets = 197 $\times 10^3$/dL,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>58-48/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>28-38/M</td>
<td>Nervous system disorders Transverse sinus/thrombosis TRANSVERSE SINUS VENOUS THROMBOSES</td>
<td>CIOMS form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>58-56/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS</td>
<td>No</td>
<td>21-25 Dec 2020 (from RAVE) (this seems to be the admission date, as per the attached medical records) PLT 141 (L) (RR not known) PT 24.6 (H) INR 2.1 (H) See attachment for full details.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0-28</td>
<td>48-58/M</td>
<td>Vascular disorders /Deep vein thrombosis /DEEP VEIN THROMBOSIS</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>58-68/M</td>
<td>Embolic and thrombotic events Vascular disorders Peripheral artery thrombosis THROMBOSIS ARTERIO FEMORALIS SUPERFICIALIS</td>
<td>No local lab results for the platelets and coagulation parameters were obtained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>68-78/F</td>
<td>Embolic and thrombotic events Nervous system disorders Cerebrovascular accident</td>
<td>No local lab results for the platelets and coagulation parameters were obtained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRAC Rapporteur assessment comment

There are some issues with regards to the presentation of data that hamper further assessment of the cases with venous or arterial thrombosis in the clinical studies with the Covid-19 vaccine Janssen.

In Table 5 above, there were 13 subjects with thromboembolic AEs of interest in the Ad26COV2.S vaccine group, including various venous thromboses and peripheral artery thrombosis in study 3001; apparently, there were 19 additional cases reporting embolic and thrombotic events in the Ad26COV2.S group in study 3001 based on Table 4; for completeness, the MAH should summarize the main reasons for not including the additional cases among AEs of interest (RSI). Also, only 8 cases with thromboembolic events are included in Table 6, and there is one case apparently missing from the summary in Table 5 (according to table 6, there is one case report of a 65-78-year-old female with cerebrovascular accident, with no lab results).

In Table 6, laboratory results for 18 subjects in the clinical trials with vein and arterial thrombotic events are presented: for the majority of cases, however, no such data are available. For 2 cases, there is no summary of relevant laboratory data but only a reference to appended CIOMS forms. In four additional subjects, laboratory values are reported. Notably, for any patient diagnosed with any thromboembolic event, collection of lab tests including platelets is expected. It is unclear if the cases in

Table 6: Laboratory results of thromboembolic cases

<table>
<thead>
<tr>
<th>Study</th>
<th>Vaccine/Placebo</th>
<th>Risk period</th>
<th>Age (years)/Gender/Race</th>
<th>System Organ Class</th>
<th>Serious/relatedness</th>
<th>PCR positive</th>
<th>AE onset/end date</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>48-58 F</td>
<td>Embolic and thrombotic events</td>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pulmonary embolism</td>
<td>SUSPICION OF PULMONARY THROMBOEMBOLISM</td>
<td>Platelets was 203x10E3/ml (normal 150-370), D-dimer 350 ng/ml (normal 0-500), PT 10.6 sec; INR 1.0; Fibrinogen 660 mg/dl (normal 150 – 450); antibiotic was initiated with cephalin</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>28-38 F</td>
<td>Embolic and thrombotic events</td>
<td>Vascular disorders</td>
<td>Deep vein thrombosis</td>
<td>DEEP VEIN THROMBOSIS</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>78-88 M</td>
<td>Embolic and thrombotic events</td>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pulmonary embolism</td>
<td>PULMONARY EMBOLISM</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>48-58 M</td>
<td>Embolic and thrombotic events</td>
<td>Vascular disorders</td>
<td>Deep vein thrombosis</td>
<td>DEEP VEIN THROMBOSIS</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>48-58 M</td>
<td>Embolic and thrombotic events</td>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pulmonary embolism</td>
<td>PULMONARY EMBOLISM</td>
<td>The Study Coordinator said that since the subject only went to the ER and the event was an AE, they had not requested medical records and do not have the local lab results for the platelets and coagulation parameters (PT/PTT, bleeding time etc). The study coordinator has requested the records right after her conversation with the CRA and will send us any updated information once received.</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>Blinded</td>
<td>78-88 M</td>
<td>Embolic and thrombotic events</td>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pulmonary embolism</td>
<td>PULMONARY EMBOLISM</td>
<td>Pending</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 pertain to those who received the Ad26COV2.S vaccine only (for all cases in study 3001, these data are not included in this table although that study has been unblinded).

For 3 of the 4 cases with laboratory values reported, platelet counts were normal. However, there is one additional case with concomitant thrombosis and thrombocytopenia in Table 6: a male between the ages of 55-65 who presented with thrombocytopenia (platelet levels 141) 15 days after vaccination; he was hospitalised 21 days after vaccination with deep vein thrombosis. Based on additional values, it is possible that this patient was treated with a vitamin K antagonist (INR was 2.1) unless he had severe co-morbidities such as liver failure (which could potentially also cause thrombocytopenia) or severe dietary vitamin K insufficiency. No CIOMS-report has been provided; based on the very short narrative of this case, reported co-morbidities included obesity and depression, and he received the Ad26COV2.S vaccine (i.e. not placebo). There are no lab tests at all in the narrative for this case, however, it is stated that the patient was treated with rivaroxaban following his DVT; since rivaroxaban would not be used in patients with severe liver failure, the INR value is assumed to be related to anticoagulant therapy at the time of his thrombosis.

This case should obviously have been presented within the case reports of concomitant thrombosis and thrombocytopenia in the clinical trials, regardless of concomitant disease and treatment. Such case reports have been requested several times from the MAH. Notably, should this case pertain to venous thrombosis with thrombocytopenia in a patient treated with therapeutic anticoagulation, this is remarkable and should likely have prompted further medical attention; lab values should likely be available. In table 6, the MAH refers to an attachment which has not been found. Full details on this case including complete CIOMS report should be provided (immediate RSI).

Questions were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen (RSI).

QUESTION 3

Presentation of retrieved laboratory values on complete blood counts including, but not limited to platelets, anti-platelet factor 4 antibodies for cases of haemorrhage in all clinical studies with the Covid-19 vaccine Janssen.

In the clinical trials (COV1001, COV1002, COV2001, COV3001, COV3009), under the SMQ term “Haemorrhages”, the following events have been reported: 36 cases were reported among 22,218 (0.2%) participants that received Ad26COV2.S vaccine at the 5x10^10 vp dose level. 9 cases were reported among 319 (2.8%) participants that received Ad26COV2.S vaccine at 1x10^11 vp dose level. 53 cases were reported among 22,051 (0.2%) participants that received placebo. 35 cases were reported among 25,537 (0.1%) participants that are blinded to treatment. Among those cases, the cases of interest (Cerebral haemorrhage, Haematemesis, Haematochezia, Haematuria, Haemoptysis, Haemorrhoidal haemorrhage, Subarachnoid haemorrhage) have been retrieved from the clinical trials and are summarized in Table 7. Further information on all haemorrhage cases is provided in the Appendices. From this, it can be concluded that there are no imbalances in number of haemorrhage cases when comparing vaccine versus placebo group.
Laboratory values for cases of hemorrhagic (i.e., bleeding) events reported for the COVID-19 vaccine Janssen in clinical trials:

Reviewing all AEs and SAEs cases that were reported in the clinical trials databases, limited data is available for blood laboratory results:

COV1001: Subject 1 reported hemoptysis and hematuria had no abnormal laboratory results. Subject 2 (COV1001) that reported Vaginal hemorrhage (mild vaginal bleeding (spotting)) reported normal laboratory results.

COV1002: no event reported.

COV2001: 10 events reported: no laboratory data pertaining to blood counts

COV3001: for those cases reported, no laboratory data pertaining to blood counts have been reported except for the case described here below (study pause case)

- Subject 3: a male subject between the ages of 18-28 with cerebral hemorrhage (18 days post vaccination)
 - lowest platelet count of 64,000/μL
- no other laboratory data has been reported in conjunction with hemorrhagic events

COV3009: no laboratory data has been reported in conjunction with hemorrhagic events. In addition, haemorrhage cases (SAEs) were also retrieved from the GMS safety database, to evaluate whether additional laboratory data was reported in the CIOMS forms. A total of 22 subject cases with 23 SAEs were reported in clinical studies. These are listed in Table 9 by preferred term (PT) and case count.

Only 9 SAEs haemorrhage cases (8 cases in COV3001 and 1 case in COV3009) included blood count laboratory data, of which only 3 cases were reported within 28 days of receipt of the vaccine. Of those cases for which complete laboratory blood count values were provided, only 2 cases exhibited thrombocytopenia:
COV3001: Subject 3, a male between the age of 18-28 with cerebral hemorrhage (18 days post-vaccination) - lowest platelet count of 64,000/uL. Further details on the case of CVST (Transverse Sinus Venous Thrombosis and Cerebral Hemorrhage) reported following administration of Ad26.COV2.S in COV3001 can be found in the programmed case narratives and attached CIOMS form, reference 20201017267.

COV3001 subject 4, a female between the ages of 18-28 with immune thrombocytopenia (76 days post-vaccination) - lowest platelet count of 6x10^9/L

None of the cases with CBC information had baseline values prior to vaccination. Also, majority of the available CBC laboratory values did not have normal reference ranges precluding adequate medical assessment.

Information from the 9 cases of serious hemorrhagic events with the COVID-19 vaccine Janssen reported in clinical trials are presented in Table 10 below. Given the limited information available, no conclusions can be drawn at this time. Detailed information is provided for all cases observed in clinical trials with the COVID-19 vaccine Janssen, in the programmed case narratives available in Appendices.

Table 10: Cases of Serious Hemorrhagic Events with COVID-19 Vaccine Janssen, Reported in Clinical Trials, for which Complete Blood Counts are Available

<table>
<thead>
<tr>
<th>AER# (Subject ID)</th>
<th>Case type</th>
<th>Age</th>
<th>Gender</th>
<th>Bleeding Reported Adverse Event Preferred Term</th>
<th>Time to onset from vaccination date</th>
<th>Available laboratory values on complete blood count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021049035</td>
<td>study COV3001</td>
<td>78.88</td>
<td>Male</td>
<td>HEMOGLOBIN DECREASED</td>
<td>97 days</td>
<td>Hgb 7 in ER (narrative); Hgb of 8.6 is listed in the adverse event report; reference ranges not reported.</td>
</tr>
</tbody>
</table>
| 20201017267* | study COV3001 | 18.28 | Male | CEREBRAL HAEMORRHAGE | 18 DAYS | Platelet count on hospitalization 64,000, white blood cell count 12.4, hemoglobin 12.7 and hematocrit 36.1 (units and normal ranges were not provided) The next day platelet count was 60 x 10^9/uL, increased to 110 x 10^9 3 hours later, no Hgb/Hct reported. Peripheral blood smear showed neutrophilic leucocytosis, no blasts were
identified, red blood cell count and morphology were within normal limits and thrombocytopenia with rare large platelet forms were seen. WBC = 9.2 x 10^3/μL at discharge, Plt 334 x 10^3/μL after after discharge, Hgb = 11 gm/dl after discharge

20201219240 study 68-78 Male GASTROINTESTINAL HEMORRHAGE 2 days Hemoglobin was 7.2 (NR not provided)

20201243934 study COV3001 68-78 Male GASTROINTESTINAL HEMORRHAGE 13 days Hematocrit was 37 (units unspecified), Hemoglobin was 13 (units unspecified), Lymphocytes was 602 (units unspecified), Mean corpuscular volume was 92 (units unspecified), Neutrophils was 6880 (units unspecified), Platelet count was 160000 (units unspecified).

20210141914 study 58-68 Male SUBARACHNOID HEMORRHAGE 34 days CBC showed white blood cell count 7.5, hemoglobin 11.8, hematocrit 11.8, and platelet count 206 (unit and reference range were not provided), hemoglobin 9.2 on admission (units and reference range not provided).

20210142329 study COV3001 48-58 Female LOWER GASTROINTESTINAL HEMORRHAGE 19 days Platelet count was 6 x 10^9/L (NR: 186 - 454), increasing to 223 x 10^9/L

20210142737 study COV3001 18-28 Female IMMUNE THROMBOCYTOPENIA 76 days Platelet count was 60 x 10^3/μL (NR: 186 - 454), increasing to 223 x 10^3/μL.

20210142791 study COV3001 18-28 Female CEREBRAL HEMORRHAGE 64 days WBC (reference range: 4100-10900) 6960/mm^3, hemoglobin (reference range: 11.6-15.7) 13.9 g/dL, platelet count (referred range: 140000-440000) 289000/mm^3.

20210207347 study COV3001 18-28 Female IMMUNE THROMBOCYTOPENIA 76 days Platelet count was 60 x 10^3/μL (NR: 186 - 454), increasing to 223 x 10^3/μL.

20210202793 study COV3001 18-28 Female IMMUNE THROMBOCYTOPENIA 76 days Platelet count was 60 x 10^3/μL (NR: 186 - 454), increasing to 223 x 10^3/μL.

20210240786 study COV3001 38-48 Female ANASTOMOTIC ULCE R HEMORRHAGE 40 days Hematocrit (NR: not provided) 30.2 %, and Hemoglobin (NR: not provided) 10.5 g/dL.

: Hematocrit (NR: not provided) 30.2 %, and Hemoglobin (NR: not provided) 10.5 g/dL.

: Hematocrit 37.1 %, and hemoglobin 13.3 g/dL.

* Further details on the case of (CVST) Venous Transverse Sinus Thrombosis and Cerebral Hemorrhage reported following administration of Ad26.COV2.S in COV3001 can be found in the attached CIOMS I form,

PRAC Rapporteur assessment comment

There is no imbalance for cases of haemorrhages in the clinical COVID-19 vaccine Janssen (in total 45 cases for participants that received Ad26COV2.S vaccine, 53 cases for placebo; however, for 35 additional cases, treatment remains blinded).

Data on laboratory values are missing for the majority of these cases. There are two cases with thrombocytopenia in study 3001; male subject between the ages of 18-28 with concomitant thrombosis and thrombocytopenia (further discussed below) and one female with immune thrombocytopenia 76 days post-vaccination.

Questions were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen (RSI).

QUESTION 4

A detailed cumulative review of cases observed in clinical studies with i) the Covid-19 vaccine Janssen; ii) other vaccines using the same Ad26 platform; as well as of iii) cases originating from the post-marketing setting of

a. thrombosis (any);

b. thrombosis (any) and concomitant thrombocytopenia/low platelet count;

c. thrombocytopenia/low platelet count regardless of symptoms
The presentation should include all available information regarding concomitant disease and medications, COVID-19 testing, time to onset, clinical course and outcome and diagnostic work-up, as available. Full case narratives should also be provided.

MAH RESPONSE:

Note for the reviewer

The answer to this question has been structured in the following way:

- Section A, presents the thrombosis cases
- Section B, presents the thrombosis / thrombocytopenia case
- Section C, presents the thrombocytopenia cases

Each of these sections has 5 subcategories that present date derived from different sources:

- A1, B1, C1 relate to the Covid vaccine trials (COV1001, COV1002, COV2001, COV3001 and COV3009): AEs and SAEs
- A2, B2, C2 relate to Covid vaccine trial COV3012: SAEs, as this is a collaborative study
- A3, B3, C3 relate to Ad26 platform vaccine trials (excluding Covid trials): AEs and SAEs
- A4, B4, C4 relate to Ad26 platform collaborative trials: SAEs
- A5, B5, C5 relate to Post-marketing cases

Section D presents narratives for the cases of thrombosis / thrombocytopenia

Section E provides a summary statement

For post-marketing cases, a cumulative review through 09 April 2021 of Janssen spontaneous cases with the COVID-19 vaccine Janssen in the Global Medical Safety Database was performed for events using the below search criteria of:

a. SMQ: Embolic and thrombotic events

b. SMQ: Embolic and thrombotic events SMQ AND (SMQ Haematopoietic thrombocytopenia OR SMQ Thrombocytopenias)

c. SMQ: Haematopoietic thrombocytopenia OR Thrombocytopenias High Level Term (HLT)

For the clinical trials, please refer to the background section for search criteria and DLP of clinical databases.

Narratives for all known reported cases, as of 12 April 2021, of thrombosis and concomitant thrombocytopenia/low platelet count are provided below, followed by the detailed answers to the question.

Case Narratives of thrombosis (any) and concomitant thrombocytopenia/low platelet count

Of the 6 total cases contained in the GMS Safety Database, that had Cerebral venous sinus thrombosis (CVST), one was from a clinical trial (see below).
Case 3
Clinical trial case on active treatment: male subject between the ages of 18-28 experienced transverse sinus thrombosis with secondary cerebral haemorrhage on Day 19 after receiving a single dose of blinded study vaccine (Day 1) for prevention of SARS-CoV-2 virus infection. After experiencing flu-like illness starting Day 9, the subject was hospitalized on Day 19 following a tonic-clonic seizure. Upon hospitalization, his platelet count was 64,000 with a nadir of 60,000. Upon discharge his platelet count was normal at 334. Of note, pre-vaccination his HEP-IND Thrombocytopenia PF4 Antibodies, IgG were negative, and post-vaccination, were elevated at 2.137 OD (reference interval ≤0.399).

The remaining 5 case summaries (all from spontaneous sources) are provided below:

Case 1)
A woman between the ages of 38-48 with a history of depression on concomitant fluoxetine, experienced a headache 1 week after vaccination and subsequent left sided weakness, dry heaves, worsening headache who developed "cortical vein thrombosis" involving the right transverse and sigmoid sinus, tentorial herniation, massive intracerebral haemorrhage, and thrombocytopenia (values not provided) resulting in death 12 days after vaccination.

Case 4)
A female between the ages of 18-28 who experienced a sagittal sinus thrombosis with cerebral haemorrhage 16 days following COVID-19 vaccine Ad26.COV2.S. Platelet count on presentation was 18,000 (units unspecified), fibrinogen was noted to be low (value not provided), fibrin D-dimer was elevated (specific levels not provided). The platelet counts remained 22,000 to 24,000. The patient developed seizures, was intubated, sedated, and placed on unspecified anti-epileptics. The patient was treated using the "British guidelines", was given a platelet transfusion in preparation for thrombectomy, and was anticoagulated (specific agents not provided). Following thrombectomy, the patient's platelet count rose to 160,000, fibrinogen normalized (value not provided), and both remained stable for 1-2 days. Treatment with unspecified antiepileptics was continued. The patient remained intubated and sedated, and thus her mental and neurologic status was not re-evaluated. She has not yet recovered. Additional information has been requested.

Case 5
This spontaneous report was received from physician via a literature article: Gundabolu K, Kallam A, Muir K, Thrombotic Thrombocytopenia Following Ad26.COV2.S Vaccination, New England Journal of Medicine, and describes a woman between the ages of 41-51 who developed splanchnic vein thrombosis, cerebral venous sinus thrombosis (CVST), hepatic vein thrombosis, splenic vein thrombosis, anaemia, DIC, haemorrhagic stroke, and thrombocytopenia (platelet nadir of 13,000) 14 days following administration of Ad26.COV2.S vaccine. Initial presentation also included hypofibrinogenemia and markedly elevated D-dimer. Anti-PF4/heparin antibody ELISA testing was strongly positive. The CVST progressed while on treatment with heparin (before vaccination status was known), with secondary haemorrhagic stroke. Anticoagulation was switched to argatroban, and platelet count increased following treatment with intravenous immunoglobulin.

Case 6
A female between the ages of 19-29 who experienced portal vein thrombosis, pulmonary embolism and cavernous sinus thrombosis one week after vaccination. Platelet count was 120,000, D-dimer was
elevated (value not reported), and fibrinogen was normal. The subject was initially treated with heparin; antibodies to platelet factor 4 (PF4) were later noted to be positive at 3.0 (reference range not provided). Heparin was stopped and intravenous immunoglobulin (IVIG) was initiated, at which point the platelet count had already increased. The subject is recovering. COVID-19 testing was reported to be negative.

Case 7

A female between the ages 31-41 was vaccinated with the Janssen COVID-19 vaccine Ad26.COV2.S. It was noted that the patient was "experiencing headaches 1 week ago" and had aphasia later in the week. CT of the head without contrast on day 17 showed parenchymal haemorrhage and persistent hyperdensity in the left transverse sinus, consistent with known venous sinus thrombosis being treated with heparin. No platelet counts were mentioned in the report.

One additional spontaneous case of thrombosis (Deep Vein Thrombosis) also had a reported thrombocytopenia and is summarized below:

Case 2: This serious case concerns a female patient between the ages of 52-62. Concomitant medication included (levodopa/carbidopa), (formoterol/budesonide), (clonazepam), (citalopram), (lemborexant), (icosapent), (diclofenac), (ropinirole), (quetiapine), Celecoxib, Albuterol inhaler, Omeprazole, (levothryroxine), (hydrocodone), low dose aspirin. The report notes that the patient had allergies to tetracycline and vortioxetine.

The adverse event started on day 11. The patient had 5 days of bruising and left leg swelling prior to presenting. She was found to have an extensive, occlusive deep vein thrombosis (DVT) of the left lower extremity as well as thrombocytopenia of 15,000 (units not specified). She had an inferior vena cava (IVC) filter placed. The next day, the patient began to have paraesthesia’s and discoloration of the right lower extremity. Ultrasound showed high-grade occlusion of the right proximal, superficial femoral artery. The patient was pre-treated with platelets. In addition to the right superficial femoral artery (SFA) there is also thrombotic occlusion of the bilateral iliacs. The patient had bilateral thrombectomy and bilateral common iliac stent placement. The following day she developed gross haematuria. At the time of the report (i.e. 28 March 2021), the patient had not recovered from the event.

Late Breaking Information:

The MAH was informed by the US FDA of an additional case of a case of CVST involving a female patient between the ages of 21-31.

MAH Summary:

As of 14 April 2021, there have been 6 reported cases of CVST from spontaneous sources. Of these, 5 reported thrombocytopenia; 2 reported Anti-PF4 positive antibodies (both of these patients were treated with heparin prior to the lab testing); and 2 reported D-dimer elevation. In addition, there was 1 other case of thrombosis in combination with low platelet count from a spontaneous source.

PRAC Rapporteur assessment comment

For the clinical trial case of CVST and thrombocytopenia, there have been several different CIOMS reports provided; one in which thrombocytopenia was not mentioned and lab values of platelet levels were omitted; one in which the platelet levels with thrombocytopenia as well as the result of the peripheral blood smear showing thrombocytopenia and the discharge diagnosis of thrombocytopenia were included; and finally one, in which also anti-PF 4 antibodies are included (negative before
Vaccination; strongly positive during hospitalisation and remaining positive more than one month after discharge). The test dates for the anti-PF 4-antibodies (September 2020, October 2020 and December 2020, respectively) indicate that these results have been previously available to the investigator. The MAH should clarify when these tests were actually performed, and when they became aware of the results (RSI).

The cases with concomitant thrombosis and thrombocytopenia are further discussed in section 3.1.2 below.

Thrombosis (any)

A.1 Clinical trials with the COVID-19 vaccine Janssen:

The search identified a total of 27 non-serious cases (AEs) in subjects aged between 38 and 90 years old. Out of the 27 AEs, 13 were associated with the Ad26.COV2.S, 8 with the placebo and 6 AEs are still blinded. The AEs related to Ad26.COV2.S and blinded group included deep vein thrombosis (N =10), monoplegia (N=1), pulmonary embolism (N =3), thrombophlebitis (N=2), transient ischaemic attack (N=1) and venous thrombosis limb (N=1). Time to onset after vaccination varies between 2 and 98 days. In 7 out of the 13 cases from the Ad26.COV2.S group the event occurred within the first 28 days. Only one case in the Ad26.COV2.S was reported as related: a male between the ages of 45-55, reported DVT 27 days post vaccination.

The search identified a total of 55 serious adverse events (SAEs) in 14 female subjects aged between 24 and 80 years old and 14 males aged between 25 and 85 years old. Out of the 55 SAEs, 22 were associated with the Ad26.COV2.S, 19 with the placebo and 14 SAEs are still blinded. The events reported in the Ad26.COV2.S and blinded group included pulmonary embolism (N=9), cerebrovascular accident (N=5), deep vein thrombosis (N=3), acute myocardial infarction and myocardial infarction (N=7), transient ischaemic attack (N=3), ischemic stroke (N=2) and 1 case of each for cerebral infarction, cerebral thrombosis, embolism venous, hemiparesis, retinal vein thrombosis, transverse sinus thrombosis, and peripheral artery thrombosis. Time to onset after vaccination varies between 3 and 108 days. In 6 out of the 22 cases from the Ad26.COV2.S group the event occurred within the first 28 days. From the 19 placebo cases, the events reported included acute myocardial infarction and myocardial infarction (N=6), cerebrovascular accident (N=3), deep vein thrombosis (N=2), pulmonary embolism (N=2), Transient ischaemic attack (N=2), and 1 case of each for cerebral infarction, cerebral venous sinus thrombosis, carotid artery occlusion, and paraparesis. The investigator causality was not related for 54 out of the 55 SAEs and related for 1 event of deep vein thrombosis in the placebo group.

Further details on the cases reported in the Janssen Ad26.COV2.S COVID-19 clinical trials (unblinded and blinded cases) can be found in the detailed programmed case narratives.

PRAC Rapporteur assessment comment

From the clinical studies, there was a total of 27 non-serious and 55 serious adverse events of thromboembolism in subjects aged between 24 and 90 years old.

Out of the 27 non-serious AEs, 13 were associated with the Ad26.COV2.S, 8 with the placebo and 6 AEs are still blinded. In 7 out of the 13 cases from the Ad26.COV2.S group the event occurred within the first 28 days.
Out of the 55 serious AEs, 22 were associated with the Ad26.COV2.S, 19 with the placebo and 14 SAEs are still blinded. In 6 out of the 22 cases from the Ad26.COV2.S group the event occurred within the first 28 days.

It is expected that laboratory results for the cases with thromboembolism in the clinical studies are presented with the next Response to RSI.

A.2 COVID3012 SISONKE:
A separate review of cases from clinical trial COV3012 Sisonke (Together):

OPEN LABEL TRIAL Open-label, single-arm Phase 3b implementation study to monitor the effectiveness of the single-dose Ad26.COV2.S COVID-19 vaccine Janssen among health care workers in South Africa was performed as this is a collaborative study with the South Africa Health Authority, and the serious cases are sent directly to Janssen for entry into the Global Medical Safety Database. The cumulative review through 09 April 2021 in the Global Medical Safety Database was performed. There are 3 cases with PTs reported in the SMQ: Embolic and thrombotic events.

Recently Received Information: Per the monthly "4-Weekly* Abridged COVID-19 Interim Progress Report Form For Clinical Trials" received by the MAH on 12 April 2021 from the South African Health Products Regulatory Authority (SAHPRA), there was 1 additional case of a CVA reported to the Health Authority, but not yet received by the MAH.

Of the 3 cases contained in the GMS Safety Database, 1 case reported Cerebrovascular accident (CVA) 1 case reported Retinal vein occlusion and Retinal haemorrhage and 1 case reported Pulmonary embolism with Cor pulmonale. Of note, there has been a second case of Pulmonary embolism recently received by the MAH.

One case concerns a female aged between 29-39 who was hospitalized for CVA 8 days post vaccination. After vaccination the subject experienced moderate (unspecified) reactogenicity and returned back to work. Her first symptoms 8 days after vaccine administration were slurred speech, dizziness and collapse, and she was brought to the hospital. Upon arrival she developed a seizure followed by left sided weakness. Electrocardiogram showed sinus tachycardia, chest x-ray was normal, and COVID-19 PCR test was negative. Results of magnetic resonance imaging (MRI) and echocardiogram are pending. The subject is receiving speech therapy and physiotherapy and improving remarkably. The event is resolving.

Another case concerns a female subject aged between 58-68 who experienced left retinal vein occlusion and macular haemorrhage 10 days after vaccine administration. After vaccination, the subject was "lethargic, sleepy, and flushed". The next day she complained of myalgia, stiff neck, and took acetaminophen. She felt well for a week and on day 8 post vaccination experienced blurring of vision in the left eye and noted deterioration of vision with progression of blurring, which had worsened significantly by the next day. On day 10 post vaccination, she was examined by an ophthalmologist and noted to have blocked vessels, haemorrhage, and edema of one eye. The patient has a history of elevated triglycerides with the highest noted at 2.0 mmol/L (Normal - NR: 0.4 - 1.6) in 2017. More recent labs from 13 days after vaccination showed normal erythrocyte sedimentation rate (ESR) and C-reactive protein. Haemoglobin, white blood cell count, and platelet counts were 13.4 g/dL (NL: 12.1-16.3), 6.54x10^9/L (NL: 3.92 - 9.88), and 290x10^9/L (NL: 150-450) respectively. Triglycerides were 1.4 mmol/L, and Hgb A1C was 5.8% (NL: 4.0-6.0). The patient’s estimated glomerular filtration rate (eGFR) was 58 ml/min (NL: >90) and has been in the range of 63 to 69 since 2018. Outcome of the events were not reported.
A third case concerns a female subject aged between 57-67 who was hospitalized 17 days after vaccine administration for pulmonary embolism and cor pulmonale. Concomitant medications included an unspecified statin and fluoxetine. The subject developed sudden shortness of breath and mottled skin on legs; she was taken to a hospital and was admitted to the intensive care unit. Results of diagnostic tests included elevated D-dimer; computerized tomogram pulmonary angiogram showed multiple bilateral pulmonary emboli and cor pulmonale; echocardiogram showed dilated right ventricle and atrium, severe tricuspid incompetence, hypokinetic intraventricular septum but no thrombi. Magnetic resonance imaging of the spine showed scattered sclerotic areas. There was no finding of deep vein thrombosis. No platelet counts or CBC were provided. The subject was discharged after 5 days and is recovering.

The fourth case concerns a female aged between 55-65 who experienced pulmonary embolus (fatal). The event occurred 23 days after vaccination COVID-19 vaccine Ad26.COV2.S was administered intramuscularly for the prevention of symptomatic SARS-CoV-2 virus infection. It was reported that she was overweight with a number of co-morbidities.

On an unspecified date, the subject's SARS-CoV-2 polymerase chain reaction (PCR) test was negative. 23 days post vaccination, the subject experienced pulmonary embolus (fatal). Her body build was normal. Nutritional status was good. External body examination: body examination revealed no visible injuries. Main findings: pulmonary thrombus of the pulmonary truncus with congestion and edema of the lungs. The rest of the organs and structures were all within normal limits with no injuries noted. Cause of death reported as natural causes: pulmonary embolus. Investigator's causality assessment: The event of pulmonary embolus was not related to the study vaccine.

The fifth case concerns a female aged between 38-48 who experienced a CVA less than 24 hours after vaccination. Further case details are pending.

MAH Conclusion: There were 5 cases of embolism/thrombosis from clinical trial VAC31518COV3012. A single case which reported haemorrhage in the eye had normal thrombocytes; in the 2 other cases without bleeding thrombocyte counts were not provided. COVID-19 was ruled out in one case. Two cases of pulmonary embolism were confounded by a preceding distant travel and co-morbidities. Of the 5 cases, for 1 case the causality to vaccine was considered unclassifiable, 1 case had indeterminate causal association and 1 case was considered inconsistent with the causal association to immunization per the WHO causality classification for adverse events following immunization. The remaining 2 cases have not yet been assessed by the company.

PRAC Rapporteur assessment comment

In the open-label, single-arm Phase 3b implementation study to monitor the effectiveness of the single-dose Ad26.COV2.S COVID-19 vaccine Janssen among health care workers in South Africa, only serious cases have been provided.

For the case with cerebrovascular accident (CVA), this concerns a female aged between 29-39 with CVA 8 days following vaccination. COVID-19 PCR test was negative; no additional laboratory test has been provided.

For the case with retinal vein occlusion and macular haemorrhage, this concerns a female aged between 58-68 with a history of diabetes who presented with blurred vision 8 days post vaccination. Laboratory tests revealed normal platelet levels.
For the first case with pulmonary embolism, this concerns a female aged between 57-67 who was hospitalized 17 days after vaccination, having travelled a long distance the day before, and was diagnosed with pulmonary embolism. No platelet counts have been provided.

For the second case with pulmonary embolism, this was diagnosed post-mortem in a female aged between 56-66, 23 days after vaccination.

There is one additional case of CVA within 24 hours of vaccination in a female aged between 39-48; no further details have been provided.

Based on the above, there are currently no case reports of concomitant thrombosis and thrombocytopenia. Additional information regarding platelet levels should be attempted to be provided for the cases with CVA and the first case of pulmonary embolism (RSI).

Ad26 Platform Data

A search for reported cases of thromboembolic events using the search terms embolic and thrombotic of the AdVac platform safety database revealed the following cases (cut off 31 December 2020).

Table 11 includes all AEs identified, based on the embolic and thrombotic events search criteria in studies integrated in the AdVac Safety Database V6.0. A total of 8,826 participants in 32 studies were vaccinated with at least one dose of an Ad26-based vaccine (hereafter also referred to as “Ad26 recipients”) and 4,075 participants received placebo.

In total, 18 subjects (0.2%) in the Ad26 vector-based vaccination group and 25 subjects (0.6%) in the placebo group reported at least one embolic or thrombotic event following vaccination.

Table 11: Number of Subjects with Unsolicited Adverse Events of Special Interest by SOC and PT; By Vaccination Group; Full Analysis Set
Safety laboratory values (platelet counts) were only available for five subjects for which thromboembolic events were reported. No abnormal platelet counts were reported postvaccination, with the exception of one subject that had low platelet counts at screening (114,000 cell/mm³).

Ad26.ZEBOV (Ebola) Collaborative Clinical Trials and Vaccination Programs

The search identified 9 cases in subjects between 30 and 71 years old. A total of 6 out of the 9 cases are still blinded. The time to onset after first dose vaccination varies between 44 and 297 days. In one case associated with exposure during pregnancy the time to onset was not reported. The reported events reported included: Cerebrovascular accidents (CVA, 6 cases including one fatal case), ischemic stroke (1 fatal case), acute myocardial infarction and coronary artery disease and atherosclerosis (1 fatal case), deep vein thrombosis (1 pregnancy case). All these cases were reported prior to the outbreak of the COVID-19 pandemic and therefore results of COVID-19 testing is not available. Platelet counts were available in one case of CVA reported in a female subject aged between 64-74, 207 days after vaccination. At the time of the event the subject had a normal platelet count reported as "Mean platelet volume (NR: 8.3 - 12.1) 7.6 fl, Platelet count (NR: 156 - 342) 311 x10⁹/L, Platelet-large cell ratio (NR: 25.30 - 53.80) 36.2%".

In all the cases reported, the causality of the vaccine is unlikely because of long time to onset after vaccination and the significant medical history or underlying conditions such as hypertension, elderly...
age, underlying infections causing disseminated intravascular coagulation with fatal outcome, or underlying pregnancy.

PRAC Rapporteur assessment comment

No cases with concomitant thrombosis and thrombocytopenia have been identified in the Ad26 platform data or the Ad26ZEOBV (Ebola) collaborative clinical trials and vaccination program.

There was no increase in thromboembolic events in the Ad26 platform data: 8,826 participants in 32 studies who were vaccinated with at least one dose of an Ad26-based vaccine and 4,075 participants received placebo; 18 subjects (0.2%) in the Ad26 vector-based vaccination group and 25 subjects (0.6%) in the placebo group reported at least one embolic or thrombotic event following vaccination.

Spontaneously reported cases with COVID-19 vaccine Janssen (post-marketing) – SMQ

Embolic and Thrombotic events

There are 27 spontaneous cases which report preferred terms (PTs) meeting the search criteria of SMQ: Embolic and thrombotic events.

Of the 27 cases, 5 cases reported events of interest, reporting central venous sinus thrombosis or significant peripheral thrombosis. Six cases were reported by Health Care Professionals and 21 were non-medically confirmed cases. Two cases reported COVID-19 test results, with 1 positive result and 1 negative result. The narrative of 2 cases suggests that thrombotic diagnoses were ruled out: one case involved a woman of unspecified age who was hospitalized with “heart attack symptoms” one day after vaccine administration and all tests on her heart “came back good.” Another involved an adult man with a history of “born in” heart condition who thought he was having a heart attack the same day as vaccine, and underwent “EKG, MRI, Nuclear stress test, CAT scan and Transesophageal ECHO, all of which came back ok” in addition to “countless tests, blood screens, monitoring and consultation[s].” 22 of the 27 cases reported an event latency from vaccine; all of these occurred less than 28 days (range 0-19 days; mean 6.2 days) after vaccine administration.

There was one case of disseminated intravascular coagulation (DIC) with “exacerbation of idiopathic capillary leak syndrome (ICLS)” in a 61-71-year-old female with limited information provided.

PRAC Rapporteur assessment comment

There were 27 post-marketing case reports of thromboembolism; based on the narratives, thrombotic disease was ruled out in two of these. 22 of 27 cases occurred with a latency from vaccination but within 28 days after vaccine administration. No laboratory tests have been provided in this section; five of the cases are included in the EudraVigilance case reports in section 3.1.2. Laboratory tests are expected with the next Responses to RSI.

The case of capillary leak syndrome is noted, and this condition should be followed up in monthly safety summary reports (RSI).

Thrombosis (any) and Concomitant Thrombocytopenia/low platelet count;

B.1. Clinical trials with the COVID-19 vaccine Janssen

A Clinical Trial search for Thromboembolic events revealed a single case from study COV3001 where thromboembolism in combination with thrombocytopenia was observed. Venous Transverse Sinus
Thrombosis and Cerebral Hemorrhage was reported following administration of Ad26.COV2.S. This participant was tested negative 28 days post vaccination for SARS-CoV-2 infection, based on SARS-CoV-2 nucleocapsid antibody serology, as measured by ELISA and Meso Scale Discovery assays. SARS-CoV-2 neutralizing antibody titers elicited by Ad26.COV2.S vaccine (IC50 of 66) 29 days post vaccination were in the range of titers observed in participants that received Ad26.COV2.S at a dose level of 5x1010vp (N=10, IC50 of 117 with a 95% confidence interval of 18 - 449) in COV1001 cohort 1b, as measured by psVNA. The neutralizing antibody titers against the vector were not evaluated.

Additional Heparin-Induced Thrombocytopenia (HIT) PF4 antibody IgG test results were received by the Company on April 12th, 2021 and were not yet included in the CIOMS I form:
- Day 1, pre-vaccination (21 Sep 2020): 0.246 (negative)
- Day 29 (22 Oct 2020): 2.137 (positive)
- Day 71 (01 Dec 2020): 1.451 (positive)

B.3 Ad26 Platform Data.

No case of Thrombosis (any) and Concomitant Thrombocytopenia/low platelet count were reported.

B.4 Ad26.ZEBOV (Ebola) Collaborative Clinical Trials and Vaccination Programs

No serious cases of thromboembolic events with concomitant thrombocytopenia were reported. Safety laboratory values (including platelet counts) were only available for five subjects that reported an embolic or thrombotic event. None of the subjects reported thrombocytopenia/low platelet counts post-vaccination, with the exception of one subject that reported a low platelet counts at screening (114,000 cell/mm^3^) and thrombophlebitis on the day of vaccination (grade 1, mild; duration 6 days). The platelet count was back to normal range at the day of vaccination (214,000 cell/mm^3^).

B.5 Spontaneously reported cases with COVID-19 vaccine Janssen (post-marketing) - SMQ: Embolic and thrombotic events SMQ AND SMQ Haematopoietic thrombocytopenia OR SMQ Thrombocytopenia

Five cases reported thrombosis with thrombocytopenia; 3 of these cases also reported elevated D-dimer. Two cases included a positive PF4/polyanion ELISA of 3.0 (no reference range provided) and 3.179 Optical Density units (upper range of normal is below or equal to 0.399), respectively.

PRAC Rapporteur assessment comment

In the clinical studies with the COVID-19 vaccine Janssen, one case with concomitant thrombosis (CVST) and thrombocytopenia was reported; this case was discussed with the signal confirmation above and is further discussed in section 3.1.2 below.

As discussed in the assessment of Q2 above, there appears to be one additional case with concomitant thrombosis and thrombocytopenia in study 3001 (male aged between 56-66 with DVT and thrombocytopenia). It is unclear why the MAH has not included this subject in the presentation of case reports as requested; full details on this case including CIOMS report is expected (immediate RSI).

For the Ad26 platform data and the Ebola collaborative clinical trials, no cases with concomitant thrombosis and thrombocytopenia were reported.
C) Thrombocytopenia/low platelet count regardless of symptoms

C.1 Clinical trials with the COVID-19 vaccine Janssen

The search identified a total of 18 non-serious cases (AEs) of any haematological abnormalities in subjects aged between 19 and 76 years-old. Out of the 18 AEs, 12 were associated with the Ad26.COV2.S, 1 with the placebo and 6 AEs are still blinded. The AEs reported as related to Ad26.COV2.S and blinded group included leukopenia (N=1) neutropenia (N=1), leukopenia (N=1), neutrophil count decreased (N=1), low haemoglobin (N=1) and anemia (N=1). For these related cases, time to onset after vaccination varies between 6 and 76 days and 4 cases occurred within the first 28 days.

The search identified a total of 7 serious adverse events (SAEs) in 4 female subjects aged between 25 and 65 years old and 3 male subjects between 51 and 68 years old. Out of the 7 SAEs, 2 were associated with the Ad26.COV2.S vaccine, 4 were associated with the placebo and 1 SAE is still blinded. The events reported included anaemia, reported in the Ad26.COV2.S group (N=2), the blinded group (N=1) and in the placebo group (N=1). One case of immune thrombocytopenia and 3 cases of anaemia were reported in the placebo group. Time to onset reported for anaemia was 1 day (blinded case), 21 days and 72 days in the Ad26.COV2.S group. Time to onset in the placebo group varied between 36 and 107 days. The investigator causality was not related for all the 8 SAEs.

Further details on the cases reported in the Ad26.COV2.S COVID-19 clinical trials Janssen (unblinded and blinded cases) can be found in the detailed programmed case narratives.

The following events were reported for the COVID-19 clinical trials (Table 12). There are no events reported in COV1002 and COV2001.

Table 12: COVID-19 vaccine Janssen clinical trials: Cases of Thrombocytopenia/low platelet count regardless of symptoms.

<table>
<thead>
<tr>
<th>SMQ term / Preferred term</th>
<th>Study/ N</th>
<th>Ad26 5e10 N</th>
<th>Ad26 3e11 N</th>
<th>Placebo N</th>
<th>Blinded N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenias</td>
<td>3001</td>
<td>21885</td>
<td>0</td>
<td>21888</td>
<td>1 (<0.1%)</td>
</tr>
<tr>
<td></td>
<td>1001</td>
<td>323</td>
<td>0</td>
<td>319</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Haematopoietic cytopenias</td>
<td>3001</td>
<td>21885</td>
<td>7 (<0.1%)</td>
<td>21888</td>
<td>4 (<0.1%)</td>
</tr>
<tr>
<td></td>
<td>3009</td>
<td></td>
<td></td>
<td>22558</td>
<td>3 (<0.1%)</td>
</tr>
<tr>
<td></td>
<td>3009</td>
<td></td>
<td></td>
<td>22558</td>
<td>1 (<0.1%)</td>
</tr>
<tr>
<td>Anemia</td>
<td>1001</td>
<td>323</td>
<td>0</td>
<td>319</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>2 (0.7%)</td>
</tr>
<tr>
<td>Blood disorder</td>
<td>3001</td>
<td>31895</td>
<td>9 (<0.1%)</td>
<td>21888</td>
<td>4 (<0.1%)</td>
</tr>
<tr>
<td></td>
<td>3009</td>
<td></td>
<td></td>
<td>22558</td>
<td>3 (<0.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22558</td>
<td>1 (<0.1%)</td>
</tr>
<tr>
<td>Haemoglobin decreased</td>
<td>1001</td>
<td>323</td>
<td>0</td>
<td>319</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>1001</td>
<td>323</td>
<td>0</td>
<td>319</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>3001</td>
<td>21885</td>
<td>1 (<0.1%)</td>
<td>21888</td>
<td>0</td>
</tr>
<tr>
<td>Neutrophil count decreased</td>
<td>1001</td>
<td>323</td>
<td>0</td>
<td>319</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>0</td>
</tr>
</tbody>
</table>

PRAC Rapporteur assessment comment

Overall, based on Table 12, there were 27 cases of haematopoietic cytopenia/thrombocytopenia in the COVID-19 vaccine Janssen clinical trials in patients who received the vaccine; 9 in the placebo groups and for 13 cases, treatment is still blinded.
The figures in the MAH text in this section are not congruent with Table 12; it is unclear if this relates to the cases in Table 12 not being reported as AEs or SAEs. It is however noted that there was an imbalance also in non-serious AEs of any haematological abnormalities in the clinical trials with the COVID-19 vaccine Janssen, with 12 AEs reported in the Ad26.COV2.S group, 1 in the placebo group and for 6 AEs, treatment is still blinded. For serious AEs of haematological abnormalities, there were 2 in the Ad26.COV2.S group, 4 in the placebo group and for 1 SAE, treatment remains blinded. Anaemia was the most frequent of these SAEs.

Overall, the majority of cases appear to pertain to ‘haematopoietic cytopenias’ without further specification, for which also an imbalance is noted (in total 12 cases in the Ad26 vaccine groups, 4 in the placebo groups, and 2 in whom treatment is blinded).

One case in the placebo group was reported with Immune thrombocytopenia in study 3001, and there was one case of thrombocytopenia in the vaccine group in this section (however, as discussed above, there was also one case with concomitant thrombocytopenia and CVST in study 3001).

The MAH should clarify the cases of ‘haematopoietic cytopenias’ in the clinical trials with COVID-19 vaccine Janssen and whether any of these were thrombocytopenic (RSI).

C.2 COV3012: SISONKE

No cases of Thrombocytopenia/low platelet count regardless of symptoms were reported at the time of this report.

C.3 Ad26 Platform Data

A summary tabulation of the worst laboratory toxicity grades within 28 days following study vaccination for selected laboratory safety parameters of all studies that are integrated in the AdVac Safety Database V6.0. is provided in Table 13. Most laboratory toxicities were transient (including Grade 3 events) and returned to normal range upon repeat testing. The frequency of graded laboratory toxicities was also similar in both the Ad26 vaccine and placebo groups. Platelet count decrease was observed following 70 out of 4,105 Ad26 doses (1.7%) and 7 out of 719 placebo doses (1.0%). None of the platelet count decrease cases post vaccination were concomitant with an embolic or thrombotic event. In total, 18 cases of Grade 3 platelet count decrease cases were reported within 28 days following Ad26 vaccination (mostly at 8 day post-vaccination visit).

Except one case for which the safety laboratory assessment was not repeated, all grade 3 platelet count decrease cases were back to normal range upon retesting in the days following the grade 3 event. One case of persistent grade 3 (31,000 cells/mm3) thrombocytopenia was reported 8 days following vaccination for a female subject aged between 54-64 in study VAC18193RSV1004 following vaccination with Ad26.RSV.preF. The event persisted for 40 days upon returning to normal range. The subject remained asymptomatic during the event and had normal physical exams (no bruising or petechiae reported).

Table 13: Tabulation of Worst Laboratory Toxicity Grades Within 28 Days Following Study Vaccination; All Participants; FAS
There is an imbalance in platelet count decrease in the Ad26 platform data. Platelet count decrease was observed following 70 out of 4,105 Ad26 doses (1.7%) and 7 out of 719 placebo doses (1.0%). None of the platelet count decrease cases post vaccination were concomitant with an embolic or thrombotic event. In total, 18 cases of Grade 3* platelet count decrease cases were reported within 28 days following Ad26 vaccination (mostly at 8 day post-vaccination visit) and 1 case in the placebo groups.

All grade 3 platelet count decrease cases that were re-tested (all but one) went back to normal range upon retesting in the days following the grade 3 event. One case of persistent grade 3 (31,000 cells/mm3) thrombocytopenia was reported 8 days following vaccination for a female subject aged between 54-64 in study VAC18193RSV1004 following vaccination with Ad26.RSV.preF. The event persisted for 40 days upon returning to normal range. The subject remained asymptomatic during the event and had normal physical exams (no bruising or petechiae reported). This event is considered of interest; for a comparison, HIT (heparin-induced thrombocytopenia) can present with thrombocytopenia without other symptoms. These data need to be considered for further review regarding thrombocytopenia.
C.4 Ad26.ZEBOV (Ebola) Collaborative Clinical Trials and Vaccination Programs

No serious cases of thrombocytopenia were reported.

C.5 Spontaneously reported cases with COVID-19 vaccine Janssen (post-marketing) - SMQ

Haematopoietic thrombocytopenia OR Thrombocytopenias HLT

There were 7 total spontaneous cases of thrombocytopenia. Of these, 6 were serious and 5 were detailed above in response 4(iii). There was one non-serious case of thrombocytopenia that was not associated with thrombosis; this case reported a decreased platelet count in a female aged between 65-75 with a platelet count of 138 (NR: 150-450). The one late breaking serious case of platelet count decreased is described below.

There was a late-breaking case, also included in the above counts of platelet count decreased, an unknown time after vaccine. This case involved a female of unspecified age with an unspecified autoimmune disease, who had quarterly blood tests and was hospitalized due to a decreased platelet count (value not reported). She was discharged after a week with “weekly test checks.” Additional information has been requested.

Narratives

Programmed case narratives are provided in all Ad26.COV2.S COVID-19 vaccine clinical trials with the exception of COV3012 which is an open-label collaborative study). Information from serious cases observed from the AdVac platform are reported in the GMS safety database and therefore available in the CIOMS.

More detailed information for spontaneous cases and cases observed in the open-label collaborative COV1012 clinical trial are available in the CIOMS.

EMA Response Late Breaking Information

The data presented by the MAH in this response document have a data lock of 12 April 2021 or earlier, as further specified in the different sections of the responses provided.

To assure transparency with respect to additional information available to the MAH at the time of issue of this document, the MAH would like to add the following elements in this section with late breaking information.

On 12 April 2021, the MAH was informed of an event of sagittal vein thrombosis, right lower extremity DVT and thrombocytopenia. On 15 April 2021, further information was provided to the MAH under the Freedom of Information Act. The case is currently processed in the global safety database and further follow-up attempts will be made.

Available case details:

A female aged between 21-31 with no reported medical history received JNJ vaccine on and complained of a “viral syndrome” including fevers, rigors, muscle pain and shortness of breath an unspecified time after the vaccine. She received azithromycin as treatment. Fever persisted for 1 day after her emergency room visit, and she continued to “feel badly”. The following day, she awakened with severe Right>Left jaw pain, posterior headache with standing, pain in cartilage from the tip of nose, and shortness of breath. Shortness of breath resolved 12 days after the vaccination. Headaches persisted as did jaw pain, and pain behind the eyes. 11 days after vaccination, she noted increasing bruising and periorbital petechiae. She sought help from her primary care provider who noted bilateral leg swelling (R>L). Labs and a Doppler ultrasound were performed but results are not yet available.
She had a syncopal spell and was taken to emergency room where she received a diagnosis of sagittal vein thrombosis, right lower extremity deep vein thrombosis and thrombocytopenia. Her platelet count was 125k, smear review: no clumping, no schistocytes. Hypercoagulation panel ordered as well as ANA, Anti PF4/HIT (pending). CT and MRI head with Dural sinus thrombosis. Duplex US of RLE thrombosis. She was stabilized and as to yet recovered.

Advisory Committee on Immunization Practices (ACIP) in the USA

On 14 April 2021, a meeting was organized by the CDC / Advisory Committee on Immunization Practices (ACIP) where the reports of CVSTs with thrombocytopenia after COVID-19 vaccine Janssen reported in the US since the start of the vaccination program were presented. As CDC and FDA have access to more detailed information than the MAH, we herewith include the link to ACIP website for further details on the presentation made during that meeting
https://www.cdc.gov/vaccines/acip/meetings/slides-2021-04.html

MAH Summary

Review of all clinical trial data with Janssen Ad26.COV2.S vaccine identified one report of cerebral venous sinus thrombosis with thrombocytopenia in a 25 year old male. Review of clinical trial and spontaneous reports with Ad26 platform, not including the Janssen Ad26.COV2.S vaccine, identified events of thrombocytopenia or platelet decreased with a higher incidence in the Ad26 treatment arm compared to placebo. None of the subjects with thrombocytopenia or decreased platelets count reported a concomitant embolic or thrombotic event. The thrombocytopenia or platelet decreased events were transient, occurred 7 days post vaccination and resolved by the date of the next laboratory assessment,

Review of MAH safety database for events reported from collaborative study in South Africa (SISONKE, 3012) identified three cases of interest: 1 of Cerebrovascular accident, 1 of retinal vein occlusion and Retinal haemorrhage and 1 of Pulmonary embolism (PE) with Cor pulmonale. One additional report of CVA and one of PE have been included in the monthly report dated 12 April. None of the above reports included thrombocytopenia, it should be noted that MAH is not sponsor of the study and limited information is provided in the monthly reports. Spontaneous reports from MAHs safety database included 6 reports of cerebral venous sinus thrombosis 5 with thrombocytopenia. Most occurred within 16 days of vaccination and all 6 were in women aged between 18 and 48.

The number of thrombotic events with thrombocytopenia are low and there is insufficient data to conclude a definitive causal association with the Ad26.COV2.S vaccine at present. However, given the seriousness of the events, further monitoring and characterization are planned as described in the subsequent sections of this response.

PRAC Rapporteur comment (totality of Q4):

For thrombosis (any), there was an imbalance noted for venous thrombosis with the initial assessment of the clinical trial data; the RMP includes thromboembolism as an important potential risk; there is currently no mentioning of thrombosis in the product information. It is noted that there was no increase in thromboembolic events in the Ad26 platform data; however, there is an imbalance in decreased platelet levels based on that platform data (see below).

Based on the data provided with this answer, information remains insufficient to assess how many cases in the clinical studies with thrombosis (n=35 in the Ad26.COV2.S groups, 20 who remain blinded) who had concomitant thrombocytopenia. As discussed in Q2 above, lab tests have not yet been provided for the majority of these subjects; in only three of the cases with thrombosis, a normal
platelet count has been provided. One clinical study case is well documented (18-28-year old male), in whom three different CIOMS reports have been submitted with varying information; it is clear, however, that this previously healthy individual with no preexisting anti-PF4-antibodies was hospitalized with CVST with haemorrhage and thrombocytopenia following vaccination with COVID-19 vaccine Janssen, with positive anti-PF4-antibodies after vaccination. One additional clinical trial case with deep vein thrombosis and thrombocytopenia is noted in Q2, further data are requested (Immediate RSI).

For the open-label clinical study with COVID-19 Vaccine Janssen in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed postmortem and is thus not expected to provide further laboratory testing; for the remaining three cases, platelet levels are expected with the Responses to the next RSI.

For the open-label clinical study with COVID-19 Vaccine Janssen in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed postmortem and is thus not expected to provide further laboratory testing; for the remaining three cases, platelet levels are expected with the Responses to the next RSI.

For the open-label clinical study with COVID-19 Vaccine Janssen in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed postmortem and is thus not expected to provide further laboratory testing; for the remaining three cases, platelet levels are expected with the Responses to the next RSI.

For the Ad26 platform data and the Ebola collaborative clinical trials, no cases with concomitant thrombosis and thrombocytopenia were reported. For thrombocytopenia, no imbalance is apparent with the data as presented for the clinical COVID-19 vaccine Janssen studies; however, there is an imbalance in haematopoietic cytopenias: in total 12 cases in the Ad26 vaccine groups, 4 in the placebo groups, and 2 in whom treatment remains blinded. A more precise diagnosis of these cases is requested (RSI). Also in the Ad26 platform data, there is an imbalance in platelet count decrease, which was observed following 70 out of 4,105 Ad26 doses (1.7%) and 7 out of 719 placebo doses (1.0%). None of these were associated with a thromboembolic event.

For thrombocytopenia, no imbalance is apparent with the data as presented for the clinical COVID-19 vaccine Janssen studies; however, there is an imbalance in haematopoietic cytopenias: in total 12 cases in the Ad26 vaccine groups, 4 in the placebo groups, and 2 in whom treatment remains blinded. A more precise diagnosis of these cases is requested (RSI). Also in the Ad26 platform data, there is an imbalance in platelet count decrease, which was observed following 70 out of 4,105 Ad26 doses (1.7%) and 7 out of 719 placebo doses (1.0%). None of these were associated with a thromboembolic event.

The MAH concludes that the number of thrombotic events with thrombocytopenia are low and there is insufficient data to conclude a definitive causal association with the Ad26.COV2.S vaccine. This is not supported. The PRAC Rapporteur considers that a causal association is sufficiently supported based on the following: The observed cases with CVST and concomitant thrombocytopenia represent clinical entities that are extremely rare in an overall population. Although CVST is well-known to occur predominantly in younger females, often related to hormonal factors such as pregnancy, puerperium or estrogen-containing medications, concomitant thrombocytopenia is not part of any usual clinical picture for CVST. The findings of positive anti-PF4-antibodies in several cases, in one case with documented non-existing anti-PF4-antibodies before vaccination, suggest that the clinical picture is likely due to these antibodies. A similarity with HIT (heparin-induced thrombocytopenia) is evident based on the clinical picture; however, there is no known exposure to heparin before the events of thrombosis and thrombocytopenia in any of the reported cases, and in one case, a screening test for anti-PF4/heparin antibodies by latex-enhanced immunoassay was negative whereas results of a PF4/polyanion ELISA were strongly positive. In the majority of the cases, there was no apparent risk factor for CVST or other thrombosis or for thrombocytopenia. For a picture of thrombotic thrombocytopenia with positive anti-PF4-antibodies, this is similar to "spontaneous HIT" which is characterized by a similar clinical and laboratory picture in patients without exposure to heparin; however, some trigger is warranted in such cases (such as surgery, infectious disease etc.). The only common trigger in these cases is the vaccination with the Ad26.COV2.S vaccine.

The timing of events is congruent for all of the cases, with symptoms of thrombosis and/or thrombocytopenia occurring within three weeks from the vaccination. This is also in line with what is known for HIT type II and spontaneous HIT as well as for the thrombotic thrombocytopenia related to another adenoviral vector COVID-19 vaccine.
Extensive work-up excluding other potential causes of thrombosis and/or thrombocytopenia has been provided for two of the cases. This includes antiphospholipid antibodies, homocysteine, Factor VIII, antithrombin, protein C, protein S, Factor V Leiden, prothrombin gene mutation, hepatitis/HIV, ADAMTS 13, PNH and JAK2. The only abnormality that could explain the clinical picture in these cases was positive anti-PF4-antibodies.

Although the absolute number of cases is low, there is one well characterized case in the clinical trials (and one potential case for which details are unknown, see Q2). However, it remains unknown how many cases with thrombosis and concomitant thrombocytopenia that occurred in the clinical trials with the Ad26.COV2.S vaccine. An imbalance was noted with regards to venous thromboembolism in the initial assessment of these studies, with more cases in the vaccine vs the placebo group. However, platelet levels have not been provided for more than very few of these cases. Further, the post-marketing exposure to COVID-19 vaccine Janssen has increased rapidly within recent weeks and thus, the numbers at risk for having developed these symptoms does not correspond to actual doses given (see also Q1).

Based on the above, the PRAC Rapporteur considers that ‘thrombotic thrombocytopenia’ should be included in the product information section 4.4 and 4.8.

QUESTION 5

Observe[d to expected analyses of cases of

a. Cerebral venous thrombosis without thrombocytopenia (i.e. using all relevant PTs such as cerebral venous thrombosis, superior sagittal sinus thrombosis, transverse sinus thrombosis, aseptic cavernous sinus thrombosis, cerebral venous thrombosis and also events of cerebral thrombosis that are adjudicated to be related to venous thrombosis), also stratified by age bands (i.e. 10 years) should be provided. Background rates for events of CVST without thrombocytopenia should be used within the analysis.

b. Cerebral venous thrombosis with thrombocytopenia (i.e. using all relevant PTs such as cerebral venous thrombosis, superior sagittal sinus thrombosis, transverse sinus thrombosis, aseptic cavernous sinus thrombosis, cerebral venous thrombosis and also events of cerebral thrombosis that are adjudicated to be related to venous thrombosis), also stratified by age bands (i.e. 10 years), should be provided. Background rates for CVST with thrombocytopenia should be used within the analysis.

MAH RESPONSE:

Incidence of Cerebral sinus venous thrombosis

Cerebral venous sinus thrombosis is a rare phenomenon that can be seen with some frequency in young patients. CVST is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CVST into a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumor cerebri. Prognosis depends on the early detection and appropriate treatment. Correcting the cause, generally the complications can be prevented (Alvis-Miranda 2013).
As in any thrombotic process, risk factors are associated with the classical Virchow triad of thrombogenesis: hypercoagulability, vessel wall damage and blood stasis. It may be associated with inherited and acquired risks factors; however, this categorization is fairly artificial, because they have additive effects and CVST is multifactorial. By far, in developed countries, the most frequently associated factor is congenital thrombophilia.

Inherited prothrombotic risk factors include homocysteinemia, factor V Leiden homozygous mutation, G20210A prothrombin gene and Methylene- Tetra-Hydro-Folate-Reductase 677TT mutations, protein C and S and anti-thrombin III deficiency, and positive anti-cardiolipin or antiphospholipid antibodies.

Acquired risks factors include all the usual causes of VTE and additionally causes such as brain tumors, head trauma, central nervous system infections (bacterial meningitis, cerebral malaria, intracranial hypotension, any local head infection, extracerebral neoplasia’s, dural fistulas, hematological conditions, nephrotic syndrome, systemic vasculitis, medicaments (cisplatin, methotrexate, and steroids), neurological surgery, lumbar puncture, pregnancy, and puerperium (Alvis-Miranda 2013).

Cerebral venous thrombosis has an annual incidence estimated to be 3 to 4 cases per million. The frequency of peripartum and post-partum cerebral venous thrombosis is about 12 cases per 100,000 deliveries in pregnant women, which is only slightly lower than that of peripartum and postpartum arterial stroke. More recently, there has been a significant female predominance among young adults, with the majority of cases (70% to 80%) being in women of childbearing age, but not among children or elderly persons (Tadi 2020).

Observed to expected analyses of cases of CVST with and without thrombocytopenia by age are provided in Table 14, Table 15, and Table 16.

Table 14: OE Analysis CVST with Thrombocytopenia
CVST with Thrombocytopenia (ages 18, 26, 45, 59; all Female)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Sex</th>
<th>Observed</th>
<th>O/E Point Estimate</th>
<th>O/E Lower Bound</th>
<th>O/E Upper Bound</th>
<th>IR Point Estimate</th>
<th>IR Upper bound</th>
<th>IR Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 34</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>18 - 34</td>
<td>F</td>
<td>2</td>
<td>29.7</td>
<td>8.48</td>
<td>N/A</td>
<td>0.2</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>35 - 54</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>35 - 54</td>
<td>F</td>
<td>2</td>
<td>35.15</td>
<td>7.03</td>
<td>N/A</td>
<td>0.1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>55 - 64</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>55 - 64</td>
<td>F</td>
<td>1</td>
<td>12.61</td>
<td>0.25</td>
<td>N/A</td>
<td>0.2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>65 - 74</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65 - 74</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 - 84</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 - 84</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL OBSERVED: 5

Incidences Rates: /100,000 PYa

O/E: Observed to expected; IR: Incidence Rate; M: Male; F: Female. Incidence rates are expressed per 100,000 person-years.

Table 15: OE Analysis CVST without Thrombocytopenia

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Sex</th>
<th>Observed</th>
<th>O/E Point Estimate</th>
<th>O/E Lower Bound</th>
<th>O/E Upper Bound</th>
<th>IR Point Estimate</th>
<th>IR Upper bound</th>
<th>IR Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 34</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18 - 34</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35 - 54</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.17</td>
<td>0.10</td>
<td>1.5</td>
</tr>
<tr>
<td>35 - 54</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.17</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>55 - 64</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55 - 64</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65 - 74</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65 - 74</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 - 84</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 - 84</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL OBSERVED: 1

O/E: Observed to expected; IR: Incidence Rate; M: Male; F: Female. Incidence rates are expressed per 100,000 person-years.
The MAH has also provided the following supplementary contextual information to support question 5:

Cerebral venous sinus thrombosis (CVST) has an annual incidence estimated to be two to five cases per million (Capecchi, 2018). These data are aligned with the publicly available data from the ACCESS project (ENCePP Home Page). Two other studies found higher incidence rates than previously reported with annual rates ranging between 13.2 to 15.7 cases per million (Countinho, 2012; Devasagayam, 2016). The frequency of peripartum and post-partum cerebral venous thrombosis is about 12 cases per 100,000 deliveries in pregnant women, which is only slightly lower than that of peripartum and postpartum arterial stroke. More recently, there has been a significant female predominance among young adults, with the majority of cases (70% to 80%) being in women of childbearing age, but not among children or elderly persons (Tadi, 2020).

Observed to expected analyses of cases of CVST with and without thrombocytopenia by age and sex are provided in Table 14 and Table 15, and Table 16 provides overall Observed to expected analysis.

Given the absence of publicly available background incidence rates on CVST with and without thrombocytopenia, the Janssen’s team estimated incidence rates of CVST with and without thrombocytopenia using existing databases for which Janssen has a license. The rates were generated using US claims and electronic medical databases. Incident cases of CVST were identified using predefined algorithms, the co-occurrence of CVST and thrombocytopenia was defined as a diagnosis of thrombocytopenia or low platelet measurement within 42 days prior to CVST and 14 days after CVST index date. The incidence of CVST overall was 1.4/100,000 person-years in females which is in the higher range of published data (see Table 16).

PRAC Rapporteur comment:
The MAH has provided Observed/Expected (O/E) analysis by age and sex for events of cerebral venous sinus thrombosis (CVST) with and without thrombocytopenia. Given the absence of publicly available background incidence rates on CVST with and without thrombocytopenia, the MAH has estimated incidence rates of CVST with and without thrombocytopenia using existing databases for which MAH
has a license. The co-occurrence of CVST and thrombocytopenia was defined as a diagnosis of thrombocytopenia or low platelet measurement within 42 days prior to CVST and 14 days after CVST index date. The incidence of CVST overall was 1.4/100,000 person-years in females which is in the higher range of published data. The incidence of CVST with thrombocytopenia is unknown but is considered to be very rare.

The MAH has not explained which cut-off date for post-marketing data that was used in the analysis, which needs further clarification. In addition, it needs to be clarified what time frame that was used to calculate the expected rate of these rare events of CVST in combination with thrombocytopenia \(\text{(RSI)} \).

CVST without thrombocytopenia

O/E analysis provided by MAH 16th of April 2021 based on the available post-marketing data:
Table 15 illustrate the O/E analysis of CVST without thrombocytopenia stratified by age and sex. One event has been reported (female aged 31-41 years), however, lab data regarding thrombocytes has not been provided for this case and it is therefore not known if the CVST was accompanied with thrombocytopenia or not. A slightly increased O/E point estimate (1.2) for the subgroup female 35-54 years was presented based on this case, but since it is not known if this case was associated with thrombocytopenia or not, and given the very limited data, the value of the analysis is limited.

CVST with thrombocytopenia

O/E analysis provided by MAH 16th of April 2021 based on the available post-marketing data:
Table 14 illustrate the O/E analysis of CVST with thrombocytopenia stratified by age and sex. Within this O/E analysis, five events of CVST in combination with thrombocytopenia has been included by the MAH. Even though the numbers of cases reported are limited, the OE ratios are clearly greater than one in women for the different age ranges assessed, as well as for the total numbers, which suggests a signal of an excess of risk. Furthermore, the O/E lower bounds for the two younger age ranges are clearly above one.

It is noted that the analysis does not include the male aged between 18-28 from the phase III study that was reported with CVST and thrombocytopenia, in addition, a female subject aged between 52-62 included in this analysis had thrombosis located to the legs but not CVST. The O/E analysis for both male aged 18-34 years and female aged 55-64 years old in table 14 and 15 is therefore incorrect. Revised, and updated analyses are requested \(\text{(RSI)} \).

The O/E analysis (CVST with thrombocytopenia) based on sex (table 16) showed an increased risk compared to expected for female (O/E point estimate 14.4) whereas the corresponding analysis for men showed an O/E point estimate of 0. Based on what is described above, revised, and updated analyses are requested \(\text{(RSI)} \).

Conclusion

The O/E analysis is based on very limited date since CVST in combination with thrombocytopenia is an extremely rare medical condition, and reported cases so far are few. Despite the use of some incorrect data, the provided O/E analysis shows a clear signal of increased risk for CVST with thrombocytopenia in female subjects aged <64 years compared to what can be expected in this population.
QUESTION 6

Discussion on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia, addressing possible pathophysiological mechanism, including potential for platelet activation. This should include all relevant non-clinical data and clinical data and address any potential role of the adenoviral gene transfer vector.

MAH RESPONSE:

There are currently no data that suggest an obvious causal relationship or pathophysiological mechanism specifically linking vaccination with Janssen's COVID-19 vaccine and the events of thrombosis and thrombocytopenia.

While one could speculate around the role of cytokines, that are elicited by Ad26.COV2.S, in the activation of platelets and release of PF4, the subsequent steps that lead to PF4 immunogenicity and PF4 antibody production are not known. In addition, while the induction of cytokines by vaccination and viral infections is a general phenomenon, CVST in the presence of thrombocytopenia is extremely rare. Indeed, based on the observations that the incidence of CVST following vaccination with the Janssen vaccine is at a rate predicted for the non-vaccinated population and that these CVST events are associated with thrombocytopenia it is interesting to speculate that the inflammation and postulated hypercoagulability in some vaccinated individuals is a trigger rather than a cause of CVST in individuals with predisposition to CVST. The one subject in our clinical trials that developed CVST had low platelets, hyper-coagulability and tested positive for PF4 antibodies. This patient also had pre-existing narrowing of the sigmoid sinus which was a predisposing factor for CVST. We are currently exploring potential underlying mechanisms for a relation between induction of PF4 antibodies and vaccination, for instance by analyzing the ability of (parts of) the Ad26 vector, the spike protein, or residual host cell protein and or host cell DNA in the vaccine, to form an immunogenic complex with PF4, eliciting PF4 antibodies. This may be further stimulated by Ad26 induced innate immunity.

Investigation of potential pre-disposition for what is called ‘vaccine-induced immuno thrombocytopenia’ (HLA, polymorphisms in PF4, Fc receptors, etc) and/or CSVT (genetic, anatomical) will be done in collaboration with experts in the field.

Nonclinical safety data

An assessment of the potential risk for thromboembolic events or coagulopathies based on nonclinical GLP safety data available for Ad26.COV2.S as well as other Ad26-based vaccines is provided in the next sections. Overall, these data do not indicate any adverse vaccine-related effect suggestive of an increased risk for thromboembolic events or coagulopathies associated with Ad26.COV2.S or the Ad26 platform.

Ad26.COV2.S

The nonclinical safety profile of Ad26.COV2.S was evaluated in a 4-week GLP-compliant intermittent repeated dose toxicity and local tolerance study in male and female New Zealand White (NZW) rabbits (study TOX14382). In this study, rabbits were injected intramuscularly (IM) with a control solution (0.9% sodium chloride) or 1x1011 vp Ad26.COV2.S on three occasions with a 14-day interval period (Days 1, 15, and 29; See study design in Table 17). The animals were followed up until 3 weeks after the third vaccination to assess the potential reversibility, persistence or delayed occurrence of any vaccine-related findings.
Fibrinogen and CRP levels were measured before the first vaccination, Day 2 (CRP only), Day 3, Day 7, Day 15 (before injection), Day 16 (CRP only), Day 17, Day 21, Day 29 (before injection), Day 30 (CRP only), Day 31 (i.e. 2 days after third vaccination, at necropsy), Day 35 (i.e. during treatment-free period), and Day 50 (end of treatment-free period, at necropsy). Clinical pathology parameters (hematology, coagulation, and clinical chemistry) were determined before the first vaccination, 2 days after the first and third vaccination (i.e. on Days 3 and 31, respectively) and 3 weeks after the third vaccination (Day 50; end of treatment-free period). Macroscopic (gross necropsy findings and organ weights) and microscopic pathology evaluations of a full tissue list were performed from animals sacrificed 2 days (i.e. Day 31) and 3 weeks after the third vaccination (i.e. Day 50).

The dose administered to the animals (1×10¹¹ vp) is 2-fold above the clinical dose (5x10¹⁰ vp). Based on a 3 kg rabbit, this would yield a 33-fold margin versus a 50 kg human. In addition, the animals received three doses versus a single dose which is proposed for the emergency use of Ad26.COV2.S in humans. Further details of the study/design can be found in the report (Study TOX14382). Overall, Ad26.COV2.S was well tolerated by the animals and there were no adverse vaccine-related effects noted in the study. A more detailed assessment of potential risk for thromboembolic events or coagulopathies based on the nonclinical safety data available for Ad26.COV.2S is included below.

In TOX14382, IM administration of Ad26.COV2.S at 1x10¹¹ vp on 3 occasions (Days 1, 15, and 29) was associated with mild, transient increases in fibrinogen concentrations on Days 3, 17 and 31 in male and female animals (Text Table 12 in Section 7.8 of the report; Study TOX14382). These increases were partially reversed within one week following vaccine administration, i.e., on Days 7, 21 and 35. On Days 15 and 29, thus 2 weeks following the 1st and the 2nd vaccine administration, respectively, the fibrinogen values were similar to pre-study / control group values. Also, at the end of the recovery period (Day 50, i.e., 3 weeks after the third vaccine administration), changes in fibrinogen concentrations were no longer observed. The maximum mean fold changes in the vaccine treated group versus the control group were 1.63x for male animals 2 days after the 3rd vaccine administration (i.e., on Day 31) and 1.85x for female animals 2 days after the 2nd vaccine administration (i.e., on Day 17).

Increases in fibrinogen values are not unique to Ad26 based vaccines and are seen in nonclinical safety studies with various vaccine- and adjuvant modalities or platforms (Baldrick 2016). In toxicity studies with vaccines, fibrinogen is used as a biomarker for inflammatory / acute phase responses following vaccination, together with other acute phase proteins such as C-reactive protein (CRP, depending on the nonclinical species used) (Green 2015; Destexhe 2013). The vaccine-induced increases in fibrinogen observed with Ad26.COV2.S in TOX14382 (i.e., up to approximately 1.63x / 1.85x), are similar as reported in rabbits with other vaccines or adjuvant systems (e.g., Destexhe 2013; Sheets,
2008), and are not deemed adverse. Other changes in coagulation or platelet parameters noted in TOX14382 were sporadic, transient and of minimal severity grades, e.g.; In vaccine-treated male animals a 12% decrease in platelets (i.e., 354 x 109/L versus 402 x 109/L for control) was observed on Day 3, two days after the first vaccine administration, and a 7% reduction (i.e., 6.8 sec versus 7.3 sec for control) of prothrombin time was observed on Day 31, two days after the third vaccine administration. Despite being statistically significant, these two changes were not considered vaccine-related based on their small magnitude and overlap of individual values on these single occasions with the range of control and/or baseline values in the study.

No histopathological changes suggestive of a thrombotic event/ coagulopathy or its sequelae were seen in any of the tissues examined in TOX14382, and no local or systemic adverse effects of the Ad26.COV2.S vaccine were observed on full-tissue microscopic examination.

In addition, in efficacy and immunogenicity studies using nonhuman primates (NHP), and hamsters no pathological evidence of thromboembolic events or coagulopathies was observed in animals that were vaccinated with Ad26.COV2.S and subsequently challenged with the SARS-COV-2 virus. In these studies, histopathological evaluation of respiratory tract tissues did not reveal any evidence of thrombosis and other coagulopathies in the pulmonary vascular bed in vaccinated animals, including breakthrough cases.

Overall, these (GLP) nonclinical safety data for Ad26.COV2.S do not indicate any adverse vaccine-related effect suggestive of an increased risk for thromboembolic events or coagulopathies.

Ad26 vaccine platform

As described in the Nonclinical Overview (i.e., Module 2.4 of the cMA package), the MAH has significant nonclinical experience with other Ad26-vectored vaccines using various transgenes encoding for HIV, malaria, RSV, Zika virus, Filovirus (Ebolavirus, Marburgvirus), influenza (Universal influenza) and HPV antigens. More than 10 GLP combined repeated dose toxicity and local tolerance studies have been performed in rabbits (and one study in rats) testing the nonclinical safety of these various Ad26-based vaccines. High-level (tabulated) summaries from these studies are provided in Supporting Information: Overview of Supportive GLP Toxicology Studies Testing Ad26-vectored Vaccines in Rabbits or Rats After IM Injections.

The various Ad26-based vaccines in these studies were tested either alone, or in regimens/combinations with other vaccine modalities, including Ad35-based vaccines, Modified Vaccinia Virus Ankara (MVA)-based vaccines and/or (glyco)proteins with or without an aluminum phosphate adjuvant. The fold changes as indicated in the table are the maximum mean fold changes (irrespective of vaccine regimen, sampling time or sex) measured during the study, versus controls. In the available studies up to 5 sequential IM dose administrations have been tested at Ad26 vaccine levels up to 4×10¹¹ vp (i.e., up to 8-fold above the full clinical dose currently used for Ad26.COV2.S), covering in life study phases up to 12 weeks (including recovery). Overall, the Ad26-based vaccines/regimens in these additional studies were well tolerated and no adverse vaccine-related effects were noted in any of the studies.

In line with the results described for Ad26.COV2.S above, across these additional studies with Ad26-based vaccines a consistent vaccine-related acute phase response was observed, evidenced by transient increases in e.g., fibrinogen (up to 2.5-fold) and CRP (or α2-macroglobulin in rats; study TOX12276). The following changes in coagulation parameters were considered vaccine related, and hence retained in the respective report summaries; In few studies (e.g. TOX12014, TOX10931, TOX11260 and 1854-09764) a transient, minimally shorter prothrombin time (generally less than
10%) was reported versus controls. Similar minimal shortening of prothrombin time has been described for other adenoviral vaccines (Sheets 2008). Changes in activated partial thromboplastin time (APTT) were observed in TOX10931 (0.9x; male animals), and in study 1854-09764 (1.4x). In study 1854-09764 a reduction in platelet counts (0.65x) was observed in animals that received an Ad26-based vaccine following three preceding vaccinations with an Ad35-based vaccine. There were further miscellaneous changes observed in prothrombin time and/or platelets, as well as other clinical pathology parameters in other studies, which occasionally reached statistical significance. However, these changes were not considered vaccine-related, e.g., due to their sporadic pattern, small magnitude, lack of toxicological relevance, and/or relation to pre-treatment or control ranges.

Thus, vaccine-related changes in coagulation parameters and platelet counts were minor and not consistently observed across studies with other Ad26-based vaccines. In addition, similar to study TOX14382 with Ad26.COV2.S, there were no vaccine-related histopathological changes suggestive of a thrombotic event / coagulopathy or its sequelae in any of the available studies, which supports the conclusion that the minor changes in coagulation parameters as described above are not adverse. All vaccine-related histopathological changes observed in the additional studies with Ad26-based vaccines were consistent with an anticipated, non-adverse (local and systemic) immunologic response to vaccination.

Overall, the GLP nonclinical safety data from Ad26.COV2.S and other Ad26-based vaccines summarized above do not indicate any adverse vaccine-related effect suggestive of an increased risk or a pathogenic mechanism of action for thromboembolic events or coagulopathies associated with Ad26.COV2.S or the Ad26 platform.

PRAC Rapporteur comment:

Across the non-clinical studies with Ad26.COV2.S and other Ad26-based vaccines there were no observations indicating an adverse vaccine-related effect on thrombosis and/or thrombocytopenia. The study findings were generally limited to mild and transient effects expected from a local and general inflammatory reaction subsequent to vaccination. Given the very low incidence of the thromboembolic events or coagulopathies associated with Ad26.COV2.S, likely of multifactorial etiology, it is not unexpected that no signals are observed in healthy animals.

Taken together, the non-clinical data with Ad26.COV2.S and other Ad26-based vaccines provide no further understanding on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia.

Regarding clinical assessment of causality, see Q4 and 3.1.4 PRAC Rapporteur Discussion.

QUESTION 7

The MAH is asked to discuss how, beyond the already agreed studies in the PhV plan, the important potential risk venous thromboembolism, including the potential occurrence of the combination of thrombosis and thrombocytopenia can be further studied. Ways of gaining further mechanistic data, both non-clinical and clinical, regarding potential interactions of the Covid-19 vaccine Janssen and the coagulation system should specifically be addressed; and the following commented:

PRAC Rapporteur comment: This question will not be commented in the first step of this assessment.
QUESTION 8

Considering the findings of the review, the MAH should discuss the need for amendment to the Product Information and/or Risk management plan, for the latter, including, but not limited to, the list of safety concerns and studies specified within the pharmacovigilance plan.

MAH RESPONSE:

As described in the responses to the previous questions, the MAH conducted extensive review of available data across its different databases covering the Ad26.COV2.S and other Ad26-vectored clinical development programs, collaborative trials and vaccination programs, and the Ad26.COV2.S spontaneous reports. Very rare cases of thrombotic events with thrombocytopenia have been observed to date in individuals who received Ad26.COV2.S with no cases confirmed for other Ad26 vectored vaccines.

Review of the reported AEs showed that, as of 12 April 2021, the MAH has 6 post-authorization cases of Cerebral Venous Sinus Thrombosis (CVST) (4 of which are associated with low platelets, 2 unknown) with 6.8 Million individuals vaccinated with the Ad26.COV2.S vaccine. While the observed incidence rates of CVST with Ad26.COV2.S is generally consistent with what would be expected, the observed incidence rates of CVST with thrombocytopenia in women appears to higher that what would be expected (Table 9).

Given the very low incidence of cases observed following vaccination, there is currently insufficient data to conclude a causal association with the Ad26.COV2.S vaccine. Based on the current data, MAH believes the benefit-risk profile for Janssen Ad26.COV2.S vaccine is positive across the population for which it is currently authorized.

However, the MAH strongly supports making vaccinees aware of the signs and symptoms of this very rare event, as well as recommendations to health care professionals to ensure the early and correct diagnosis and treatment of the patients and reporting of the events.

Therefore, the MAH proposes to amend the Product Information to include information on these observed events, to guide healthcare providers, vaccine recipients and the general public regarding when to seek urgent medical attention and to guide healthcare providers so that they can promptly diagnose and treat people affected, in line with available guidelines.

In the current EU Risk Management Plan (RMP, version 1.4 dated 11 March 2021), Venous thromboembolism is considered an Important Potential Risk, and events of Deep vein thrombosis and Pulmonary embolism, together with Non-hemorrhagic stroke and Hemorrhagic stroke have been identified and are monitored as Adverse Events of Special Interest (AESI), in addition to events of Immune thrombocytopenia and Disseminated intravascular coagulation. The MAH will further update the Safety Concerns section in the RMP, to add further details on the events of thrombotic events associated with thrombocytopenia, update the PV Plan to include the implementation of processes for evaluating thromboembolic events in the clinical trials as described in Question 7 and to update the Risk Minimization Measures activities accordingly, including proposed changes to the Product Information. The MAH will continue to monitor these events and assess for additional activities as more data becomes available.

The following is proposed by the MAH regarding updates of the product information:

SmPC
Section 4.4

Coagulation disorders and thrombocytopenia

A combination of venous thrombosis and thrombocytopenia has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes cerebral venous sinus thrombosis and can lead to a fatal outcome. These cases occurred within the first three weeks following vaccination.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg pain or swelling, or progressive abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for blood clots, healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists) to diagnose and treat this condition.

Risk of bleeding with intramuscular administration

Package leaflet

Section 2

Blood disorders
A combination of blood clots and low levels of 'platelets' (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots and, possibly, bleeding, including in the brain, and can be fatal. These cases occurred within the first three weeks following vaccination.

Seek immediate medical attention and inform your health care provider that you have recently received COVID-19 Vaccine Janssen, if you experience severe or persistent headaches or blurred vision, unexplained skin bruising beyond the site of vaccination, develop shortness of breath, chest pain, leg pain or swelling, or progressive abdominal pain which appear a few days after vaccination.

PRAC Rapporteur comments

Proposed label updates
The PRAC Rapporteur agrees with the MAH that an update of section 4.4 of the SmPC, as well as of section 2 of the package leaflet, is warranted. However, the proposed wording needs revision (see below).

In the proposal from the MAH, there is a statement highlighting that management of this condition may differ from usual management of blood clots, and therefore refer HCPs to applicable guidance/specialists for diagnosis and treatment. This statement is fully supported for section 4.4 of the PI.

Furthermore, following evaluation of the currently available data, there is sufficient evidence to, with a reasonable possibility, conclude thrombosis in combination with thrombocytopenia being an adverse drug reaction of the Covid-19 vaccine Janssen. Therefore, update of section 4.8 is warranted.

Regarding the frequency for section 4.8, very rare (< 1/10 000) is proposed. This is based on one certain clinical study case, and one possible case, among a clinical safety database of approximately 27,200 vaccinated subjects, which were part of the safety assessment at approval, and who had been
evaluated for death and SAEs⁴. Although the MAH refers to a total clinical study database of approximately 280,000, the vast majority of this data has not been submitted to EMA for review, and is therefore not considered useful for this estimation of frequency.

The PRAC rapporteur’s proposals are as follows; with comments made to the proposal of the MAH as also shown above.

Deletion – strikethrough. Addition; double underline

Section 4.4

Coagulation disorders and thrombocytopenia and coagulation disorders

A combination of venous thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia, and can lead to a fatal outcome. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg pain or swelling, or progressive persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for thromboembolic events if patients present with concomitant thrombocytopenia, healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Risk of bleeding with intramuscular administration

Section 4.8

In the Table

SOC: Vascular disorders: Thrombosis in combination with thrombocytopenia*

* *Severe and very rare cases of thrombosis in combination with thrombocytopenia have been reported post-marketing. These included venous thrombosis such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis (see section 4.4).

Frequency: Very rare

Package leaflet

Section 2

⁴ EPAR for COVID-19 Vaccine Janssen, INN-Ad26.COV2-S, recombinant (europa.eu)
As with any vaccine, vaccination with COVID-19 Vaccine Janssen may not fully protect all those who receive it. It is not known how long you will be protected.

Blood disorders

A combination of blood clots and low levels of ‘platelets’ (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots and, possibly, in unusual locations, such as the brain and liver, in some cases in combination with bleeding, including in the brain, and can be fatal. These cases occurred within the first three weeks following vaccination, and occurred mostly in women below 60 years of age. Fatal outcome has been reported.

Seek immediate medical attention and inform your health care provider that you have recently received COVID-19 Vaccine Janssen, if you experience severe or persistent headaches or blurred vision, unexplained skin bruising beyond the site of vaccination which appear a few days after vaccination, develop shortness of breath, chest pain, leg pain or swelling, or progressive persistent abdominal pain which appear a few days after vaccination. Inform your health care provider that you have recently received COVID-19 Vaccine Janssen.

Section 4

Very Rare (may affect up to 1 in 10,000 people) - blood clots often in unusual locations (e.g., brain, liver) in combination with low level of blood platelets

Risk management plan

As the MAH points out, the current EURL (v. 1.4 dated 11 March 2021), VTE is listed as an Important Potential Risk, and various relevant terms are monitored as AESI, in addition to events of Immune thrombocytopenia and Disseminated intravascular coagulation.

The MAH proposes to further update the Safety Concerns section in the RMP, to add further details on the events of thrombotic events associated with thrombocytopenia, and to update the PV Plan as described in Question 7, and to update the RMM in line with the actions taken for the PI.

Details on the RMP will not be addressed within this first step of assessment, and thus not further commented here.
3.1.2. Case reports from EudraVigilance/received through VAERS

1. This fatal case concerns a female aged between 38-48, described as Case 1 in section 2.1 above. Summary: prior medical history including depression. 1 wk after vaccination developed headache and hemiparesis. CT revealed severe cerebral haemorrhage + CVST, leading to brain herniation and death. Thrombocytopenia also mentioned.

Additional information: SARS-CoV-2 viral assay negative. PF4 heparin HIT ELISA antibody test was not done. Platelet nadir 12,000/mm³.

2. This case concerns a female aged between 52-62, described as Case 2 in section 2.1 above. No additional information compared to above. Summary: Multiple co-morbidities, including COPD, coronary artery disease, hypertension, hypothyroidism and bipolar disorder. 11 days after the vaccination the patient had bruising and leg oedema, with a diagnose of severe thrombocytopenia (15) and extensive DVT. She had an IVC filter placed. The next day the patient developed arterial thrombosis as well (superficial femoral and iliac arteries) requiring thrombectomy + stent.

3. This clinical trial case concerns a male aged between 18-28, described as Case 3 in section 2.1 above. Summary: no significant prior medical history. Received vaccine and had inflammatory syndrome the same day (fever, myalgia, fatigue, nausea, headache) that improved within 3 days (except headache). 9 days after vaccination he had a similar inflammatory syndrome (plus abdominal pain, sore throat, chills and rhinorrhea) and the pt took ibuprofen. Repeated COVID tests were negative. Symptoms improved except headache. 18 days after vaccination the patient had seizures. CT scans confirmed cerebral haemorrhage + CVST (2 days later). He also had moderate thrombocytopenia (65).

Follow-up adds additional test results: Anti PF4 antibodies were negative 0.246 (Day 1) and positive 2.137 (Day 29) and 1.451 (Day 71). On Day 155: Lyme disease test: high IgM (interpreted as negative), Lupus anticoagulant: normal, N-ELISA: negative. The patient received heparin which complicates interpretation of anti-PF4 antibody results. A more definitive causality requires confirmation of the PF4 test to determine if these antibodies are related to coagulopathy. However, based on recent publications including the Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination published in The New England Journal of Medicine on 09 April 2021 which suggests an evolving scientifically plausible relationship between immunization with certain COVID-19 vaccines and CVST with thrombocytopenia and platelet factor 4 (PF4) antibody, the case is considered possibly related by the MAH.

4. This case concerns a female aged between 17-27, summarised in Late breaking information above. Summary: no previous medical history or family history of clotting disorders. Non-smoker, no concomitant medications. 16 days after vaccination, she developed headache, vomiting and mental status changes. MRI and CT scan revealed sagittal sinus thrombosis and haemorrhage; Platelet count on presentation was 18,000, fibrinogen was low and fibrin D-dimer was elevated. She developed seizures, was given a platelet transfusion in advance of thrombectomy and was anticoagulated (specific agent not provided), after which platelet count rose to 160,000 and fibrinogen was normalised. Further outcome unknown.

Additional information: SARS-CoV-2 viral assay negative. PF4 heparin HIT ELISA antibody positive (optical density 2.7).

5. US-JNJFOC-20210415297. Published Gundabolu K et al. Thrombotic Thrombocytopenia Following Ad26.COVID2.S Vaccination, New England Journal of Medicine. This concerns a woman aged between 41-
51 with unremarkable past medical history who received COVID-19 VACCINE AD26.COV2.S (date unknown). She developed malaise and abdominal pain 11 days following vaccination and presented to an emergency room 3 days later. Evaluation revealed mild anaemia and severe thrombocytopenia (platelet count, 13,000 per cubic millimeter). Peripheral blood smear confirmed marked reduction in platelet count with occasional schistocytes. Other laboratory evaluation showed hypofibrinogenaemia (89 mg/dL), prolonged activated partial thromboplastin time (41 sec), and marked elevation in D-Dimer (117.5 mg/L), indicating disseminated intravascular coagulation. Nasopharyngeal swab tested negative for SARS-CoV2 by RT-PCR (polymerase chain reaction).

CT (computerised tomogram) imaging of abdomen/pelvis which showed extensive splanchnic vein thrombosis. The patient developed a new onset headache, and head CT revealed cerebral venous sinus thrombosis (CVST) involving right transverse/straight sinus. Initially, the hospital was not aware that the patient was recently vaccinated, and initiated treatment with unfractionated heparin. She developed progressive thrombosis with hemorrhagic stroke evident by MRI (magnetic resonance imaging)/MRV of brain while on heparin, with repeat CT angiography showed new thrombus involving right hepatic and splenic veins.

Upon further inquiry it was noted she had received the Ad26.COV2.S vaccine 14 days before symptom onset. Screening test for anti-PF4/heparin antibodies by latex-enhanced immunoassay was negative; results of a PF4/polyanion ELISA were strongly positive (3.179 OD [optical density] units; upper limits of normal below or equal to 0.399). Heparin was switched to argatroban. The patient was also treated with intravenous immunoglobulin (1 gm/kg times 2 days). Her platelet count increase from 30,000 to 145,000 over 5 days. She remained critically ill at time of last report. The outcome of the mild anaemia, severe thrombocytopenia, disseminated intravascular coagulation, cerebral venous sinus thrombosis, hemorrhagic stroke, hepatic vein thrombosis, splenic vein thrombosis and splanchnic vein thrombosis was not reported.

Assessor’s comment: additional laboratory tests were reported in the publication by Gundabolu et al, including antiphospholipid antibodies (lupus anticoagulant, cardiolipin, GpIIbeta2 which were all not detected/not elevated), normal levels of homocysteine, Factor VIII, antithrombin, protein C, protein S. No mutation regarding Factor V Leiden R506Q or prothrombin G20210A. Hepatitis B and C as well as HIV testing was negative. Bilirubin was 0.5 (ref 0.2-1.3 mg/dL), LDH was 354 U/L (ref 100-250 U/L) and haptoglobin was 183 mg/dL (ref 30-200 mg/dL). ADAMTS 13 activity was normal. PNH antigen was not detected. Janus Kinase 2 gene mutation was not detected.

6. This case concerns a female aged between 19-29, reported to be overweight (weight/BMI unknown) but physically active. She has no history or family history of clotting disorder. She is not on any medication or birth control pills. The patient received 1 dose of covid-19 vaccine ad26.cov2.s (suspension for injection, route of admin not reported, batch number: Unknown) on an unspecified date. Approximately 1 week following vaccination, she developed a severe headache and visited the emergency department. The patient was given paracetamol and an antihistamine and sent home. The patient continued to have headaches. Approximately another week later, the patient developed abdominal discomfort and rapid heart rate and was seen in the hospital. Laboratory evaluation revealed platelet count of 120,000 (thrombocytopenia), elevated D-Dimer (level unknown) and normal fibrinogen (level unknown). Covid-19 infection was ruled out (exact test unknown). Diagnostic scans showed cerebral cavernous sinus thrombosis (coded to cerebral venous sinus thrombosis), portal vein thrombosis and pulmonary embolism. Initial treatment with heparin was stopped and IVIG administered after lab result showed positive antibodies to platelet factor 4 (level 3.0). Platelet count
was reported to have started increasing prior to IVIG administration. The patient spent 1-1.5 weeks in the hospital and was released home on oral anticoagulants. The outcome of portal vein thrombosis, pulmonary embolism, cerebral venous sinus thrombosis, thrombocytopenia was recovering. Additional follow up information has been requested.

7. This case concerns a female aged between 31-41. The patient's height, and weight were not reported. The patient received covid-19 vaccine ad26.cov2.s (suspension for injection, intramuscular batch number: 1805029) dose was not reported for prophylactic vaccination. No concomitant medications were reported.

9 days after vaccination, the patient was "experiencing headaches 1 week ago", and also had aphasia later in the week., on day 16, the patient went to an outside hospital and was found to have intraparenchymal hemorrhage in addition to venous sinus thrombosis and developed intracerebral haematoma. On day 17 Computerized tomography (CT) of the head without contrast showed parenchymal hemorrhage and persistent hyperdensity in the left transverse sinus, consistent with known venous sinus thrombosis. Treatment medications (dates unspecified) included: heparin. The action taken with covid-19 vaccine ad26.cov2.s was not applicable. The outcome of the experiencing headaches 1 week ago, intracerebral haematoma and venous sinus thrombosis was not reported. The case will be assessed further when additional information is received.

Further information: thrombocytopenia (platelet nadir 69,000/mm3). PF4 heparin HIT ELISA antibody positive (optical density 1.2). SARS-CoV-2 viral assay negative.

8. This case concerns an adult male patient (greater than 50 years old). The patient's weight, height, and medical history were not reported. The patient received Covid-19 vaccine AD26.Cov2.S (suspension for injection, intramuscular, batch number was not reported) dose and site of vaccination were not reported, administered for prophylactic vaccination. No concomitant medications were reported. On an unspecified date in 2021, the patient experienced deep vein thrombosis (DVT), pulmonary embolism (PE), and kidney bleeding. The patient was admitted to the hospital and was treated with heparin as well as an inferior vena cava (IVC) filter (put in after he experienced bleeding from his kidney).

Laboratory data included: a negative COVID-19 virus test, and throughout hospitalization his platelet count (NR: not provided) was normal: 191,000 and 264,000 (units not provided). The patient's test came back positive for one copy of the Factor V Leiden mutation which predisposed him to blood clots.

At the time of this report, the patient was still hospitalized but doing well. The patient was recovering from DVT, pulmonary embolism, and kidney bleeding.

9. This case concerns a female aged between 21-31 who received the covid-19 vaccine ad26.cov2.s. Prescriptions being taken at the time of vaccination was oral contraceptive pill. She presented with a "viral syndrome", including fevers, rigors, muscle pain and shortness of breath. Fever persisted for 1 day after ER visit, but she continued to feel badly. The following day, she was awakened with severe R>L jaw pain, post HA with standing, pain in the cartilage on the tip of her nose and shortness of breath. Shortness of breath resolved by 12 days after vaccination. HAS persisted as did jaw pain and pain behind her eyes. On day 11 she noted increasing bruising and periorbital petechiae which continued through when she sought help from her Pcp. She was noted to have bilateral leg swelling R>L. She had labs and a Doppler US. She had a syncopal spell on and was brought to ER at where she was diagnosed with sagittal vein thrombosis, RLE DVT and thrombocytopenia. Medical tests and laboratory results related to the adverse event(s): Plt count 125K; Plt ct 34K, smear reviewed, no clumping, no schistocytes. Ordered hypercoag panel, ANA and Anti PF4/HIT (awaiting all results)
and MRI of head with dural sinus thrombosis, Duplex US with RLE thrombosis. At the time of reporting, the patient had not recovered from the adverse events.

Additional information: platelet nadir 10,000/mm3. PF4 heparin HIT ELISA antibody positive (optical density 1.2). SARS-CoV-2 viral assay negative.

PRAC Rapporteur comment: updated

Out of the 9 cases found in EudraVigilance and received through VAERS, concomitant thrombosis and thrombocytopenia was reported in 8 of these; in one case, platelet levels were normal. It is recognised that a although thrombosis in a setting of classical HIT does not have to result in thrombocytopenia (a decrease in platelet levels >50% from baseline is also considered suggestive of HIT, which could thus occur also with platelet levels within the normal range), the case with normal platelet levels has not been considered further.

For the 8 cases with concomitant thrombosis and thrombocytopenia, 7 cases were females and 1 was male. Age distribution was 18-59 years. Cerebral vein and sinus thrombosis (CVST) was reported in 7 cases. Arterial femoral thrombosis in addition to deep vein thrombosis was reported in one case. Concomitant thrombosis in addition to CVST was reported in 3 cases, including portal vein thrombosis + pulmonary embolism, splanchnic vein thrombosis and deep vein thrombosis. Concomitant bleeding was reported in 6 cases.

Platelet counts ranged from 10,000/cmm to 120,000/cmm (normal range 150,000-400,000/cmm). Elevated D-dimer values were reported in several cases, which is expected in patients with acute thrombosis, however, notably high levels were reported in some cases. In three of the cases, disseminated intravascular coagulation (DIC) was reported or is considered likely based on provided lab values (primarily a combination of thrombocytopenia, increased D-dimer, decreased fibrinogen, prolonged aPTT and/or prolonged prothrombin time).

There was no reported significant medical history in 6 of the cases with concomitant thrombosis and thrombocytopenia. One case had a history of depression (treated with fluoxetine); one reported multiple co-morbidities (including coronary artery disease / hypertension / asthma / COPD / bipolar / depression / hypothyroidism). One female patient was taking oral contraceptives.

For the case in the clinical trial, the male aged between 18-28 the finding of negative anti-PF 4 antibodies at baseline that were positive on day 29 are of high interest. The comment that the patient received heparin which complicates interpretation of anti-PF4 antibody results is not considered to explain this finding; based on the clinical scenario, the patient presented with thrombocytopenia before heparin was initiated, and the platelet count improved despite heparin treatment. Therefore, in light of recent findings with anti-PF 4 antibodies having been detected and found pathogenic in patients with thrombosis and thrombocytopenia following vaccination with another adenoviral vector COVID-19 vaccine, the development of such antibodies, in addition to the overall clinical and laboratory picture, is considered to strongly strengthen an association with the vaccine.

Positive antibodies to platelet factor 4 was found in five additional cases. There is no case report in which anti-PF4 antibodies were analysed and not found positive. In a minority of the cases, a detailed work-up has been provided, excluding potential factors of interest including no antiphospholipid antibodies; normal ADAMTS13; no JAK2 gene mutation; normal levels of homocysteine, Factor VIII, antithrombin, protein C, protein S; no Factor V Leiden R506Q mutation or prothrombin gene mutation. SARS-CoV2 was tested in 3 of the cases, all of which were negative.
Deterioration during **heparin treatment** was reported for one case; in two cases with concomitant thrombosis and thrombocytopenia, platelet count was reported to have started increasing during treatment with heparin. For the case with deterioration during heparin treatment, the patient was diagnosed with disseminated intravascular coagulation (DIC) and anti-PF4/heparin antibodies by latex-enhanced immunoassay was negative; results of a PF4/polyanion ELISA were strongly positive.

It is currently unknown whether treatment with heparin could be used or should be avoided in patients with thrombotic thrombocytopenia following COVID-19 vaccination. One argument against use of heparin is the clinical similarity to HIT (heparin induced thrombocytopenia), in which heparin is part of the antigen complex against which the anti-PF4/heparin-antibodies can bind, and thus, in HIT, heparin treatment must be stopped. However, for patients with thrombotic thrombocytopenia following vaccination, it has been found that the anti-PF4-antibodies are not similar to the ones in HIT; rather, they are directed towards PF4 only.

For one of the post-marketing cases with multiple thromboses including CVST and thrombocytopenia, progressive thromboses were noted during heparin treatment. However, it cannot be concluded whether this was due to heparin or despite heparin. This patient was diagnosed with DIC, which is well-known to be difficult to treat regardless of underlying disease or coagulation disorder, and anti-PF4/heparin antibodies by latex-enhanced immunoassay was negative in that case. There are two other cases (one post-marketing case and one clinical study case) in which platelet numbers started to increase during treatment with heparin.

In HIT, effective anticoagulation could be difficult in cases with severe thrombocytopenia and/or bleeding. The labelled anticoagulant therapies for HIT (such as argatroban, danaparoid) are not available in many hospitals and warrant certain considerations for correct use. Treatment with other agents is therefore sometimes used, e.g. fondaparinux and bivalirudin, however, such treatment is strictly considered off-label for HIT. Oral anticoagulation in a patient with thrombocytopenia is not straightforward; vitamin K antagonists are not recommended in HIT or similar clinical entities due to the initial decrease in protein C associated with these agents, which could aggravate thromboses initially. The DOACs could be an alternative but would likely not be considered in an unstable patient or a patient with severe thrombocytopenia at high risk of bleeding.

For patients with thrombosis without thrombocytopenia after vaccination, there would be no or very low suspicion of the specific syndrome of thrombotic thrombocytopenia (again, in HIT, one diagnostic criteria is a 50% platelet count decrease from baseline thus potentially allowing for values within the normal range – whether this could be the case for thrombotic thrombocytopenia associated with vaccination is unknown). The majority of patients with thromboses after vaccination will not have concomitant thrombocytopenia. Any message to avoid heparin could potentially cause a delay in effective anticoagulation also in these patients.

In patients with concomitant thrombosis and bleeding in whom anticoagulation is considered warranted, an ideal anticoagulant agent should be readily available, familiar to use, and have a rapid onset, short half-life and an effective antidote. To date, the only agents in many situations that fulfill these criteria reasonably well are heparins. The knowledge about thrombotic thrombocytopenia after vaccination against COVID-19 is growing rapidly and treatment guidelines/advice are frequently updated. Based on the currently available data, it cannot be concluded neither how these patients should be optimally managed nor whether heparin is safe and effective or not. Therefore, the Rapporteur proposes not to specifically give advice to avoid heparin in patients with thrombotic thrombocytopenia neither in the product information nor in the DHPC. However, it should be clearly stated that specialist advice (such as haematologists or coagulation expertise) should be consulted in
the diagnosis and treatment of suspected thrombotic thrombocytopenia after vaccination. This is also considered to be the most long-lasting wording.

In addition, for patients with thrombosis without thrombocytopenia after vaccination, there would be no or very low suspicion of the specific syndrome of thrombotic thrombocytopenia (again, in HIT, one diagnostic criteria is a 50% platelet count decrease from baseline thus potentially allowing for values within the normal range – whether this could be the case for thrombotic thrombocytopenia associated with vaccination is unknown). The majority of patients with thromboses after vaccination will not have concomitant thrombocytopenia. Any message to avoid heparin could potentially cause a delay in effective anticoagulation also in these patients.

In conclusion, there are currently 8 reported cases in EV and VAERS, all originating from the US, with concomitant thromboembolism (primarily CVST) and thrombocytopenia. The majority (7 out of 8 cases) are females, with age range 18-59 years. There are no findings with regards to previous disease or concomitant treatment that are suggestive of any common risk factors for developing the combination of thrombosis and thrombocytopenia; the majority had no medical history and no medication. Work-up includes anti-PF4 antibodies in 6 cases, all of which were found positive/strongly positive. It is currently unclear if platelet activation testing has been performed; however, a strongly positive ELISA result is considered highly suggestive of anti-PF4 antibodies being a causative factor. Extensive work-up was provided in only a minority of the cases, however, no findings suggestive of an alternative cause were found in any of these. For the clinical trial case with a male patient aged between 18-28 with CVST, thrombocytopenia and cerebral haemorrhage, it is noted that he did not have any anti-PF4-antibodies prior to vaccination but developed these in conjunction with symptoms of thrombosis and thrombocytopenia; this is considered to strongly support an association with the vaccine.

3.1.3. EVDAS Search Summary

SMQ Embolic and Thrombotic events SMQ (DLP: 14/04/2021)

- Search at the level of SMQ Haemorrhages in EVDAS (DLP 14/04/2021) retrieved 33 cases in association with Covid-19 Janssen vaccine.
- Of the 33 cases, the following events were reported:
 - Myocardial Infarction (n=5);
 - Cerebrovascular accident (n=6);
 - Deep vein thrombosis (DVT) + pulmonary embolism (PE) (n=1);
 - PE (n=1);
 - DVT (n=1);
 - Hemiplegia (n=1);
 - Coronary artery stent insertion (n=1);
 - Hemiparesis (n=2);
 - Blindness transient (n=1);
 - Thrombosis (n=1);
 - Peripheral embolism (n=1);
 - Myocardial infarction & thrombosis (n=1);
 - Renal infarct (n=1);
 - Venous thromboembolism, deep vein thrombosis, pulmonary embolism (n=1);
 - Retinal vein thrombosis (n=1);
 - DVT, PE, Renal haemorrhage (n=1);
 - Superior sagittal sinus thrombosis, cerebral haemorrhage, thrombocytopenia (n=1)
 - Cerebral venous sinus thrombosis, cerebral haematomata, headache (n=1);
 - Cerebral venous thrombosis, cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral vein thrombosis (n=1);
 - Cerebral venous sinus thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Myocardial infarction (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Venous thromboembolism, deep vein thrombosis, pulmonary embolism (n=1);
 - Retinal vein thrombosis (n=1);
 - DVT, PE, Renal haemorrhage (n=1);
 - Superior sagittal sinus thrombosis, cerebral haemorrhage, thrombocytopenia (n=1);
 - Cerebral venous sinus thrombosis, cerebral haematomata, headache (n=1);
 - Cerebral venous thrombosis, cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
 - Retinal vein thrombosis (n=1);
 - Cerebral venous thrombosis (n=1);
 - Cerebral haemorrhage, cerebral haemorrhage, thrombocytopenia (n=1);
CVST, DIC, hepatic vein thrombosis, splenic vein thrombosis, haemorrhagic stroke, visceral venous thrombosis (n=1);
CVST, PE, portal vein thrombosis, thrombocytopenia (n=1);
Transverse sinus thrombosis, cerebral haemorrhage, thrombocytopenia (n=1);
DVT, peripheral artery occlusion, peripheral artery thrombosis, thrombocytopenia (n=1)

- One potential duplicate identified.
- Of the 33 cases, 6 were fatal.
- Seven cases of interest were identified from EVDAS including:
 - Superior sagittal sinus thrombosis, cerebral haemorrhage, thrombocytopenia (n=1)
 - Cerebral venous sinus thrombosis (CVST), cerebral haematoma(n=1)
 - CVST, cerebral haemorrhage, thrombocytopenia (n=1)
 - CVST, Disseminated Intravascular coagulation, hepatic vein thrombosis, splenic vein thrombosis, haemorrhagic stroke, visceral venous thrombosis (n=1)
 - CVST, Pulmonary embolism (PE), portal vein thrombosis, thrombocytopenia (n=1)
 - Transverse sinus thrombosis, cerebral haemorrhage, thrombocytopenia (n=1)
 - Deep vein thrombosis, peripheral artery occlusion, peripheral artery thrombosis, thrombocytopenia (n=1)

- An additional index case of sagittal vein thrombosis, right lower extremity (RLE) DVT& thrombocytopenia was received from FDA.
- Gender: Male (n=1), Female (n=7).
- Fatal: fatal (n=1), non-fatal (n=7).
- 1 Clinical trial case, 7 post-marketing reports. All originate from the US.
- Median Time to onset (TTO) of first symptoms: 8 days.
- Median Time to onset (TTO) of first thromboembolic (TE) event: 14 days.
- Anti-PF4 antibodies
 - Of note, information regarding positive anti-PF4 antibodies is available in the ICSRs submitted for 3 cases.
 - No information specified for the remaining four cases submitted to EVDAS
 - Additional diagnostic data received from the FDA on the 19th of April which revealed that anti-PF4 antibodies were detected in an additional three cases.

- An overview of the cases is presented in table 1A below.
Table 1A shows a summary of cases in EudraVigilance (updated with additional diagnostic data received from FDA on the 19th April)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Gender</th>
<th>Country</th>
<th>Source</th>
<th>Fatal</th>
<th>Co-morbidities</th>
<th>Concomitant medication</th>
<th>Risk factors</th>
<th>TTO 1st symptoms (days)</th>
<th>First symptoms</th>
<th>TTO 1st TE event (days)</th>
<th>TE event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17-27</td>
<td>F</td>
<td>US</td>
<td>Physician, consumer, pharmacist</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No apparent risk factors</td>
<td>16</td>
<td>Headaches, vomiting, mental status changes</td>
<td>16</td>
<td>Sagittal sinus thrombosis</td>
</tr>
<tr>
<td>2</td>
<td>52-62</td>
<td>F</td>
<td>US</td>
<td>Consumer</td>
<td>No</td>
<td>Multiple</td>
<td>Not reported</td>
<td>No apparent risk factors</td>
<td>11</td>
<td>Bruising, Left leg swelling</td>
<td>11</td>
<td>Deep vein thrombosis, Peripheral artery thrombosis</td>
</tr>
<tr>
<td>3</td>
<td>31-41</td>
<td>F</td>
<td>US</td>
<td>Consumer, other HCP</td>
<td>Yes</td>
<td>Amoxicillin allergy</td>
<td>Not reported</td>
<td>Over-weight (BMI: NOS)</td>
<td>16</td>
<td>Headache, aphasia</td>
<td>16</td>
<td>Cerebral venous sinus thrombosis (CVST)</td>
</tr>
<tr>
<td>4</td>
<td>38-48</td>
<td>F</td>
<td>US</td>
<td>Consumer, other HCP</td>
<td>No</td>
<td>Depression</td>
<td>Floxetine</td>
<td>Obesity (BMI: 39.68)</td>
<td>7</td>
<td>Malaise, abdominal pain</td>
<td>12</td>
<td>Disseminated intravascular coagulation, CVST, hepatic vein</td>
</tr>
<tr>
<td>5</td>
<td>41-51</td>
<td>F</td>
<td>US</td>
<td>Consumer, other HCP</td>
<td>No</td>
<td>Unremarkable</td>
<td>Not reported</td>
<td>No apparent risk factors</td>
<td>11</td>
<td>Headache</td>
<td>14</td>
<td>PE, portal vein thrombosis, CVST</td>
</tr>
<tr>
<td>6</td>
<td>19-29</td>
<td>F</td>
<td>US</td>
<td>Consumer, physician</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No apparent risk factors</td>
<td>0</td>
<td>Fatigue, nausea, headache (moderate), myalgia, fever (38.2)</td>
<td>14</td>
<td>Transverse sinus thrombosis</td>
</tr>
<tr>
<td>7</td>
<td>18-28</td>
<td>M</td>
<td>US</td>
<td>Physican, consumer</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>Significant stenosis in right sigmoid</td>
<td>6</td>
<td>“Viral syndrome”: fever, rigors, muscle pain, shortness of breath (SOB)</td>
<td>18</td>
<td>Sagittal vein thrombosis, Right lower extremity (RLE) DVT</td>
</tr>
<tr>
<td>8</td>
<td>21-31</td>
<td>F</td>
<td>US</td>
<td>HCP (NOS)</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>No apparent risk factors</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medicinal product no longer authorised
<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
<th>Case 7</th>
<th>Case 8*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemorrhage</td>
<td>Cerebral haemorrhage</td>
<td>Gross haematuria</td>
<td>Intraparenchymal haemorrhage, cerebral haematoma</td>
<td>Intracerebral haemorrhage, intracerebral haematoma</td>
<td>Haemorrhagic stroke</td>
<td>Cerebral haemorrhage (right temporo-occipital haematoma)</td>
<td>Peri-orbital haemorrhage</td>
</tr>
<tr>
<td>Thrombocytopenia (Platelet count)</td>
<td>Yes (18,000)</td>
<td>Yes (N/S)</td>
<td>Yes (69,000)</td>
<td>Yes (12,000)</td>
<td>Yes (13,000)</td>
<td>Yes (127,000)</td>
<td>Yes (64,000)</td>
</tr>
<tr>
<td>Anti-PF4 antibodies</td>
<td>Positive (2.7)</td>
<td>N/S</td>
<td>Positive (1.2)</td>
<td>N/S</td>
<td>Strongly positive (ELISA)</td>
<td>Positive (3.0)</td>
<td>Negative (0.246) prior to vaccination, Positive (2.137) 31 days post vaccination</td>
</tr>
<tr>
<td>D-dimer</td>
<td>Elevated (NOS)</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>Elevated (117,512ng/ml)</td>
<td>N/S</td>
<td>N/S</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Low (NOS)</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>Low (89mg/dL)</td>
<td>N/S</td>
<td>154mg/dL (18 days post vaccination)</td>
</tr>
<tr>
<td>ADAMTS13</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>72%</td>
<td>N/S</td>
<td>TTP/ADAMTS13 gene mutation negative</td>
</tr>
<tr>
<td>Peripheral blood smear</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>Occasional schistocytes</td>
<td>N/S</td>
<td>Neutrophilic leucocytosis, no blasts</td>
</tr>
<tr>
<td>SARS-COV2 infection Treatment</td>
<td>Negative (test NOS)</td>
<td>Negative (test NOS)</td>
<td>Bilateral thrombectomy, bilateral common iliac stent</td>
<td>N/S</td>
<td>Negative PCR</td>
<td>Negative (test NOS)</td>
<td>3 negative PCR tests</td>
</tr>
<tr>
<td>Medicinal product no longer authorised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>Case 2</td>
<td>Case 3</td>
<td>Case 4</td>
<td>Case 5</td>
<td>Case 6</td>
<td>Case 7</td>
<td>Case 8*</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Anticoagulant</td>
<td>Anticoagulant (NOS)</td>
<td>N/S</td>
<td>Heparin</td>
<td>N/S</td>
<td>Heparin which was switched to argatroban after anti-PF4 antibodies detected</td>
<td>Heparin (stopped after anti-PF4 antibodies detected), Discharged on oral anticoagulants (NOS)</td>
<td>ASA, Heparin (LMWH)+ tissue plasminogen activator (tPA)+heparin drips, apixiban</td>
</tr>
<tr>
<td>Outcome at time of report</td>
<td>Recovered from thrombocytopena, outcome of sagittal sinus thrombosis and cerebral haemorrhage unknown</td>
<td>Not recovered</td>
<td>Unknown</td>
<td>Death</td>
<td>Critically ill</td>
<td>Hospitalisation for 1-1.5 weeks. Discharged home.</td>
<td>Recovered (back to work & doing very well five months post vaccination).</td>
</tr>
</tbody>
</table>

*Report received from FDA. Not identified in EVDAS (DLP: 14/04/2021)
SMQ Haemorrhages (DLP: 14/04/2021)
- Search at the level of SMQ Haemorrhages in EVDAS (DLP 14/04/2021) retrieved 13 cases in association with Covid-19 Janssen vaccine.
- Of these, 8 were previously identified via a search at the level of SMQ Embolic and thrombotic events SMQ (i.e. co-reported with events of thrombosis).
- The remaining 5 cases concerned consumer reports which reported:
 - Uterine haemorrhage (n=1)
 - Hematemesis (n=1)
 - Contusion (n=1)
 - Epistaxis (n=1)
 - Henoch Schoenlein Purpura (n=1)
- Of the 5 cases, 4 were subject to limited information which precluded causality assessment and one was confounded by medical history.

HLT Thrombocytopenia (DLP: 14/04/2021)
- Search at the level of HLT Haemorrhages in EVDAS (DLP 14/04/2021) retrieved 5 cases in association with Covid-19 Janssen vaccine.
- All 5 were previously identified via a search at the level of SMQ Embolic and thrombotic events SMQ (i.e. co-reported with events of thrombosis).

SMQ Haematopoietic cytopenias (DLP: 14/04/2021)
- Search at the level of SMQ Haematopoietic cytopenias in EVDAS (DLP 14/04/2021) retrieved 8 cases in association with Covid-19 Janssen vaccine.
- Of these, 5 were previously identified via a search at the level of SMQ Embolic and thrombotic events SMQ (i.e. co-reported with events of thrombosis).
- The remaining 3 cases were concern consumer reports and include events of:
 - Platelet count decreased;
 - White blood cell count decreased;
 - Lymphocyte count decreased & granulocyte count increased
- Of the three reports one was subject to limited information and two were confounded+ subject to limited information.

3.1.3.1. Opinions of EMA neurology and haematology experts

Opinion of neurology expert (EMA)

<table>
<thead>
<tr>
<th>Case reference</th>
<th>Expert opinion</th>
</tr>
</thead>
</table>
| Case 1 | Cerebral venous sinus thrombosis + Lobar haemorrhage + thrombocytopenia (18000) in a female aged between 17-28 non-smoker healthy person. It is remarkable that no oral contraceptives and no personal/familial history of clotting. The information on oral contraception/smoking status is relevant as they can both increase (synergic) risk for thrombosis.

From the narrative, it looks like the course was unusually acute (headache + mental status changes on the same day after 16 days of vaccination). The diagnosis of CVST and L-H is done at the same time. In fact the vomiting + mental status changes + seizures are probably due to L-H. Either the headache due to CVST was not there or it was not reported. It may be also the case that the thrombocytopenia was developed fast leading to the spontaneous L-H that dominated the clinical course.

Outcome unknown but it can be understood that she was transferred on 6.04.2021 while intubated-> Likely not recovered. |
| Case 2 | Cerebral venous sinus thrombosis + Portal thrombosis + Pulmonary embolism + thrombocytopenia (120000) in a female aged between 19-29 healthy person. It is said overweight, but I assume not due to... |
Case reference

<table>
<thead>
<tr>
<th>Case reference</th>
<th>Expert opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case reference</td>
<td>central obesity. Again, No oral contraceptives.</td>
</tr>
</tbody>
</table>

From the narrative, this follows the more typical sub-acute course +7D of vaccine with a new and severe headache not responding to analgesics followed after some days by other symptoms in this case abdominal pain (no further CNS symptoms in this case). The subacute course should serve as an opportunity -> new headache in a person who has not regular headache + no improvement with analgesia is suspicious.

Antibodies to platelet factor 4 (she was treated with heparin). Platelet count was reported to have started increasing prior to IVIG administration.

Outcome recovering and she was released home.

Case 4

Cerebral venous sinus thrombosis + Hemispheric haemorrhage + thrombocytopenia (levels NA) in female aged between 38-48 with depression. Unknown status about prior pregnancies and personal/familial history of clotting. Prior treatments: Fluoxetine.

The diagnosis encompass two CNS findings: Hemispheric haemorrhage + Cerebral venous sinus thrombosis diagnosed at the same time (+11D) by neuroimaging following the cortical CNS symptoms.

However, from the narrative, the most likely scenario is

1. Subacute course of the Cerebral venous sinus thrombosis-> Headache + 7D. It is unknown whether she sought attention. Severity of headache is unknown // response to analgesia unknown as well.
2. Hemispheric haemorrhage -> worsening headache (due to mass effect= new bleeding) + hemiparesis. Of note main arteries were not primarily affected. No malformations. No aneurysms. Thrombocytopenia (unknown value) seems to be the plausible cause of a spontaneous haemorrhage

Outcome: death

Case 5

Cerebral venous sinus thrombosis + thrombocytopenia (125000) in a female aged between 21-31 apparently healthy person.

Subacute course (+6D) of a diffuse syndrome (Viral syndrome) followed by a headache (pain behind the eyes). No focal CNS signs. Petechiae.

Outcome: not recovered.

Case 6

Cerebral venous sinus thrombosis + Hemispheric haemorrhage + in a female aged between 31-41 years apparently healthy person. No concomitant medication. Level of platelets unknown.

From the narrative, this follows the more typical sub-acute course +7D of vaccine with a new headache only followed later by a CNS focal sign (aphasia) after another week (+14-16years).

Treated with heparin.

Again, the diagnosis of Hemispheric haemorrhage + Cerebral venous sinus thrombosis was likely done at the same time but the narrative suggest a pattern similar to another one. Cerebral venous sinus thrombosis (headache only) + Hemispheric haemorrhage (aphasia)
### Case reference	Expert opinion
New case (literature publication). | Cerebral venous sinus thrombosis + Hemispheric haemorrhage + Splanchnic/hepatic/splenic thrombosis + thrombocytopenia (13000)+DIC in a female aged between 41-51 years apparently healthy person.

Narrative +11 D abdominal pain + thrombocytopenia + schistocytes. After the abdominal pain, the patient presented new onset of headache (CVST). She was treated with heparin and developed a Hemispheric haemorrhage

Treated with IgIV. -> Platelet level increased.

Outcome remarkable ill

Opinion of haematology expert in EMA

<table>
<thead>
<tr>
<th>Case Reference</th>
<th>Expert opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1:</td>
<td>A male aged between 18-28 without significant prior medical history. Received vaccine and had inflammatory syndrome the same day (fever, myalgia, fatigue, nausea, headache) that improved within 3 days (except headache). 9 days after vaccination he had a similar inflammatory syndrome (plus abdominal pain, sore throat, chills and rhinorrhea) and the pt took ibuprofen. Repeated COVID tests were negative. Symptoms improved except headache. 18 days after vaccination the patient had seizures. CT scans confirmed cerebral haemorrhage + CVST (2 days later). He also had moderate thrombocytopenia (65). CVST + cerebral bleeding + thrombocytopenia suggests a HIT-like syndrome</td>
</tr>
<tr>
<td>Case 2:</td>
<td>Female aged between 52-62 with multiple co-morbidities, 11 days after the vaccination the patient had bruising and leg oedema, with a diagnose of severe thrombocytopenia (15) and extensive DVT → IVC filter placed. The next day the patient developed arterial thrombosis as well (superficial femoral and iliac arteries) requiring thrombectomy + stent. The thrombotic events are not unusual in themselves (i.e. frequent locations), but the coexistence of venous + arterial thrombosis + thrombocytopenia is unusual and consistent with a HIT-like syndrome</td>
</tr>
<tr>
<td>Case 3:</td>
<td>A female aged between 38-48 with prior medical history including depression. 1 wk after vaccination developed headache and hemiparesis. CT revealed severe cerebral haemorrhage + CVST, leading to brain herniation and death. Thrombocytopenia is also mentioned (severity unknown). The coexistence of CVST + bleeding + thrombocytopenia is unusual and consistent with a HIT-like syndrome</td>
</tr>
<tr>
<td>Case 4:</td>
<td>A female aged between 17-27, with no prior medical history. 2 wks after vaccination she developed headache, vomiting and altered mental status. CT revealed CVST + intracranial bleeding + severe thrombocytopenia (18). The pt eventually developed seizures → (sedated), requiring anticoagulants, platelet transfusions and thrombectomy. The case is consistent with a HIT-like syndrome</td>
</tr>
<tr>
<td>Case 5:</td>
<td>A female aged between 19-29, with no prior medical history. 1 wk after vaccination she developed headache, and 2 wks after vaccination abdominal pain was added. Imaging tests revealed CVST + portal vein thrombosis + PE + mild thrombocytopenia (120). PF4 Abs+ → heparin stopped and IVIg initiated + oral anticoagulants. Platelets improved upon heparin discontinuation (+ IVIg). The case is consistent with a HIT-like syndrome</td>
</tr>
<tr>
<td>Case 6:</td>
<td>A female aged between 31-41, with no prior medical history. 9 days after vaccination she developed headache followed by aphasia →</td>
</tr>
</tbody>
</table>
Case Reference | Expert opinion
--- | ---
intracranial bleeding + CVST. Platelets not mentioned. It could be a HIT, but platelets unknown.

Case 7:
A female aged between 41-51, with no prior medical history. 11 days after vaccination she presented with abdominal pain. Blood tests revealed severe thrombocytopenia (13) but also signs of DIC (schistocytes, low fibrinogen, prolonged aPTT, increased DD). Imaging studies revealed SVT. Headache also appeared → CVST also diagnosed. Heparin did not seem to improve matters and PF4 Abs were positive (ELISA) → heparin stopped and IVIg + argatroban initiated → improvement in platelet count. This is a very severe case of a HIT-like syndrome, including SVT + CVST + DIC.

Case 8:
A female aged between 21-31 with no prior medical history. 1 day after vaccination she developed severe inflammatory syndrome (fever, rigors, myalgia). 11 days after vaccination she noted bruising, leg swelling and syncope → CVST + DVT + thrombocytopenia (severity unknown. This is suggestive of a HIT-like syndrome.

PRAC Rapporteur comment:
Based on the EVDAS search, seven cases of interest from the SMQ Embolic and thrombotic events were found; these are included in section 3.1.2 and further discussed there. It is assumed that the other reports (26/33) that were not deemed of interest did not include any embolic and thrombotic events with concomitant thrombocytopenia. Notably, not only unusual locations of thrombi are of interest for this signal but any thrombosis in any location in which thrombocytopenia is reported should be included among cases of interest.

For the SMQs Haemorrhages and Haematopoietic cytopenias and the HLT Thrombocytopenia, no new cases were identified in which there was sufficient information to suspect a relation to the Covid-19 Janssen vaccine (excluding cases with confounding).

The opinions of the EMA neurology and haematology experts are fully concurred; however, the Rapporteur proposes to avoid the terminology a-HIT-like for the further review since both the knowledge and the terminology of the combination of thrombosis and thrombocytopenia following COVID-19 vaccination are rapidly evolving. The course in one of the cases of very acute onset of illness with severe thrombocytopenia concomitant with CVST and intracerebral bleeding is found worrisome; for the other reports, a more sub-acute course is noted which could enable medical attention and treatment in time to avoid further deterioration. Outcome is unknown or not yet recovering in the majority of cases, with only two cases reported to be recovering so far.

3.1.4. PRAC Rapporteur discussion updated
At the approval of the CMA for Covid-19 Vaccine Janssen on 11 March 2021, "Venous thromboembolism" was included as important potential risk in the RMP, due to a numerical imbalance of venous thromboembolism observed in the main clinical study, VAC31518COV3001.
On 12 March 2021, a signal procedure regarding thrombotic and embolic events was started for another adenovirus vector Covid-19 vaccine, which recently has been finalised. During that assessment, very rare cases showing a combination of thrombosis and thrombocytopenia, and in some cases accompanied by bleeding, have gained particular attention.

For the Covid-19 Vaccine Janssen, a signal procedure was started at the PRAC meeting held on 6-9 April 2021, due to at that time in total four cases with such unusual clinical characteristics of thrombosis in combination with thrombocytopenia, occurring after vaccination with this vaccine.

On 15 April 2021, the MAH responded to questions, and the PRAC rapporteur also received further information from the EMA regarding data in Eudravigilance. The latter was updated on 17 April 2021.

The PRAC Rapporteur assessment to be sent to the PRAC on 19 April 2021, is the first step in the further evaluation of this signal. As agreed with the EMA on 15 April 2021, the aim of this first step is to review of cases of unusual thrombosis in combination with thrombocytopenia, and taking experience gained from a recently finalised signal evaluation, and based on that, evaluate the need for updates of the product information, as well as the need for additional risk minimisation measures. For the AR to be sent out on 19 April, 17 April 2021 is the cut-off for new data.

A more in-depth evaluation of any mechanistic aspects, as well as of the pharmacovigilance plan, and thereby the responses to Q7, will be undertaken in the second step of the assessment of the MAH responses. In addition, review of laboratory results from clinical studies and post-marketing on conditions not predominantly related to the combination of thrombosis and thrombocytopenia will be assessed in more depth in the second step as well.

Post marketing exposure

Regarding cumulative (US) post-marketing exposure, the MAH refers to the Center of Disease Control (CDC), which reports a total of 7,688,499 doses of the COVID-19 vaccine Janssen being used as of 15 April 2021.

As of 12 April 2021 (of a total of 6,453,740 doses), it is estimated, that approximately 66.5% of recipients of the Janssen COVID-19 vaccine were in the 18 to 59-year age group and approximately 33.5% of recipients were in the ≥60-year age group. However, this estimation appears based on use of all vaccines, and is therefore uncertain.

The MAH has also specified the approximate number of individuals being within the 21-day post vaccination period as of 13 April; namely 2,489,153 individuals. Although not entirely clear what is meant, review of the cumulative presentation above, this exact number of subjects appear to have been more than three weeks ago, and thus possibly having past the main risk window for this unusual clinical event.

By end of March 2021, the clinical study exposure is estimated to about 286,000 subjects with the Covid-19 Vaccine Janssen, and more than 200,000 individuals with the Ad26 platform. In the evaluation supporting the CMA on 11 March 2021, approximately 27,200 vaccinated subjects had been assessed in clinical studies for death and SAEs. Since the additional clinical study data referred to by the MAH have not been assessed by EMA, the safety data base within the CMA is most relevant one.

7 EPAR for [COVID-19 Vaccine Janssen, INN-Ad26.COV2-S, recombinant](europa.eu)
Laboratory evaluations

Questions (Q2, Q3, parts of Q4) were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen. Also, further laboratory data are warranted for cases with thromboembolic events in the clinical studies, to allow for a more precise assessment of frequency of thrombotic thrombocytopenia.

Thrombosis

Cumulative reviews have also been presented with respect to thrombosis solely, from clinical studies as well as from post marketing experience. These show a numerical imbalance in the clinical trials with regards to overall thromboembolic events (35 individuals who received the vaccine, 27 placebo, 20 still blinded). In the phase 3b study in South Africa, five serious cases have been reported with thromboembolic events. There are currently 27 post-marketing case reports of thromboembolism; 22 of these occurred within 28 days following vaccination. Laboratory data to conclude on any concomitant thrombocytopenia are however missing in the majority of cases. There are 7 cases of cerebral vein and sinus thrombosis (CVST); six of these with concomitant thrombocytopenia (see below) and one in whom platelet counts are not reported.

Thrombosis with thrombocytopenia

Regarding cases with thrombotic/ thromboembolic events and low platelets, there is a total of eight well described cases and one potential study case. There is one very well described case from study 3001, one additional potential case in study 3001 (see assessment of Q2) as well as 7 additional post marketing cases. Seven of these had CVST; one had concomitant arterial thrombosis and DVT and one had DVT. Three of the cases with CVST had additional thromboses including splanchnic vein thromboses, pulmonary embolism and DVT. One case was fatal. Age ranges from 18-63 years (excluding the potential clinical study case for whom very little information is given, age ranges from 18-59 years). Seven of the 8 well described cases are female (all post-marketing). Outcome is unknown or not yet recovering in the majority of cases, with only two cases reported to be recovering so far.

It is unclear if treatment with heparin could be used in cases with thrombotic thrombocytopenia following COVID-19 vaccination. The antibodies that are considered to be involved in this syndrome (anti-PF4) are different from those in HIT (heparin-induced thrombocytopenia). Currently, it is not considered sufficiently justified that heparin must be avoided (see section 3.1.2 for a more detailed discussion).

O/E analyses

The O/E analysis submitted by the MAH is based on very limited date since it CVST in combination with thrombocytopenia is an extremely rare medical condition, and reported cases so far are few. Also some incorrect data are identified among the few cases included. Nevertheless, despite the use of some incorrect data, the provided O/E analysis shows a clear signal of increased risk for CVST with thrombocytopenia in female subjects aged <64 years compared to what can be expected in this population.

Causality discussion

Across the non-clinical studies with Ad26.COV2.S and other Ad26-based vaccines there were no observations indicating an adverse vaccine-related effect on thrombosis and/or thrombocytopenia. The
study findings were generally limited to mild and transient effects expected from a local and general inflammatory reaction subsequent to vaccination. Given the very low incidence of the thromboembolic events or coagulopathies associated with Ad26.COV2.S, likely of multifactorial etiology, it is not unexpected that no signals are observed in healthy animals.

Taken together, the non-clinical data with Ad26.COV2.S and other Ad26-based vaccines provide no further understanding on potential causal relationship between vaccination with Covid-19 vaccine Janssen and the events of thrombosis and thrombocytopenia.

The MAH concludes that the number of thrombotic events with thrombocytopenia are low and there is insufficient data to conclude a definitive causal association with the Ad26.COV2.S vaccine. This is not supported. The PRAC Rapporteur considers that a causal association is sufficiently supported based on the following:

- The observed cases with CVST and concomitant thrombocytopenia represent clinical entities that are extremely rare in an overall population. Although CVST is well-known to occur predominantly in younger females, often related to hormonal factors such as pregnancy, puerperium or estrogen-containing medications, concomitant thrombocytopenia is not part of any usual clinical picture for CVST.

- The findings of positive anti-PF4-antibodies in several cases, in one case with documented non-existing anti-PF4-antibodies before vaccination, suggest that the clinical picture is likely due to these antibodies. A similarity with HIT (heparin-induced thrombocytopenia) is evident based on the clinical picture; however, there is no known exposure to heparin before the events of thrombosis and thrombocytopenia in any of the reported cases, and in one case, a screening test for anti-PF4/heparin antibodies by latex-enhanced immunoassay was negative whereas results of a PF4/polyanion ELISA were strongly positive.

- In several cases, there was no apparent risk factor for CVST or other thrombosis or for thrombocytopenia. For a picture of thrombotic thrombocytopenia with positive anti-PF4-antibodies, this is similar to “spontaneous HIT” which is characterized by a similar clinical and laboratory picture in patients without exposure to heparin; however, some trigger is warranted in such cases (such as surgery, infectious disease etc.). The only common trigger in these cases is the vaccination with the Ad26.COV2.S vaccine.

- The timing of events is congruent for all of the cases, with symptoms of thrombosis and/or thrombocytopenia occurring within three weeks from the vaccination. This is also in line with what is known for HIT type II and spontaneous HIT as well as for the thrombotic thrombocytopenia related to another adenoviral vector COVID-19 vaccine.

- Extensive work-up excluding other potential causes of thrombosis and/or thrombocytopenia has been provided for two of the cases. This includes antiphospholipid antibodies, homocysteine, Factor VIII, antithrombin, protein C, protein S, Factor V Leiden, prothrombin gene mutation, hepatitis/HIV, ADAMTS 13, PNH and JAK2. The only abnormality that could explain the clinical picture in these cases was positive anti-PF4-antibodies.

Furthermore, it remains unknown how many cases with thrombosis and concomitant thrombocytopenia that occurred in the clinical trials with the Ad26.COV2.S vaccine. An imbalance was noted with regards to venous thromboembolism in the initial assessment of these studies, with more cases in the vaccine vs the placebo group. However, platelet levels have not been provided for more than very few of these
cases. In addition, the post-marketing exposure to COVID-19 vaccine Janssen has increased rapidly within recent weeks and thus, the numbers at risk for having developed these symptoms does not correspond to actual doses given.

Based on the above, the PRAC Rapporteur considers that ‘thrombotic thrombocytopenia’ should be included in the product information section 4.4 and 4.8.

Regulatory action

The MAH concludes that there is insufficient evidence to conclude on a causal relationship with the vaccine, but strongly supports making vaccinees aware of the signs and symptoms of this very rare event, as well as recommendations to health care professionals to ensure the early and correct diagnosis and treatment of the patients and reporting of the events. Based on that, they propose updates of section 4.4 of the SmPC, and of section 2 of the PL. This is supported, although the proposed wording needs revision. It is currently unknown if heparin could be used in patients with thrombotic thrombocytopenia following COVID-19 vaccination; however, the recommendation to consult expertise for diagnosing and treatment decisions in patients with thrombotic thrombocytopenia is strongly supported.

As outlined above, following evaluation of the currently available data, the PRAC rapporteur is of the opinion that there is sufficient evidence to, with a reasonable possibility, conclude *thrombosis in combination with thrombocytopenia* being a very rare adverse drug reaction of the Covid-19 vaccine Janssen. Therefore, update of section 4.8 of the SmPC is also warranted.

Regarding additional risk minimisation measures, a DHPC is warranted to inform health care professionals. Draft proposal is attached.

Evaluation of the RMP, including the pharmacovigilance plan, will be undertaken in the next step of this signal procedure.

For an oral explanation at the PRAC; the MAH is asked to address the proposed updates of the product information, the proposed DHPC, based on the available data.

Furthermore, there are a number of issues that need to be further clarified by the MAH, as outlined in the RSI below.

3.2. Rapporteur’s proposed recommendation

The PRAC rapporteur recommends updates of section 4.4 and 4.8 of the SmPC, and of section 2 and 4 of the Package leaflet. Furthermore, a DHPC is proposed (see Annex).

The following wording is proposed, based on the MAH’s proposal.

Section 4.4

Thrombocytopenia and coagulation disorders

A combination of venous thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been
reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for thromboembolic events if patients present with concomitant thrombocytopenia, healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Risk of bleeding with intramuscular administration

Section 4.8

In the Table

SOC: Vascular disorders: Thrombosis in combination with thrombocytopenia*

* *Severe and very rare cases of thrombosis in combination with thrombocytopenia have been reported post-marketing. These included venous thrombosis such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis (see section 4.4).

Frequency: Very rare

Package leaflet

Section 2

[...]

As with any vaccine, vaccination with COVID-19 Vaccine Janssen may not fully protect all those who receive it. It is not known how long you will be protected.

Blood disorders

A combination of blood clots and low levels of ‘platelets’ (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots and, in unusual locations, such as the brain and liver, in some cases in combination with bleeding. These cases occurred within the first three weeks following vaccination, and occurred mostly in women below 60 years of age. Fatal outcome has been reported.

Seek immediate medical attention, if you experience severe or persistent headaches or blurred vision, unexpected skin bruising beyond the site of vaccination which appear a few days after vaccination, develop shortness of breath, chest pain, leg pain or swelling, or persistent abdominal pain. Inform your health care provider that you have recently received COVID-19 Vaccine Janssen.

Section 4
Very Rare (may affect up to 1 in 10,000 people) - blood clots often in unusual locations (e.g. brain, liver) in combination with low level of blood platelets

3.2.1. Issues for an oral explanation at the PRAC

Please address the following points, based on relevant data:

- Proposed updates of the product information
- Proposal to send out a DHPC
- Explain why some of the requested information has not been submitted as asked for, and comment on if/how this will be improved in the future.

3.2.2. Request for supplementary information

3.2.2.1. Immediate RSI (to be submitted by 19 April 2021, at 20:00)

- Based on Response Table 6, there appears to be one additional clinical study case (study 3001) with concomitant thrombosis and thrombocytopenia. Full details on this case including a complete CIOMS report should be provided, along with a discussion on why this case was not included in the presentation of clinical study cases of concomitant thrombosis and thrombocytopenia.

3.2.2.2. Subsequent RSI

- For a case in study 3001, it should be clarified when the tests for PF4 antibodies actually were performed, as well as reported to the investigator, and when the sponsor/MAH became aware of these results.
- Questions (Q2, Q3, parts of Q4) were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen.

In that presentation, the cases of 'haematopoietic cytopenias’ in the clinical trials should be further detailed specifically addressing whether any of these are attributable to thrombocytopenia.

- Laboratory data, primarily CBC/platelet counts remain missing for the majority of cases with thromboembolism in both the clinical trials as well as post-marketing. Additional information on CBC/platelet levels are expected to be presented for these cases, including all cases with thromboembolic events regardless of location and severity.
- For COVID3012 SISONKE, an open label single arm Phase 3b study in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed post mortem and is thus not expected to provide further laboratory testing. For the remaining three cases, platelet levels are expected to be submitted.
• In the Responses Table 5, there were 13 subjects with ‘AEs of interest’ of venous or arterial thrombosis in the clinical studies. There appears to be an additional 19 or 22 cases (different numbers appear in the Responses) with events of thromboembolism in the clinical studies. The MAH should summarise the main reasons for not including the additional cases among AEs of interest. Notably, laboratory data (primarily CBC/platelet counts) are expected for all cases.

• For the O/E analysis, it is noted that the 18-28-year-old male from the phase III study that was reported with CVST and thrombocytopenia has not been included, in addition, the 52-62-year-old female subject included in this analysis had thrombosis located in the legs, not CVST. Revised, and updated analyses, with the most current amount of data are requested.

• It is not clear which cut-off date that was used for post-marketing data in the O/E analysis, which should be provided. Furthermore, the MAH should provide the time frame that was used to calculate the expected rate of these rare events of CVST in combination with thrombocytopenia.

• One case of capillary leak syndrome was reported among cases described for this signal. This condition should be followed up in monthly safety summary reports.

3.3. Comments from other PRAC members and MAH

Updated information on the cases with CVST and concomitant thrombocytopenia has been provided after the circulation of the preliminary AR; these data have been incorporated into sections 3.1.2, 3.1.3 and 3.1.4 (highlighted).

Member state 1 comments

We generally endorse the assessment report and the proposed recommendation.

However,

1) considering sparse data, the statement “These cases occurred […] mostly in women under 60 years of age” (used throughout in PI and DHPC) does not allow for defining age-based risk groups and may be omitted

2) the TTO’s stated in 2.1 “Time to onset included 11 days (n=2) and 19 days (n=1)”, seems at odds with the case narratives presented (Case 1: 7 days?, Case 2: 11 days, Case 3: CNS symptoms from day 11).

PRAC Rapporteur Comment

We agree that the data are sparse, however, the clear trend of cases reported being mostly women under 60 years of age is considered of high relevance for prescribers (this wording is also proposed in order to avoid different wordings as compared to another covid-19 adenoviral vector vaccine).

For section 2.1, this was part of the signal validation with limited information at hand. Notably, the first three cases in the table 1A in section 3.1.3 that shows a summary over cases in Eudravigilance are not the same cases as those that were available at the signal validation stage (the three validation cases are Cases no 2, 5 and 7 in the EudraVigilance table).
Member state 2 comments

We overall support the PRAC Rapp’s assessment however we propose some changes in the proposed wording in the Section 4.4. of the SmPC: We propose not to include the recommendation on the treatment of combination of thrombosis and thrombocytopaenia as specific treatment for this condition is not known at this time. Additionally, the term “venous” should be deleted from the first sentence as arterial thrombosis is also stated as one example of unusual type of thrombosis. The last sentence in the proposed wording was probably copied by mistake.

Section 4.4

Thrombocytopenia and coagulation disorders

A combination of venous thrombosis and thrombocytopaenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopaenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopaenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for thromboembolic events if patients present with concomitant thrombocytopaenia, healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

PRAC Rapporteur Comment

We fully agree to delete the word ‘venous’ from the first sentence in the SmPC section 4.4.

For the proposed recommendation on management, we consider that it is of high relevance to inform prescribers that these cases will likely warrant special considerations and early involvement with specialists. Some amendments are however proposed, see also comment from BE and updated proposal for section 4.4 below (AR section 3.4).

The last sentence has been added as a new subheading, for clarity in relation to the current text in section 4.4.

Member state 3 comments

Overall, member state 3 agrees with the high quality assessment report and conclusions, also considering the short time frame and some issues in data presentation.

Member state 3 fully agrees that available data are sufficient to support a plausible causal association and the inclusion of thrombosis in combination with thrombocytopaenia in section 4.8 of the SmPC.
Member state 3 has some additional comments on proposed update of the product information (in bold):

SmPC

Section 4.4

Thrombocytopenia and coagulation disorders

A combination of venous thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases of venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for thromboembolic events if patients present with concomitant thrombocytopenia. Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Section 4.8

In the Table

SOC: **Vascular disorders: Thrombosis in combination with thrombocytopenia**

* *Severe and very rare cases of thrombosis in combination with thrombocytopenia have been reported post-marketing. These included venous thrombosis such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis (see section 4.4).

Frequency: **Very rare**

Package leaflet

Section 2

[...]

As with any vaccine, vaccination with COVID-19 Vaccine Janssen may not fully protect all those who receive it. It is not known how long you will be protected.

Blood disorders
A combination of blood clots and low levels of 'platelets' (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots and, in unusual locations, such as the brain and liver, bowel and spleen, (as reported in case 5 - US-JNJFOC-20210415297, BE comment) in some cases in combination with bleeding. These cases occurred within the first three weeks following vaccination, and occurred mostly in women below 60 years of age. Fatal outcome has been reported.

Seek immediate medical attention, if you experience severe or persistent headaches or blurred vision, unexplained skin bruising beyond the site of vaccination which appear a few days after vaccination, develop shortness of breath, chest pain, leg pain or swelling, or persistent abdominal pain. Inform your health care provider that you have recently received COVID-19 Vaccine Janssen.

Section 4

Very Rare (may affect up to 1 in 10,000 people) - blood clots often in unusual locations (e.g. brain, liver, bowel, spleen) (as reported in case 5 - US-JNJFOC-20210415297, BE comment) in combination with low level of blood platelets.

PRAC Rapporteur Comment

The proposed amendments are supported and have been included in the updated proposal for the product information, see below (AR section 3.4)

Member state 5 Comments

FR supports the PRAC RAPP recommendations and considers that a plausible causal association is sufficiently supported based on the data provided. Therefore, updates of section 4.4 and 4.8 of the SmPC, section 2 and 4 of the Package leaflet is appropriate.

PRAC Rapporteur Comment

Noted

Member state 6 comments

- We endorse PRAC Rapporteur’s Signal AR, however have one additional remark. We consider that a stratified analysis by gender of the populations exposed would be helpful for further interpretation of the data. A request for such analysis by gender could be added to the 2nd RSI.

- Comments on the proposed draft DHPC were attached.

- We have no additional comments on the communication plan.

PRAC Rapporteur Comment

The suggestion to ask for a stratified analysis by gender of the populations exposed is endorsed; the RSI has been updated accordingly.

Some comments on the DHPC are endorsed, but details to be further discussed.
Member state 7 comments

In general, we agree with the case descriptions and agree that a causal association is sufficiently supported by the data submitted.

The request for supplemental information is supported.

We agree with the proposed wording in SmPC and PIL, being in line with that previously included for the AstraZeneca vaccine, in particular the wording in SmPC 4.4.

In SmPC 4.4 the following sentence is added: *Risk of bleeding with intramuscular administration*. We suggest adding the common phrase used for other vaccines for IM administration:

As with other intramuscular injections, the vaccine should be given with caution in individuals receiving anticoagulant therapy or those with thrombocytopenia or any coagulation disorder (such as haemophilia) because bleeding or bruising may occur following an intramuscular administration in these individuals.

We propose the current potential risk of Venous thromboembolism to be upgraded to identified risk in the RMP.

We have no objections to the proposed DHPC and the proposed communication plan.

PRAC Rapporteur Comment

For the intramuscular administration, what is new is the subheading "Risk of bleeding with intramuscular administration". Other than that, the text proposed is already included in section 4.4.

For the RMP, this will be further assessed within the next round of this procedure.

Member state 8 comments

Overall we agree with the assessment report and recommendation provided by the rapporteur. Please, find attached our comments to the DHPC.

PRAC Rapporteur Comment

Noted; for the DHPC, see separate document.

Member state 9 comments

Overall, Member state 9 endorses the PRAC Rapporteur’s assessment report and conclusion.

Moreover, we strongly support that further details are needed on cases of ‘haematopoietic cytopenias’ from the clinical trials, since it is considered relevant to investigate the risk of thrombocytopenia, also in light of the imbalance observed for adeno-virus platform ["Platelet count decrease was observed following 70 out of 4,105 Ad26 doses (1.7%) and 7 out of 719 placebo doses (1.0%)].

Conclusions on this issue might be reflected in the product information, as appropriate.

Some comments to the proposed DHPC have been also formulated (see attachment).
3.3.1. Response from MAH (submitted 19 April 2021)

MAH response

Reference is made to the PAM-SDA procedure related to the signal of Embolic and Thrombotic events (SMQ) for COVID-19 Vaccine (Ad26.COV2-S [recombinant]) - COVID-19 Vaccine Janssen (EPITT ref. No. 19689). Further to the PRAC AR, proposed PRAC EUPI and DHCP letter received today 19th April 2021, I am hereby providing you the below documentation:

- MAH’s proposed DHCP letter in Track changes
- MAH proposed EUPI, clean and Track changes version
- CIOMS report for one Subject

The response to question below will be submitted shortly, today:

“Based on Response Table 6, there appears to be one additional clinical study case (study 3001) with concomitant thrombosis and thrombocytopenia. Full details on this case including a complete CIOMS report should be provided, along with a discussion on why this case was not included in the presentation of clinical study cases of concomitant thrombosis and thrombocytopenia”.

As requested, the response to the additional questions listed in the PRAC AR will be submitted by April 23rd, 2021.

Revised wording for PI

The MAH has accepted the wording for section 4.4 as outlined in the PRAC Rapp’s AR of 19 April, but has also proposed additional wording (see below). For section 4.8, the wording proposed by the PRAC rapporteur has been agreed, without revision.

Section 4.4

A combination of venous thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely (with an approximate incidence of 1-2 cases per 1 million vaccinations after the first 7.9 million vaccinations) following vaccination with COVID-19 Vaccine Janssen. This includes venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis as well as arterial thrombosis, concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Since management may be different than usual medical practice for thromboembolic events if patients present with concomitant thrombocytopenia, healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.
MAH comment: The Company proposes to include the frequency rate to clarify the very rarely statement, as this could be interpreted as 1 in 10,000, which would be an over estimate; namely by adding (with an approximate incidence of 1-2 cases per 1 million vaccinations after the first 7.9 million vaccinations).

PRAC rapporteur comment: The MAH has accepted the proposed wording for section 4.4, as outlined in the AR of 19 April 21. In addition, they proposed to add an approximate incidence (with an approximate incidence of 1-2 cases per 1 million vaccinations after the first 7.9 million vaccinations). This is not agreed. The proposed incidence is very uncertain and is likely an underestimation; see also PRAC Rapp’s comments to Q8 above.

The PRAC Rapp’s proposal of 19 April for section 4.8, and the PIL, both section 2 and 4 is agreed by the MAH.

Furthermore, the same wording as in 4.4 regarding awareness, signs and symptoms is added to a section on ‘The following information is intended for healthcare professionals only.’, which is endorsed. It should reflect the finally agreed wording, accordingly.

DHPC

PRAC rapporteur comment: For the DHPC, the MAH proposes to add the frequency as proposed for the SmPC, which is not agreed. Some other smaller comments have also been proposed. These will be considered together with other comments received from MSs.

3.4. Updated rapporteur’s proposed recommendation

The following wording is proposed, based on the MAH’s proposal and comments from MSs.

Section 4.4

Thrombocytopenia and coagulation disorders

A combination of thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases of venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.
Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Risk of bleeding with intramuscular administration

Section 4.8

In the Table

SOC: Vascular disorders: Thrombosis in combination with thrombocytopenia

*Severe and very rare cases of thrombosis in combination with thrombocytopenia have been reported post-marketing. These included venous thrombosis such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis (see section 4.4).

Frequency: Very rare

Package leaflet

Section 2

[...]

As with any vaccine, vaccination with COVID-19 Vaccine Janssen may not fully protect all those who receive it. It is not known how long you will be protected.

Blood disorders

A combination of blood clots and low levels of platelets' (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots, including in unusual locations such as the brain, liver, bowel and spleen, in some cases in combination with bleeding. These cases occurred within the first three weeks following vaccination and occurred mostly in women below 60 years of age. Fatal outcome has been reported.

Seek immediate medical attention if you experience severe or persistent headaches or blurred vision, unexplained skin bruising beyond the site of vaccination which appear a few days after vaccination, develop shortness of breath, chest pain, leg swelling, or persistent abdominal pain. Inform your healthcare provider that you have recently received COVID-19 Vaccine Janssen.

Section 4

Very Rare (may affect up to 1 in 10,000 people) - blood clots often in unusual locations (e.g. brain, liver, bowel, spleen) in combination with low level of blood platelets

Section 6

The following information is intended for healthcare professionals only:

[...]

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who...
experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention. Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

3.4.1.1. Subsequent RSI

- As shortly outlined above under section 2, the responses submitted by the MAH on 29 March 2021, at the time of when the signal was under initiation, were of poor quality. Further, at the oral explanation at the PRAC on 7 April 2021, key data for the current evaluation (namely available post marketing cases) was not included in the slide deck shown to the PRAC. These shortcomings have been feed back to the MAH. Despite requests in Q4 of all information on all available data, as well as case narratives for important cases in the clinical studies, certain important information seems to be missing. This is a major shortcoming. Several questions are raised in the RSI and should be submitted for review.
- For case a case in study 3001, it should be clarified when the tests for PF4 antibodies actually were performed, as well as reported to the investigator, and when the sponsor/MAH became aware of these results.
- Questions (Q2, Q3, parts of Q4) were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen.

In that presentation, the cases of ‘haematopoietic cytopenias’ in the clinical trials should be further detailed specifically addressing whether any of these are attributable to thrombocytopenia.

- Laboratory data, primarily CBC/platelet counts remain missing for the majority of cases with thromboembolism in both the clinical trials as well as post-marketing. Additional information on CBC/platelet levels are expected to be presented for these cases, including all cases with thromboembolic events regardless of location and severity.
- For COVID3012 SISONKE, an open lable single arm Phase 3b study in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed post mortem and is thus not expected to provide further laboratory testing. For the remaining three cases, platelet levels are expected to be submitted.
- In the Responses Table 5, there were 13 subjects with ‘AEs of interest’ of venous or arterial thrombosis in the clinical studies. There appears to be an additional 19 or 22 cases (different numbers appear in the Responses) with events of thromboembolism in the clinical studies. The MAH should summarise the main reasons for not including the additional cases among AEs of interest. Notably, laboratory data (primarily CBC/platelet counts) are expected for all cases.
- For the O/E analysis, it is noted that the the 18-28-year-old male from the phase III study that was reported with CVST and thrombocytopenia has not been included, in addition, the 52-62-
year-old female subject included in this analysis had thrombosis located in the legs but not CVST. Revised, and updated analyses, with the most current amount of data are requested.

- It is not clear which cut-off date that was used for post-marketing data in the O/E analysis, which should be provided. Furthermore, the MAH should provide the time frame that was used to calculate the expected rate of these rare events of CVST in combination with thrombocytopenia.
- A stratified analysis by gender of the populations exposed should be provided.
- One case of capillary leak syndrome was reported among cases described for this signal. This condition should be followed up in monthly safety summary reports.

For the case with concomitant DVT and low platelet counts (3031775) in a male aged between 56-66 study subject in study 3001, this case should be discussed in more detail, including a discussion on the laboratory findings at admission that indicate coagulopathy. In light of recent findings, a discussion on whether this could be a case of thrombotic thrombocytopenia related to the Covid-19 Vaccine Janssen should be provided. Any previous CBC/platelet counts in the medical history of this case should be provided.

3.5. Adopted PRAC recommendation

The PRAC has reviewed the available evidence on the occurrence of thromboembolic events following the administration of COVID-19 Vaccine Janssen, including data ascertained from spontaneous case reports identified in EudraVigilance, clinical trials and additional data from the MAH. The evaluation of the data revealed eight reports of interest, which included severe cases of venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

PRAC is of the view that there is sufficient evidence to conclude, with a reasonable possibility, that thrombosis in combination with thrombocytopenia can be considered as a very rare adverse drug reaction of the Covid-19 Vaccine Janssen.

Regarding additional risk minimisation measures, a DHPC is warranted to inform health care professionals.

The PRAC recommends that the MAH for Covid-19 Vaccine Janssen (Janssen-Cilag International NV) should submit a variation to amend the product information as described below (new text underlined/text to be removed with strikethrough):
Summary of Product Characteristics (SmPC)

Section 4.4
Thrombocytopenia and coagulation disorders

A combination of thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases of venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Risk of bleeding with intramuscular administration

Section 4.8

In the Table

SOC: Vascular disorders: Thrombosis in combination with thrombocytopenia*

*Severe and very rare cases of thrombosis in combination with thrombocytopenia have been reported post-marketing. These included venous thrombosis such as cerebral venous sinus thrombosis, splanchic vein thrombosis, as well as arterial thrombosis (see section 4.4).

Frequency: Very rare

Package leaflet

Section 2

[...]

As with any vaccine, vaccination with COVID-19 Vaccine Janssen may not fully protect all those who receive it. It is not known how long you will be protected.

Blood disorders

A combination of blood clots and low levels of ‘platelets’ (cells that help blood to clot) in the blood has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases with blood clots, including in unusual locations such as the brain, liver, bowel and spleen, in
some cases in combination with bleeding. These cases occurred within the first three weeks following vaccination and occurred mostly in women below 60 years of age. Fatal outcome has been reported.

Seek immediate medical attention if you experience severe or persistent headaches or blurred vision, unexplained skin bruising beyond the site of vaccination which appear a few days after vaccination, develop shortness of breath, chest pain, leg swelling, or persistent abdominal pain. Inform your health care provider that you have recently received COVID-19 Vaccine Janssen.

Section 4

Very Rare (may affect up to 1 in 10,000 people) - blood clots often in unusual locations (e.g. brain, liver, bowel, spleen) in combination with low level of blood platelets

Section 6

The following information is intended for healthcare professionals only:

[...]

- Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention. Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

The MAH should distribute a direct healthcare professional communication (DHPC) according to the text and communication plan agreed with the CHMP (see Annex).

The MAH for COVID-19 Vaccine Janssen (Janssen-Cilag International NV) is also requested to submit, responses to the following list of questions:

1. As shortly outlined above under section 2, the responses submitted by the MAH on 29 March 2021, at the time of when the signal was under initiation, were of poor quality. Further, at the oral explanation at the PRAC on 7 April 2021, key data for the current evaluation (namely available post marketing cases) was not included in the slide deck shown to the PRAC. These shortcomings have been feed back to the MAH. Despite requests in Q4 of all information on all available data, as well as case narratives for important cases in the clinical studies, certain important information seems to be missing. This is a major shortcoming. Several questions are raised in the RSI and should be submitted for review.

2. For case a case in study 3001, it should be clarified when the tests for PF4 antibodies actually were performed, as well as reported to the investigator, and when the sponsor/MAH became aware of these results.

3. Questions (Q2, Q3, parts of Q4) were raised regarding laboratory results from clinical studies and from post-marketing data, regarding e.g. thrombocytopenia. Further data presentation is asked for to allow final assessment of whether thrombocytopenia without thrombosis or bleeding, may be caused by the Covid-19 vaccine Janssen.
4. In that presentation, the cases of ‘haematopoietic cytopenias’ in the clinical trials should be further detailed specifically addressing whether any of these are attributable to thrombocytopenia.

5. Laboratory data, primarily CBC/platelet counts remain missing for the majority of cases with thromboembolism in both the clinical trials as well as post-marketing. Additional information on CBC/platelet levels are expected to be presented for these cases, including all cases with thromboembolic events regardless of location and severity.

6. For COVID3012 SISONKE, an open label single arm Phase 3b study in South Africa, there were five cases of thromboembolism that occurred between less than 24 hours and 23 days after vaccination. Normal platelet counts have been provided for only one of these; for one case, pulmonary embolism was diagnosed post mortem and is thus not expected to provide further laboratory testing. For the remaining three cases, platelet levels are expected to be submitted.

7. In the Responses Table 5, there were 13 subjects with ‘AEs of interest’ of venous or arterial thrombosis in the clinical studies. There appears to be an additional 19 or 22 cases (different numbers appear in the Responses) with events of thromboembolism in the clinical studies. The MAH should summarise the main reasons for not including the additional cases among AEs of interest. Notably, laboratory data (primarily CBC/platelet counts) are expected for all cases.

8. For the O/E analysis, it is noted that the 18-28-year-old male from the phase III study that was reported with CVST and thrombocytopenia has not been included, in addition, the 52-62-year-old female subject included in this analysis had thrombosis located in the legs but not CVST. Revised, and updated analyses, with the most current amount of data are requested.

9. It is not clear which cut-off date that was used for post-marketing data in the O/E analysis, which should be provided. Furthermore, the MAH should provide the time frame that was used to calculate the expected rate of these rare events of CVST in combination with thrombocytopenia.

10. A stratified analysis by gender of the populations exposed should be provided.

11. One case of capillary leak syndrome was reported among cases described for this signal. This condition should be followed up in monthly safety summary reports.

12. For the case with concomitant DVT and low platelet counts (3031775) in a male aged between 56-66 study subject in study 3001, this case should be discussed in more detail, including a discussion on the laboratory findings at admission that indicate coagulopathy. In light of recent findings, a discussion on whether this could be a case of thrombotic thrombocytopenia related to the Covid-19 Vaccine Janssen should be provided. Any previous CBC/platelet counts in the medical history of this case should be provided.

13. The MAH should discuss whether there is a need to further revise the product information, to advice against use of the Covid-19 vaccine Janssen, in a subject who has developed thrombosis in combination with thrombocytopenia, including after vaccination with any Covid-19 vaccine. Revision of sections 4.3 and / or 4.4 should be addressed.

Post opinion note: During the Oral explanation provided by Janssen Cilag International N.V. to PRAC on the 20th of April, further clarification was provided on a number of issues raised within the assessment report. Tests for anti-PF4 antibodies were performed on frozen samples in April 2021 and...
were thus not available at the time of events in 2020 or before this signal procedure was initiated. Table 6 (i.e. Lab results for subjects in COV1001, COV1002, COV2001 and COV3001 for subjects with vein and arterial thrombotic events) lists all data available to the MAH at the time of submission. Janssen Cilag International N.V. provided reassurance that they have implemented a number of measures to ensure follow-up of all relevant cases ascertained from post-marketing sources and clinical trials. The PRAC noted the clarifications provided by the MAH during the oral explanation.
Annex

DHPC

COVID-19 Vaccine Janssen: link between the vaccine and the occurrence of thrombosis in combination with thrombocytopenia

Dear Healthcare Professional,

Janssen-Cilag International NV in agreement with the European Medicines Agency and the <National Competent Authority > would like to inform you of the following:

Summary

- A combination of thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. A causal relationship with the vaccine is considered plausible.
- These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.
- No specific risk factors have been identified at this stage.
- Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia.
- Those being vaccinated should be instructed to seek immediate medical attention if they develop symptoms of thromboembolism and/or thrombocytopenia.
- Thrombosis in combination with thrombocytopenia requires specialised clinical management. Consult applicable guidance and/or specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

Background on the safety concern

COVID-19 Vaccine Janssen suspension for injection is indicated for active immunisation to prevent COVID-19 caused by SARS-CoV-2, in individuals 18 years of age and older.

A combination of thrombosis and thrombocytopenia, in some cases accompanied by bleeding, has been observed very rarely following vaccination with COVID-19 Vaccine Janssen. This includes severe cases of venous thrombosis at unusual sites such as cerebral venous sinus thrombosis, splanchnic vein thrombosis, as well as arterial thrombosis concomitant with thrombocytopenia. Fatal outcome has been reported. These cases occurred within the first three weeks following vaccination, and mostly in women under 60 years of age.

Healthcare professionals should be alert to the signs and symptoms of thromboembolism and/or thrombocytopenia. Those vaccinated should be instructed to seek immediate medical attention if they develop symptoms such as shortness of breath, chest pain, leg swelling, or persistent abdominal pain following vaccination. Additionally, anyone with neurological symptoms including severe or persistent
headaches or blurred vision after vaccination, or who experiences skin bruising (petechia) beyond the site of vaccination after a few days, should seek prompt medical attention.

In several of the cases with concomitant thrombosis and thrombocytopenia, testing for anti-platelet factor (PF) 4-antibodies was positive or strongly positive. Extensive work-up for other potential mechanisms that could cause thrombosis and/or thrombocytopenia has been provided for a minority of these cases; however, no other abnormalities have been found that are considered to explain the observed events. However, the exact pathophysiological mechanism for the occurrence of these thrombotic events is not defined yet. No specific risk factors have been identified at this stage.

Thrombosis in combination with thrombocytopenia requires specialised clinical management. Healthcare professionals should consult applicable guidance and/or consult specialists (e.g., haematologists, specialists in coagulation) to diagnose and treat this condition.

The Pharmacovigilance Risk Assessment Committee, PRAC, one of EMA’s scientific committees, has performed a thorough investigation including a review of case reports of blood clots and thrombocytopenia in individuals who received the vaccine and has also evaluated an observed to expected analysis.

Based on the current evidence, the PRAC has recommended an update to the product information to reflect the current knowledge of this safety issue. This comprises an update of the warning section, as well as inclusion of thrombosis in combination with thrombocytopenia as an adverse reaction with a frequency of very rare.

Call for reporting

Healthcare professionals should report any suspected adverse reactions associated with the use of COVID-19 Vaccine Janssen in accordance with the national spontaneous reporting system <include the details (e.g. name, postal address, fax number, website address) on how to access the national spontaneous reporting system>.

▼ This product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions.

Company contact point

<Contact point details for access to further information, including relevant website address(es), telephone numbers and a postal address (company contact point in the concerned EU MS should be included, respectively)>.

Yours Faithfully

Medical Director of Janssen-Cilag International B.V.
Communication plan

Communication Plan for Direct Healthcare Professional Communication

<table>
<thead>
<tr>
<th>DHPC COMMUNICATION PLAN</th>
<th>COVID-19 Vaccine Janssen suspension for injection (Ad26.COV2-S [recombinant])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal product(s)/active substance(s)</td>
<td></td>
</tr>
<tr>
<td>Marketing authorisation holder(s)</td>
<td>Janssen-Cilag International N.V.</td>
</tr>
<tr>
<td>Safety concern and purpose of the communication</td>
<td>Information on the risk of thrombosis in combination with thrombocytopenia.</td>
</tr>
<tr>
<td>DHPC recipients</td>
<td>General practitioners, specialists in internal medicine, haematology, emergency medicine and vaccination centres.</td>
</tr>
<tr>
<td></td>
<td>The target group should be further defined at national level, in agreement with the respective national competent authority.</td>
</tr>
<tr>
<td>Member States where the DHPC will be distributed</td>
<td>All EU member states where COVID-19 Vaccine Janssen is authorised.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timetable</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHPC and communication plan (in English) agreed by PRAC</td>
<td>Tue 20/04/2021</td>
</tr>
<tr>
<td>DHPC and communication plan (in English) agreed by CHMP</td>
<td>Wed 21/04/2021</td>
</tr>
<tr>
<td>Submission of translated DHPCs to the national competent authorities for review</td>
<td>Thu 22/04/2021</td>
</tr>
<tr>
<td>Agreement of translations by national competent authorities</td>
<td>Fri 23/04/2021</td>
</tr>
<tr>
<td>Dissemination of DHPC</td>
<td>Mon 26/04/2021</td>
</tr>
</tbody>
</table>