AAV specific issues pertaining to vector shedding in gene therapy clinical trials

Samuel Wadsworth Genzyme Corporation

Workshop objectives

- Assess the impact of vector design on shedding (studies)
- Review available data on the relationship between bio-distribution and shedding of diverse vector systems
- Consider the potential shedding-associated safety concerns to be considered in clinical development

What is the concern?

- "Shedding in the field of gene therapy means dissemination of the gene therapy product through excreta of the treated subject or patient"
- The potential concern has two components
 - Genetically altered viral vectors will go beyond treated subjects/patients
 - Such vectors will be biologically active with the potential to have deleterious effects on persons other than the study subject
- A few initial thoughts on this concern
 - Vectors do not replicate, continually diluted from the point of administration to potential sites of shedding
 - Shedding is limited by cell barriers and gauntlet of biological inactivation mechanisms
 - Even if shed, viral vectors do not propagate outside of cells

The impact of vector design on shedding

The impact of vector design on shedding

- Two major technical aspects to vector shedding
 - qPCR
 - Bio assay, namely infectivity assay
- These assays are developed in parallel for
 - Biodistribution
 - Vector infectivity
 - Adapted for shedding studies
- qPCR/biodistribution generally more sensitive and robust
- Cell toxicity an issue in infectivity assays
- PCR or qPCR often used as an end point for infectivity assays

Quantitative PCR (qPCR)

- "Taqman" qPCR assays are the norm
- Assay should be vector specific
 - Requires a primer set that distinguishes
 - Between natural therapeutic gene and that carried by vector
 - Between vector and parental virus
 - One primer within transgene and a second within either construct-specific or vector sequences
 - Challenge is that specificity and sensitivity are directly related to target size
 - AAV vectors at disadvantage due to size

Finding acceptable probe-primer set can be challenging in AAV

genzyme

Limitations of qPCR assay

- Even when technically feasible, positive PCR results do not indicate biologically active vector
- Biological fluids can interfere with the assay
- Same assay may not work for follow-on expression studies, RT-PCR

Technical points related to AAV

- AAV genomes are single stranded
- Single stranded standards can be "sticky"
- Thus PCR standards are commonly double stranded plasmids
- Linearized versions of plasmids should be used
- Ideally, single use, pre-diluted, QC'd standards should be used

Bio assay

- AAV infectivity assays are challenging
- No plaques assay exists, detection is by PCR
- Cell toxicity of shedding matrices is a complicating factor
- Requires AAV helper genes and Ad helper genes

AAV vector infectivity assay

AAV vector infectivity assay

- Discuss the data available on the relationship between bio-distribution and shedding
 - Bio-distribution assays are performed pre clinically, shedding assays less common
 - Shedding assays are performed clinically with limited bio-distribution
 - Overlap between bio-distribution and shedding data in pre clinical and clinical settings can be informative

Shedding and biodistribution results			
Clinical results	Subjects	Vector dose - DRP/pt	Positive samples (beyond target organ)
Cystic fibrosis - aerosolª	CF pts	up to 10 ¹³	Blood - d 1, 1 pt Sputum - cleared by d 14
Cystic fibrosis - aerosol ^ь	CF pts	10 ¹³	Sputum - d 1, 90% pts; d 150, 18% pts
Hemophilia B - IMº	Hemophilia B pts	up to 10 ¹⁴	Blood - 1 wk consistently, 1 pt sporadic to wk 12 Saliva - d 2 Urine - d 1
Hemophilia B - IHAd	Hemophilia B pts	up to 2 x 10 ¹²	Blood - 1 week consistently, 1 pt sporadic to wk 14 PBMCs - wk 12, 5/7; wk 20, 1/7 Urine - d 2 Semen - 1 week consistently; 1 pt, w 16
Preclinical results			
Inherited blindness - subretinal ^e	Rats, LCA dogs	up to 3 x 10 ¹²	Muscle - sporadic in muscle (1-2 animals) out to 3 mo
Parkinson's - intra striatal ^f	Non human primates	up to 10 ¹²	Spleen - 6 mo, 2/12 animals
Research study - IV ^g	Non human primates	up to 10 ¹³	Spleen - 6 mo-1 yr, 8/8 PBMCs - 6 mo-1 yr 8/8 Semen - 180 d, 3 animals

General Conclusions from Biodistribution and Shedding Studies

- Vector biodistribution occurs largely via hematagenous spread
- Route of administration affects the level of vector in different compartments but not the pattern of spread
- Potential concerns are limited to a relatively short period of time post vector administration
- Longest persistence seen in blood, vector likely cell associated
- Shed levels of vector miniscule as compared to initial vector dose

Potential shedding-associated safety concerns

- Viral vector cannot expand in the environment, dependent on cells
- Sponsors go to great lengths to demonstrate safety of high vector doses in experimental animals
- Unintended exposure of persons to vectors should be avoided, but data indicate amounts of vector in shed excreta will be very low
 - far below the detection limit for any biological activity in controlled experiments
 - non-intended contact between a person and vector will occur under non-optimal conditions (from the perspective of the vector)

Potential AAV specific shedding-associated safety concerns

- AAV as a <u>virus</u> is not pathogenic
- For AAV <u>vectors</u> to replicate, two types of helper functions are required; AAV functions and Ad functions – all in the same cell
- Even a worst case scenario, presence of all helper functions plus AAV vector, would yield very low levels of additional vector

Final Thoughts

- What is the real concern?
 - That large amounts of viral vectors are being shed?
 - That harm may come to others?
- Reminiscent of early days of the RAC
 - Originally general concerns about all recombinant plasmids
 - Refined to concern about recombinant plasmids with known risk, eg encoding toxins
 - Today, appropriately relaxed concern based on data
 - Primary role focused on concerns about vector effects on study subjects
- We know that shedding occurs but at very low levels
- Vector design, transgene, manufacturing methods unlikely to affect shedding
- We know that viral vectors are dependent on cells for expansion
- In view of the data, what more can we learn from continued emphasis on testing in clinical setting?
- Are there more critical issues we should be working on?

Acknowledgements

Genzyme Research

- Scott Lonning
- Jim Morris
- Mike Lukason

References cited in Shedding Table

- a Aitken et al. Human Gene Therapy, 2001, <u>12</u> 1907
- b Moss et al. Chest, 2004, <u>125</u> 509
- c Manno et al. Blood, 2003, <u>101</u> 2963
- d Manno et al. Nature Medicine, <u>12</u> 342
- e Jacobson et al. Molecular Therapy, 2006, <u>13</u> 1074
- f Avigen, unpublished data
- g Genzyme, unpublished data

