

Calculation of the Minimum Anticipated Biological Effect Level (MABEL) and 1st dose in human

Jennifer Sims, PhD

AstraZeneca

Member of ABPI / BIA Early Stage Clinical Trials Taskforce

Acknowledgements

ABPI/ BIA Taskforce Members (Chaired by Dr David Chiswell and Professor Sir Colin Dollery)

Members of the Preclinical & Translation to the Clinic Working Group

J. Sims, Syngenta C. Springall, Covance

C. Springall, Covance D. Austin, GSK*

P. Lloyd, Novartis* M. Dempster, GSK*

P. Lowe, Novartis*

M. Owen, GSK K. Chapman NC3Rs

S. Kennedy, GSK J. Cavagnaro, Independent

D. Everitt, Johnson & Johnson D. Glover, Independent

H Parmar, AstraZeneca P. Round, CAT

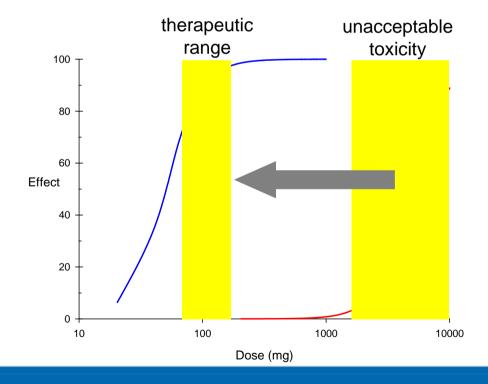
N. Deschamps-Smith, ABPI

R. Peck, Lilly, Chair ABPI/BIA Clinical Trial Design Working Group*

* For input into MABEL and PK/PD modelling aspects in particular

BIO's BioSafe Expert Nonclinical Safety Assessment Committee Members:

Drs. L. Andrews (Genzyme), J. Cavagnaro (Access Bio), M. Dempster (GSK), J. Green (Biogenldec, Chair), S. Heidel (Lilly, Vice-chair), C. Horvath (Archemix Corp), A. Levin, M. Rogge (Biogenldec, Sec.), J. Sims (AstraZeneca), R. Soltys (Genentech), J. Stoudemire (Ascenta), T. Terrell (Allergan), G. Treacy (Centocor), and G. Warner (Wyeth)

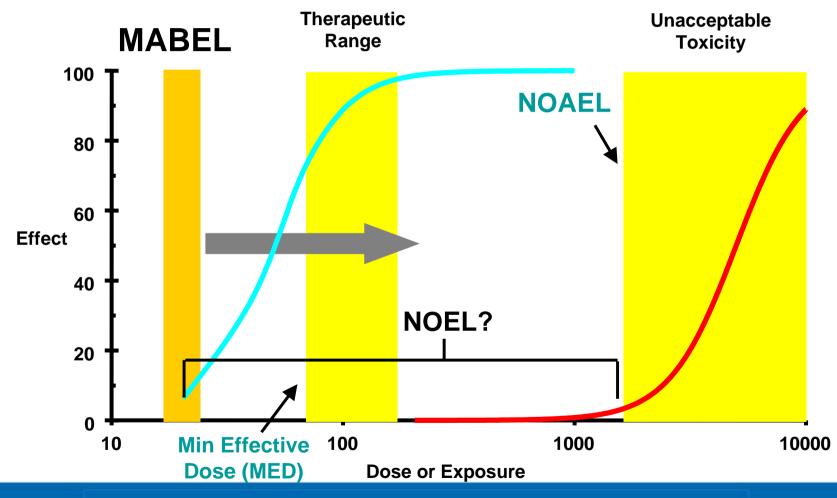


Paracelsus 1493 - 1541

Alle Ding' sind Gift und nichts ohn' Gift; allein die Dosis macht, das ein Ding kein Gift ist.

"All things are poison and nothing is without poison, only the dose makes a thing be poison."

U.S. Food and Drug Administration


Guidance for Industry and Reviewers

Esti	mating the Ma Trials for Th	But	tial Clinical voiunteers
Step 1	Determine	Why start with the	fect Level" (NOAEL)
Step 2	Convert N - generally	highest dose you think is safe?	nt Dose" (HED) area
Step 3	Select HE - additiona - default: ı	Better to start with the lowest dose you	species tors, binding epitopes st HED)
Step 4	Apply a sa "Maximun	think is active	a: se" (MRSD)
Step 5	Adjus		ogically active dose

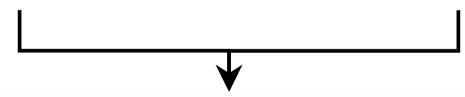
A safe starting dose in man should be driven by pharmacology & toxicology

Summary: MABEL approach

Toxicology

Determine "No Observable Adverse Effect Level" (NOAEL)

Convert NOAEL to a "Human Equivalent Dose" (HED)


- adjust for anticipated exposure in man
- adjust for inter-species differences in affinity / potency

Apply ≥10-fold safety factor

Pharmacology

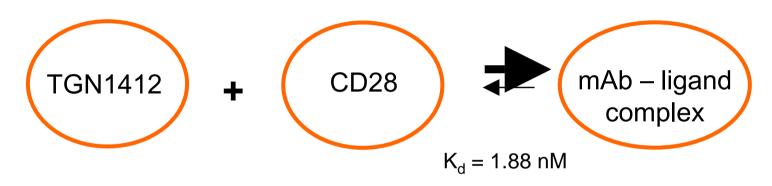
Estimate human "Minimal Anticipated Biological Effect Level" (MABEL)

- justify based on pharmacology
- adjust for anticipated **exposure** in man
- include anticipated duration of effect
- adjust for inter-species differences in affinity / potency

"Maximum Recommended Starting Dose"

- define anticipated safety window based on NOAEL and MABEL
- appropriate safety factor, if necessary, based on potential risk

Pharmacology data



- Understanding of mechanism of action
- Receptor occupancy estimates
- In vitro, ex vivo and/or in vivo concentrationresponse data

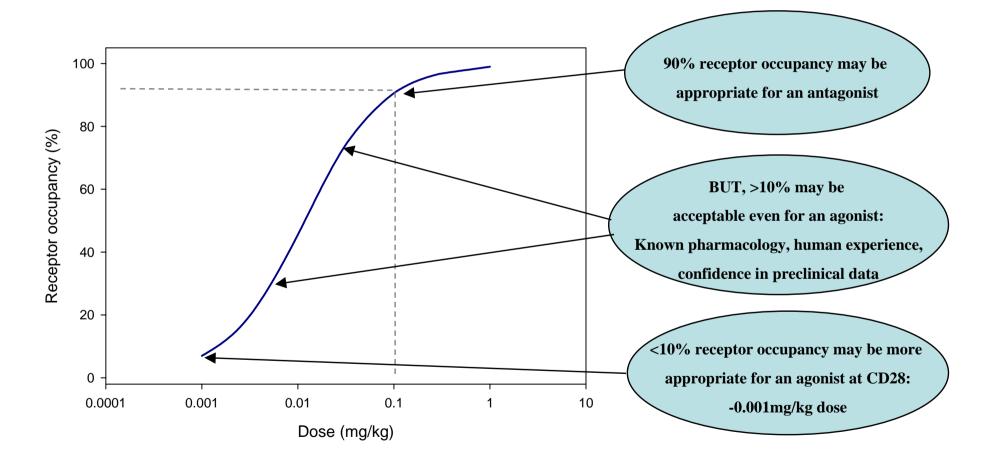
Receptor occupancy

Dose 0.1mg/kg = 7 mg MW 150,000 plasma volume 2.5L

TGN1412 = 18.7 nM (immediately post-dose)

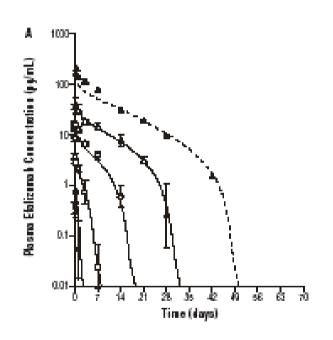
Tcell 1.9 x 10⁶ mL⁻¹ CD28 / cell 150,000

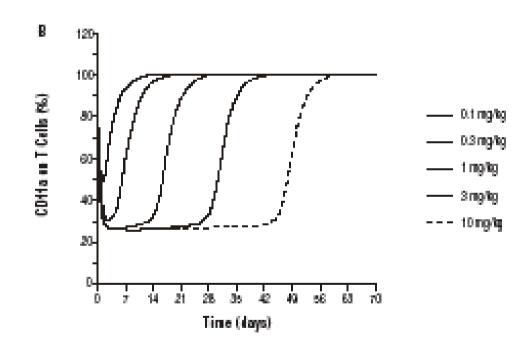
CD28 = 0.95 nM at baseline


CD28-TGN1412 = 0.86 nM at equilirium

90% receptor occupancy

Receptor occupancy





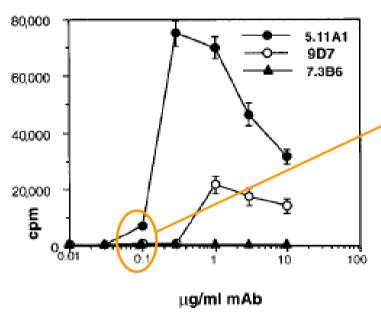
High receptor occupancy may be appropriate for antagonist effect

anti-CD11a mAb



Joshi et al An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis J Clin Pharmacol 2006; 46: 10-20

High receptor occupancy may be appropriate for antagonist effect


- Initial dose may result in short duration of suppression of ligand
- Increasing doses have minimal impact on extent of suppression but increase the duration of suppression
- Duration of effect is governed by:
- binding affinity to the target
- > ligand concentration and ligand turnover
- >and not only by the kinetics of mAb

In-vitro concentration-response data

In vitro human Tcell proliferation

5.11A1 – murine parent to TGN1412

minimally effective conc: 0.1 μg/mL

initial concentration (immediately post dose)
plasma volume (man) = 2.5 L
dose (man) = 0.25 mg
~0.003 mg/kg #

- 70 kg subject

NB difference in potency between 5.11A1 and TGN1412 not known

Figure 4. Stimulation of human T cells by superagonistic anti-CD28 mAb

Luhder F et al. Topological requirements and signalling properties of T cell-activating, anti-CD28 antibody superagonists J. Exp. Med. 2003; 197(8): 955-966

TGN1412: MABEL dose calculation

Toxicology

NOAEL 50.0 mg/kg

HED 16.0 mg/kg

- adjust for anticipated **exposure** in man (not done)
- adjust for inter-species differences in affinity / potency (not done)

Apply ≥10-fold safety factor 1.6 mg/kg

increased to 160-fold: 0.1 mg/kg

Pharmacology

MABEL

- justify based on pharmacology
- adjust for anticipated **exposure** in man
- include anticipated duration of effect
- adjust for inter-species differences in affinity / potency

in-vitro T-cell proliferation (0.1 μ g/mL) murine parent to TGN1412 (5.11A1) ^{ref 3} = ~0.003 mg/Kg in man

initial 10% receptor occupancy ~0.001 mg/kg in man

"Maximum Recommended Starting Dose"

- define anticipated safety window based on NOAEL and MABEL
- appropriate safety factor based on potential risk

0.001 mg/kg

Why did pharmacology approach and MRSD approach give such different outcome?

Selection of relevant species for safety assessment

What are the criteria for the selection of a pharmacologically relevant species?

- Target sequence homology, expression of receptor or epitope
- In vitro binding affinity, receptor occupancy, on/off rate – compared to human
- In vitro bioactivity / potency compared to human
- Pharmacologic activity (in vivo)

Relative potency in humans and species used for safety assessment: Relevance of cynomolgus monkey?

Expert Scientific Group on Phase 1 Clinical Trials Final Report, November 2006

Summary of *in vitro* activation and proliferation responses of human and Cynomolgus macaque lymphocytes to immobilised TGN1412

	TGN1412	TGN1412	IL-2	IL-2	TGN1412+IL-	TGN1412+IL-2
	evoked	evoked	evoked	evoked	2	evoked
	activation	proliferation	activation	proliferation	evoked	proliferation
					activation	
Human	++++	++++	_	-	Could not be	Could not be
PBMC					tested*	tested*
Macaque	++	_	_	_	+++	+++
PBMC						

*: TGN1412 stimulates activation, IL-2 secretion and proliferation when given alone.

In initial *in vitro* assays, in which PBMC from Cynomolgus macaques were stimulated with immobilised TGN1412, cells did not undergo a proliferative response. Early indications are that Cynomolgus macaque PBMC are activated by TGN1412 but do not undergo proliferation. However, when exogenous human IL-2 was added to cultures of Cynomolgus macaque PBMC stimulated with immobilised TGN1412 then a strong proliferative response was observed. No proliferative response was observed following the addition of human IL-2 alone to Cynomolgus macaque PBMC cultures.

Consider all available preclinical data

- In vitro data
- •Effects of candidate drug in animal species / models
 - Understand the limitations of animal species for predicting human safety
 - •Information on relative potency in animal species versus humans
- Effects of surrogate / related products in animals models
 - Understand the limitations of animal species for predicting human safety
 - Information on relative potency in animal species versus humans

Peripheral T cell depletion observed with 5.11A1 (murine parent to TGN1412) in humanised mouse model

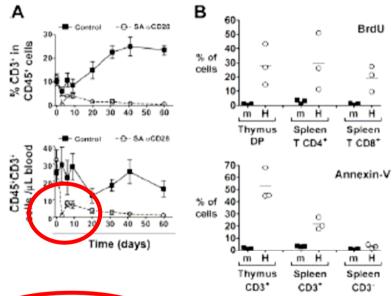


Figure 4. SA anti-CD28 treatment induces increased human thymic output despite T-cell depletion and ligh T-cell turnover in the periphery of HIS (BALB-Rag/y) mice. (A) The percentage of CD3+ T cells among CD45+ cells (top) and the absolute runder of human T cells (bottom) was monitored in the blood of IgG1 control (III) and SA anti-CD28—treated mice (O) over a 2-month period (mean ± SEM). Representative results from 1 experiment out of 3 are shown. (B) Control wild-type BALB/c mice (m) and HIS (BALB-Rag/y) mice (H) were treated for 1 day with BrdU and incorporation by cells of the indicated subsets was analyzed (top panel). Proportion of Annexin-V+ cells was also determined in the indicated populations (bottom panel). Representative results from 1 experiment out of 2 are shown. Horizontal bars indicate mean values.

- •Dose: 0.3 mg per mouse I.P
- •Establish dose-response for T-cell depletion in this model?
- Account for relative potency of 5.11A1 and TGN1412

Ref: Legrand N et al.

Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in "human immune system" Rag2-/-γc-/- mice Blood 2006; 108: 238-245

Splenomegaly and lymphadenopathy oberved In rats given JJ316 (mouse anti-rat CD28 antibody)

Figure 5. JJ316 treatment in vivo induces splenomegaly and lymphadenopathy. LEW rats received a single i.p. dose of 1 mg anti-CD28 mAb JJ319 (left), JJ316 (right) or PBS (as JJ319, not shown) and were killed 3 days later.

Dose: 1mg per rat I.P

•Establish dose-response for lymphocytosis in this model?

•Account for relative potency of JJ316 and TGN1412

Eur. J. Immunol. 1997. 27: 239-247

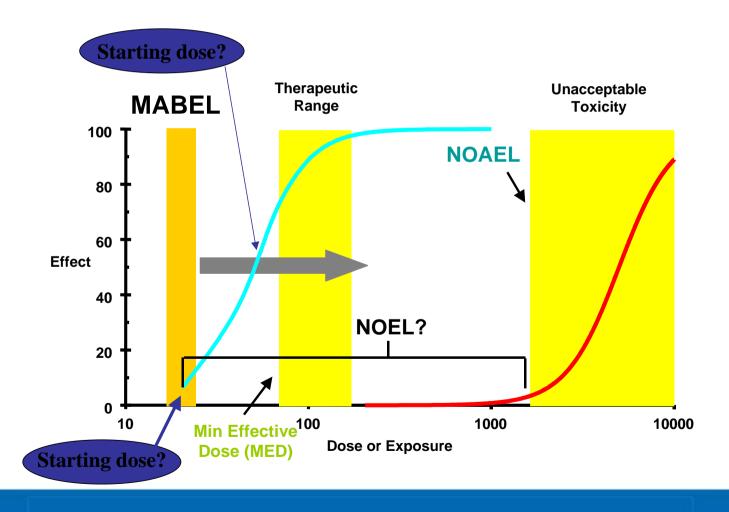
Michael Tacke, Gabriele Hanke, Thomas Hanke and Thomas Hünig

Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany T cell activation via CD28 without TCR engagement

239

CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28

Consider all available preclinical data

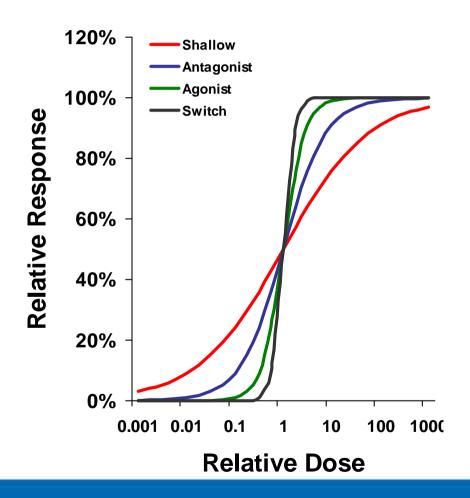


- In vitro data
- Effects of candidate drug in animal species / models
 - •Understand the light animal species for predicting human after the species for the species for predicting human after the species for the s
 - •Information on relative oter y in animal species versus humans
- •Effects of surrogate / related products in animals models—
 - •Understant the state in the last the predicting the last the last
 - •Information n rotiv potency in animal species versus humans

Starting dose for FTIH study

Dose escalation

But, even if one is able to calculate MABEL and estimate a safe starting dose...


...What next?

Even if the starting dose is safe and set at a fraction of the MABEL at some stage the dose escalations will enter the pharmacological dose range

Remember the dose-response curve

Dose escalation

Make use of preclinical data & PK/PD models developed to identify starting doses

- Build preclinical dose/concentration/response into model
- > Refine model with initial human PK and PD data
- Adapt subsequent doses appropriately

Consider "split" dose approach to dosing

e.g. 10% on day 1, 30% on day 2 and 60% on day 3

Summary

- •Understand the target mechanism and pharmacology
- Understand the limitations of the preclinical data for predicting human safety
- Translate the science to humans and account for differences in relative potency
- Estimate the clinical starting dose for FTIH study using both toxicology AND pharmacology
 - No simple algorithm for use of MABEL case by case!
- Use PK/PD data from initial and subsequent dose cohorts to aid dose escalation in FTIH study
- Consider stopping rules, exposure limitations based on the pharmacology and toxicology
- Design the right clinical study to mitigate risk