Challenges with Advanced Therapy Medicinal Products First Workshop on Advanced Therapy Medicinal products (ATMP) at the European Medicines Agency 3rd April 2009

Dr. Christian K Schneider CAT and CHMP, EMEA, London Paul-Ehrlich-Institut, Germany pei@pei.de

Advanced therapies and their challenges

Gene therapy medicinal products

Somatic cell therapy medicinal products

Tissue engineering products

Genetically modified cells

www.heartandmetabolism.org

Nat Biotechnol 2005, 23(7)

www.biomed.brown.edu

Advanced Therapies: Science Fiction?

Clinical Trial Applications with CBMP

Somatic cell therapy MPs (trials / original products)	3Q 2005 (25/13)	<u>3Q 2006</u> (73/59)	<u>3Q 2007</u> (132/112)
Cancer immunotherapy	3	23	45
Cardio-vascular	4	17	31
Skin/liver/lung/eye/diabetes/intestine/bone TE	5	12	28
Neurological	1	4	5
Lymphohistiocytosis (HLH)	_	1	1
AIDS	_	1	1
Infertility	_	1	1
	13	40	112

Eudra CT: 3Q 2005 to 3Q 2007

E. Flory, PEI

Complexity of Advanced Therapies

Intracellular MAPK signaling pathways

Complexity of signalling

Overlap and location of positive and negative modulators of NFk-B signalling identified in a cell-based screen within the T-cell receptor signaling pathway

Challenges with cell-based products

- Cells are complex systems
 - Cells are <u>dependent</u> on their (micro-)environment
 - Species-specificity
 - Disease-specificity
 - Cells are <u>reactive</u> to their environment
 - Cell cultures can become heterogeneous
 - Cells might de-differentiate (e.g. during longer cell culture)
 - Cells might migrate ("biodistribution")
 - Cells are fragile and (sometimes) mortal
- => Regulatory consequences:
 - √ Need for adequate characterization
 - $\sqrt{}$ but also necessity to accept limitations

Challenges with cell-based medicinal products

Non-clinical evaluation

A relevant species is one in which the test material is pharmacologically active due to the expression of the receptor or an epitope (in the case of monoclonal antibodies)*.

*NfG on preclinical safety evaluation of biotechnology derived pharmaceuticals (CPMP/ICH/302/95; ICH S6)

- Cell surface molecules (receptors, integrins,...)
- Secreted factors like cytokines

Example: Engineered killer T cells

Challenges with genetically modified cells

 Example: Genetically modified T cells directed to attack tumour cells (transduced with tumour-specific TCR)

- CD8+ T cells are highly potent killers
- Around 20,000 active genes, (including T cell receptor, cytokines, chemokines, their receptors,...)
- Complex interactions of signalling pathways, e.g. NFκB

T cell activation

T cell recognition is "degenerate"

Hypothesis of "molecular mimicry" in the pathogenesis of autoimmunity

= a T cell cross-reacts with a self-antigen

Pecularity of the T cell receptor (TCR):

Ligand-TCR interaction is not as specific as for antigen-antibody binding ("degenerate" recognition)

=> several similar sequences can bind and activate the T cell

Example: Activation of MBP-specific T cell clones by microbial peptides

Species	Protein	Amino acid sequence	
Homo sapiens	Myelin Basic Protein	ENPVVHFFKNIVTPR	
Human Papilloma Virus 7	L2 Protein	IGGR VHFFK D I SPIA	
Herpes Simplex Virus	UL15 Protein	FRQL vhf vrdfaqll	
Adenovirus Typ 12	ORF	DFE VV T f L K DVLPEF	
Pseudomonas aeruginosa	Phosphomannomutase	DRLLML F A K DV V SRN	

Wucherpfennig et al, J Clin Invest 1995, 100(5)

Challenge: Non-clinical toxicology

- Toxicity of advanced therapies aiming at augmenting T cell activation
 - Genetically modified T cells (tumour-specific TCR)
 - Tumour vaccines based on viral vectors expressing modified tumour antigens for enhanced antitumour activity
 - Engineered antitumoural T cells with modified T cell receptors for enhanced antitumoural activity
- The main concern is cross-reactivity with physiological tissue
- Challenge: No sufficiently informative non-clinical model at all!

The "homologous" model

Human engineered T cells with human T cell receptor

Mouse engineered T cells with mouse T cell receptor

Challenge: Non-clinical toxicology

- Testing of the product itself in animals not relevant
 - T cells will not recognize anything (will only recognize in context with corresponding human MHC molecule)
 - A mouse model transgenic for the corresponding MHC molecule also not sufficiently predictive: Cross-reacting antigens are entirely different ("man is not mouse")
 - Testing in a homologous model likewise not relevant
 - Engineered mouse T cells recognizing mouse tumour antigen in a mouse MHC context
 - => cross-reactivity not sufficiently informative

How to solve this?

Murphy's laws

"If anything can go wrong, it will."

"If you perceive that there are four possible ways in which something can go wrong, and circumvent these, then a fifth way, unprepared for, will promptly develop."

"Left to themselves, things tend to go from bad to worse."

- Employ risk-based approach
- Implementation of relevant (additional) safety endpoints in the clinical trials
 - "You will only see what you are looking for"
 - Also based on theoretical consideration
- Appropriate starting "dose"
- Take information from comparable products, knock-out mice (can be valuable, since gene is knocked out completely)

Challenges with gene transfer medicinal products

Gene transfer medicinal products

Vector-related issues clearly to be distinguished from effects mediated by expression of the gene

= added complexity as compared to biotechnological products of having additional test components (vector, genetic material)

Clinical challenges with gene transfer

- "How to target only the target"
 - Gene transfer medicinal products which substitute for an organ or tissue-specific gene defect, but with multilocular occurrence (skin, muscle, bone,...)
 - How to administer locally to ensure desired local distribution?
 - Impact on patient when administered multilocally (more than 20 injections per patient etc.)
 - Impact of additional devices on safety
 (e.g. tissue damage and enhancement of immunogenicity?)
 - Where to administer locally when gene product replaces a metabolic dysfunction (e.g. clearing serum levels of certain metabolites) => might be done anywhere ("local bioreactor"), but where?
- Possibility / Necessity for re-administration?

Clinical challenges with gene transfer

- How to control the clinical trial?
 - For proof-of-principle
 - Patient as own control (comparing pre- and post treatment) might be acceptable, depending on the effect size / severity of the defect / historical data)
 - For pivotal trial
 - Control group usually required to distinguish effect of gene defect correction from usual best supportive care (e.g. dietary measures for metabolic conditions)
 - => gene transfer usually represents a monotherapy, not an add-on to standard of care
- How to blind the trial?
- How to measure clinical outcome?
 - For many gene defects there is no available treatment and thus no validated clinical endpoints.

Borders to ethics

- Important: Adverse events that are to be expected must be seen in the light of the benefit
 - Even for integration / tumourigenicity!
 (e.g., gene therapy for a severe disease that would take a lethal course within the first years of life)
- Patients' unmet medical need vs. need for evidence
- Importance of long-term follow-up and risk management
 - Legislation: Opens possibility to long-term follow-up of efficacy => important e.g. for tissue engineering products, where efficacy might be apparent only after many years
- Autologous product: Who is the owner? The patient?

Why we have a CAT

http://www.poster.net/conger-cydney/conger-cydney-cat-fish-8300191.jpg

Advanced Therapies are "threesome"

- additional safety measures required?
- immunogenicity

Advanced Therapies are "double-threesome"

- How to perform first-in-human trials?
- How to deal e.g. with the risk of inserational mutagenesis?

The Committee for Advanced Therapies (CAT)

Holistic view: Step back and look at the entire picture

Francis Bacon Portrait (1979)

Challenge: Balanced view

Hurdles should neither be too high...

...nor too low.

To develop an ATMP is not an excuse for an immature dossier or to neglect regulatory standards.