

CURRENT REGULATORY THINKING FOR VIRAL SHEDDING STUDIES IN THE EUROPEAN UNION

Sharon Longhurst

ICH Workshop – Rotterdam 30th October 2007

EU LEGISLATION – Clinical Trials

Definition of a clinical trial (Directive 2001/20/EC):

".....to study adsorption, distribution, metabolism and <u>excretion</u> of one or more investigational medicinal product(s) with the object of ascertaining its (their) safety and/or efficacy"

- All available quality, pre-clinical and clinical experience with the vector should be included in the IMP dossier:
- <u>Pre-Clinical Studies (general requirements)</u>
 - Pharmacokinetic
 - Exposure data in animals should be evaluated prior to human clinical trials
 - Distribution, metabolism and <u>excretion</u> in animals should be made available to compare human and animal pathways. This information should be available by the time phase I studies are completed

Guidance currently available in the EU Pre-Clinical Studies (specific to GTMP's)

- Biodistribution
 - Investigation of GTMP persistence, mobilisation and shedding are recommended

(CHMP\GTWP\125459\2006)

- <u>Clinical Trial Investigations</u>
 - Viral shedding should be monitored in an adequate number of patients and this should form the basis upon which the continuation of such monitoring is decided

(CPMP\BWP\3088\99)

- Biology of the vector
 - Replication deficient or competent
 - Transient or integrating
 - Altered tropism of the vector from wild-type
 - Impact of transgene on shedding
 - Risk of mobilisation
 - Risk of recombination with another transmissible agent
- Route of administration
 - Intra-cerebral injection reduced shedding compared to oral?

- Suitability of the animal model
 - Is this model susceptible to infection by the wild-type virus from which the vector is derived?
 - Is it preferable to use vectors homologous to the human vector, but able to replicate/mobilise/recombine in the animal chosen for non-clinical shedding studies?
 - Ease of collection of samples and volume.
 Will there be sufficient to test?

- Dose range
 - Bracketed approach fewer animals (more ethical).
 - Evaluation of all clinical doses more animals (less ethical), but might indicate a cut-off point for dose where shedding does not occur.
 - Equivalence of dose to be given in clinical study – vp/kg may not be appropriate if the route of administration is intra-tumoural for example

- Analytical Methodology
 - Volume of sample may dictate the assay of choice
 - Is it possible to relate a positive PCR signal to infectious virus?
 - Endpoint: if a positive PCR signal is observed preclinically, clinical investigation is mandatory – determination of infectivity/transmissibility of shed virus being the aim?
 - Any consequences of vector transmission should be investigated

Considerations for viral shedding monitoring during clinical trials

- Clinical trials are approved by national competent authorities
- Clinical trial definition includes the 'study of excretion' viral shedding studies are therefore implied
- No defined EU protocol guidance on how these studies should be approached

Considerations for viral shedding monitoring during clinical trials

- Patients treated as in- or out-patients?
 - If monitoring shedding frequent samples are needed
 - argument for in-patient
 - If infectious virus shed there are environmental considerations – argument for in-patient
- Number of patients monitored
 - Every patient in the trial or enough to determine if infectious virus is actually shed?
- Frequency of samples taken
 - depends on supportive pre-clinical data
 - initially daily until no signal observed?

Considerations for viral shedding monitoring during clinical trials

Samples to be taken

- May depend of route of administration and/or pre-clinical data
 - Blood (whole blood and plasma)
 - urine & stool
 - buccal / nasal swabs / saliva
 - semen

Analytical Methodology

PCR/qPCR

- Advantages
 - Can be quantitative or qualitative
 - Biochemical endpoint less subjective that bioassay
 - Heterogeneous samples may be easier to analyze
 - Can be used to detect 'unexpected' recombinants
- Disadvantages
 - Measures DNA and not infectious virus
 - Inhibitors in samples
 - Potential for false positives

Analytical Methodology

Infectious Virus Titration

- Advantages
 - Measures infectivity rather than just DNA
 - Can be quantitative, semi-quantitative or qualitative
- Disadvantages
 - Read-out is more subjective than PCR analysis
 - Samples may need treatment prior to assay to minimise cell toxicity
 - Sample components may impact on results i.e. EDTA used in blood collection; neutralising Ab's
 - Sensitivity often lower than that of PCR assays

Analytical Methodology

Immuno-Assays

Quantification of:

- viral proteins
- transgene expression
- neutralising antibodies to the vector

Assay validation

- Validation of specificity / LOD as a minimum for phase I trials.
- Full assay validation at time of phase III / MAA (if monitoring plan is necessary).

EU LEGISLATION Market Authorisation

Requirements for a MAA:

- A copy of any environmental CA's written consent to deliberate release for research and development purposes
- Technical and scientific information on the GMO specified in annexes III and IV of directive 2001/18/EC
- An Environmental Risk Assessment (ERA) following the requirements of annex II of directive 2001/18/EC
- The results of any investigations performed for the purposes of research and/or development.

Relevance of this viral shedding?

- Calculation of environmental risk is based on the probability of transmission of the viral vector from the patient to a third party, animals, plants or the environment at large.
- Experimental or clinical observations may contribute to ERA:
 - recommend incorporation of shedding studies in animal models in to the pre-clinical development program
 - Recommend incorporation of shedding studies in one or more clinical trials during clinical development
 - Shed GMO's may require further characterisation

SUMMARY

- Clinical trial and marketing authorisation directives do not dictate the need for viral shedding studies though their requirement is implied.
- Marketing authorisation of a medicinal product containing a GMO is considered deliberate release and thus requires an ERA.
- Assessment of environmental impact can not be fully achieved without viral shedding studies to assess the risk of dissemination from the patient
- Strongly recommended that pre-clinical and clinical development programs incorporate such studies.