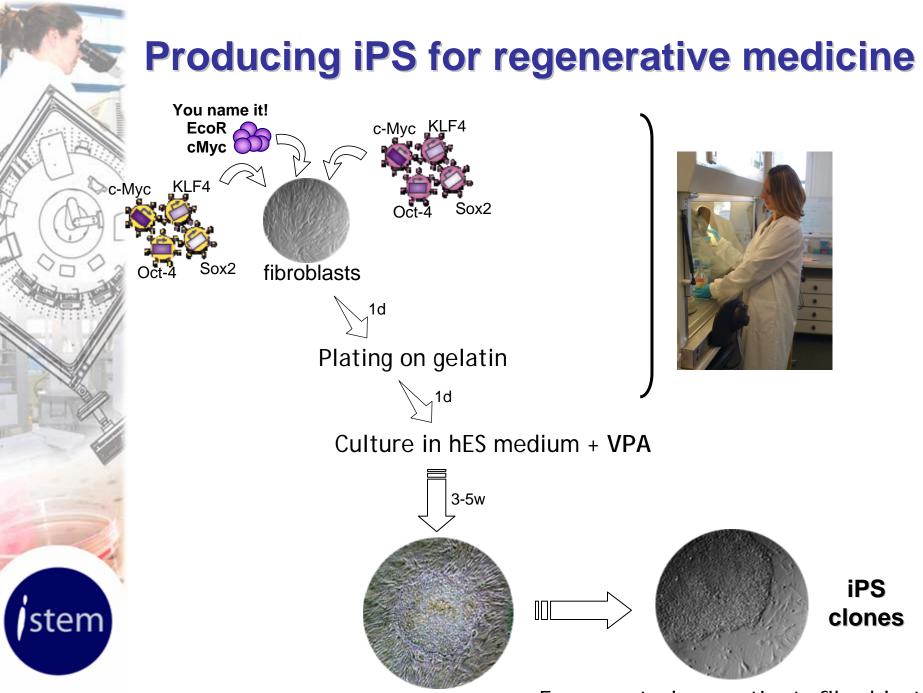

iPS for regenerative medicine

Hopes, dreams and nightmares...

Marc Peschanski


I-STEM

Evry (Paris district) France

mpeschanski@istem.fr

EMA May, 2010

stem

Emergence of « ES-like » clones \rightarrow From controls or patients fibroblasts

iPS, what do we expect from them in regenerative medicine?

Like ES cells

- Unlimited resource at the undifferentiated stage
 - ⇒ Industrialization of the production process
 - GMP compliance and comprehensive control
- > Fully versatile capacity at differentiation
 - ⇒ Access to « any » cell type at « any » stage of differentiation
 - ⇒ Cell populations at near homogeneity or enriched cultures
- > Open ability at genetic engineering
 - ⇒ To provide them with additional phenotypes of interest
 - To improve protocols of production/differentiation
 - To address safety issues

Unlike ES cells,

A way to create pluripotent stem cell lines expressing any desired genotype

iPS production : methods and potential developments

Somatic cells

E

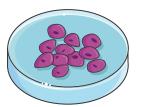
stem

Which cells?

Fibroblasts Kératinocytes Blood cells

Which RF? Which way of delivery?

Oct-4/Sox2 KLF4/c-Myc LIN28/Nanog hTERT/SV40

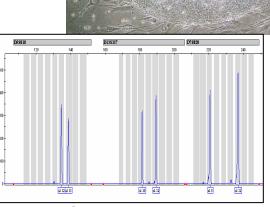

Viruses (lenti/rétro) Episomes Polycistronic vector Proteins

Reprogramming A Optimization of the reprogramming process?

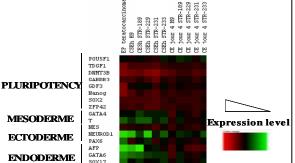
> Small molecules Culture conditions

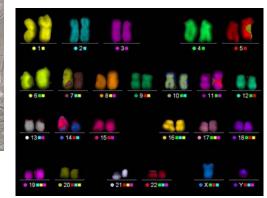
Selection? Quality control?

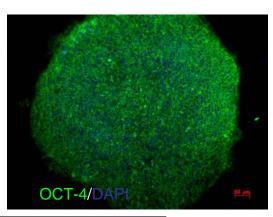
Morphology Live markers



Induced pluripotent stem cells (iPS)

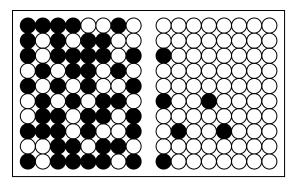

Quality control of iPS clones: QC similar to ES

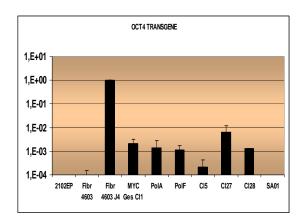

- Morphology
- Karyotype
- Genotype


stem

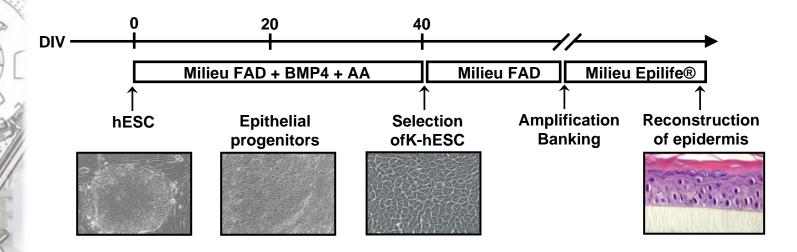


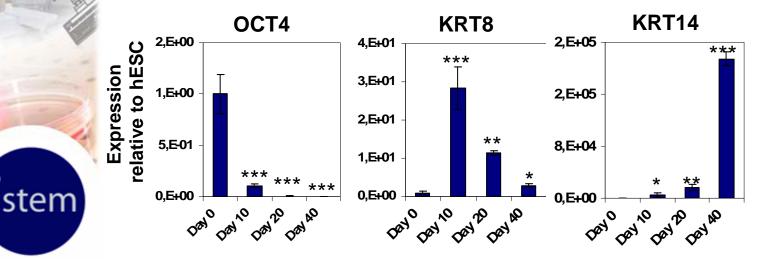
- Pluripotency markers
- Differentiation capacities
 - Embryoid Bodies/3 germ layers
 - Directed differentiation





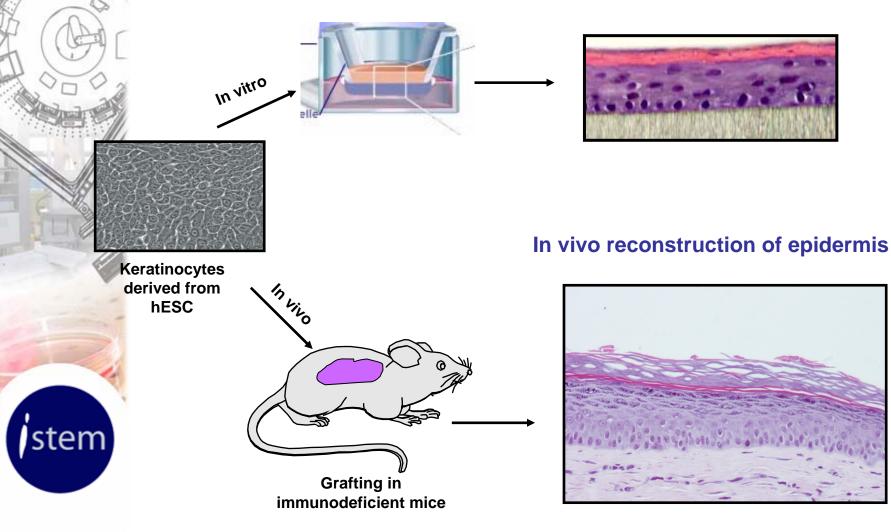
Controlling Quality of iPS lines for regenerative medicine: seeking which specific controls?

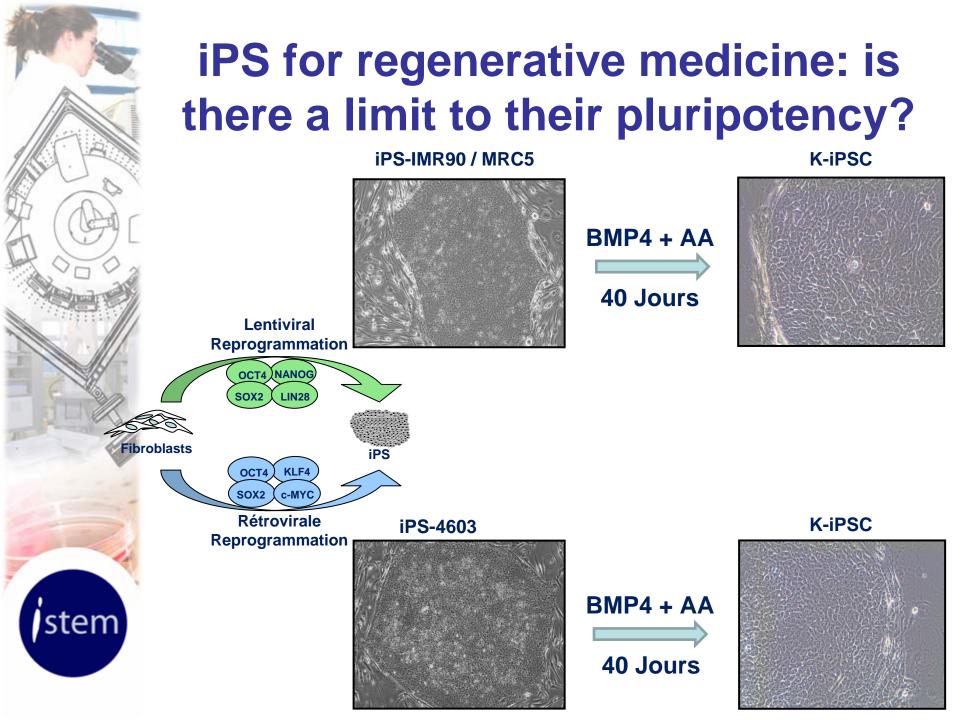

Methylation status



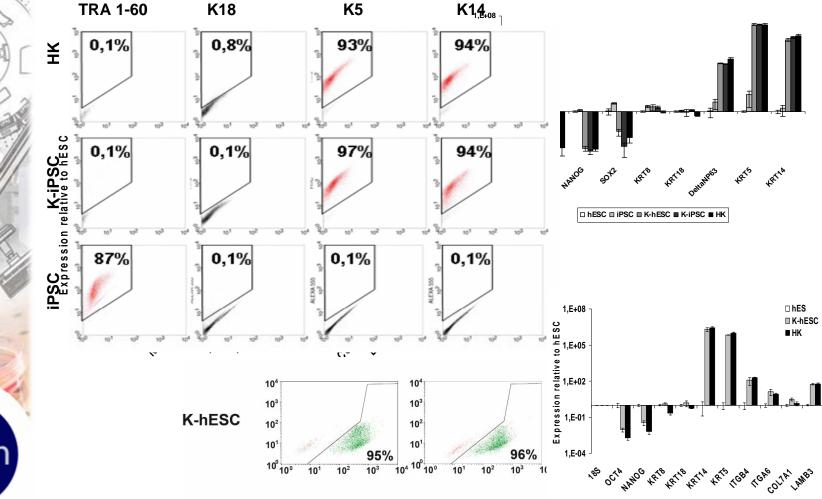
Transgenes silencing

Pluripotent stem cells differentiation: How we do it with ES cells

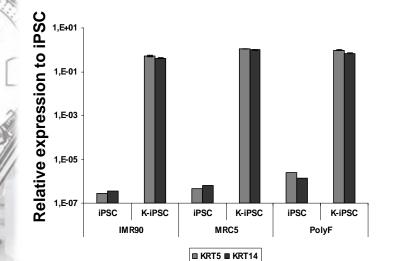




(Guenou et al., The Lancet, Nov 2009)

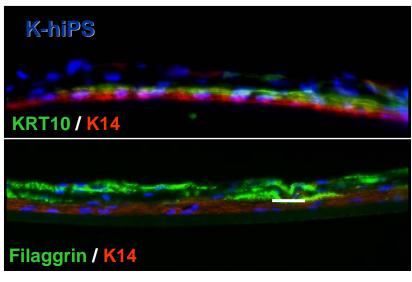

ES cells differentiation: how we check for potential in regenerative medicine

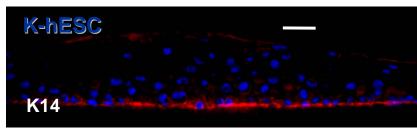
In vitro reconstruction of epidermis

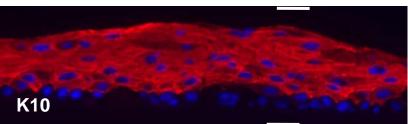


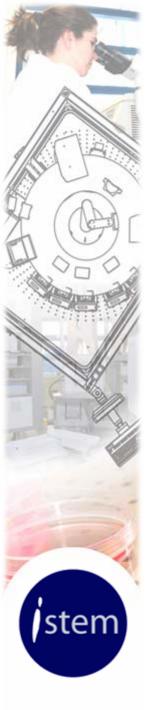
iPS derived keratinocytes: identical to ES-derived cells?

stem


iPS for regenerative medicine: are all pluripotent stem cell lines alike?




Relative expression to iPSC 1,E+01 1,E+00 1,E-01 1,E-02 1,E-03 1.E-04 iPSC K-iPSC iPSC K-iPSC iPSC K-iPSC IMR90 MRC5 PolyF □ OCT4 ■ NANOG ■ SOX2


stem

Organotypic culture

Engineering iPS cell lines

For improving protocols

- One major logistic issue: « good » and « bad » clones?
- Looking for new reprogrammation/differentiation protocols

For improving the end-product

- Introducing selection markers
- Coaxing cells to specific cell phenotypes

For addressing safety

- Pre-graft action
- Post-graft « off-switch »

Real and fantasmatic safety issues with pluripotent stem cells tumorigenicity

Teratomas: actually not that worrysome (and let's be careful about terms!) Post-graft control of normal progenitors proliferation: the actual problem

What iPS can do for regenerative medicine that ES cells can't: the international haplobank prospective

Objectives

Providing clinicians with clinically compatible iPS cell lines and, when relevant, cell therapy products

Contributing to an international network of clinically compatible iPS cell banks for meeting cell therapy needs of the entire world population

• Focus

Collecting and banking samples from haplotypically homozygous donors for HLA-A, -B and –DR (bone marrow registries contain 0.5-0.6%)

Developing and implementing GMP technology for derivation of iPS cell lines, banking and differentiation into specific therapeutically relevant cell phenotypes

Hemi-similarity: a biological basis to make a cell bank foreseeable

Haplotypically homozygous donors in the French registry: altogether >200 haplotypes (broad types)

Haplotypes differ from one population to another in proportions, i.e. initiative for a world cell bank consortium is timely

Tableau 5 : Fréquences géniques de différents allèles DRB1 dans des populations caucasiennes, africaines et asiatiques. (Colombani, 1993)Abréviations: FRA: France, DAN: Danemark, GER: Allemagne, ITA: Italie, ROU: Roumanie, SPA: Espagne, US: Etats-Unis, CAN: Canada, SEN: Sénégal, JAP: Japon.

1000							,,										
250 -		7—				Allèles Populations caucasiennes										Autres	
12					most fre	quent haplotype	s	FRA	DAN	GER	ITA	ROU	SPA	US	CAN	SEN	JAP
				DRB1*0101	9,3	13,0	6,7	6,5	7,6	6,6	7,3	5,6	0,6	4,9			
200 —			 				DRB1*0301	10,9	10,2	9,4	10,5	11,4	6,7	9,5	12,3	10,2	0,4
							DRB1*0401	5,6	17,6	8,1	2,3	4,2	5,6	6,7	9,5	-	1,8
150 —	1.8.	3	 				DRB1*0701	14,0	14,8	12,3	12,5	8,3	18,9	14,4	9,4	7,8	0,6
							DRB1*1101	9,2	0,9	9,2	12,4	7,3	1,0	4,4	2,6	9,3	2,0
100 -			 	7		3.7.1 5	DRB1*1301	6,0	8,3	4,5	4,8	4,4	4,5	5,1	4,7	4,7	0,7
			2.7.1	5			DRB1*1501	8,0	17,6	7,8	5,6	6,2	9,4	10,3	10,4	-	6,8
50 -					29.12.7		Total	63,0	82,0	58,0	55,0	49,0	53,0	58,0	55,0	33,0	17,0
			2.12	4			DRB1*1304	-	-	-	0,2	-	-	-	-	25,3	-
0 -						3.35.1	DRB1*0405	1,6	-	0,6	-	0,7	2,1	0,7	-	0,6	12,3
νT	1		2		29	3											

