Nonclinical approaches to study shedding of gene therapy vectors

E.S. van Amersfoort, PhD

Shedding as preclinical issue

Excreta

- Urine
- Faeces
- Saliva
- Semen
- Breast milk
- Plasma and/or blood
- CSF

- Sputum
- Swabs
 - Nasal
 - Conjunctival
 - Vaginal/cervical
 - Urethral
 - Rectal
 - Buccal
 - Skin

Analytical methods

- QPCR:
 - Biodistribution (tissue samples)
 - Titration of shed vector sequences (excreta)
 - Infectiousness (*in vitro* binding to cells, titration by QPCR or replication center assay)
- Transgene expression in vitro
 - Due to generally low titers difficult to assess
 - Suitable cell lines required

Analytical methods (2)

- Safety studies generally GLP-compliant
 - For shedding no established services provided by CROs yet (except for QPCR)
 - Risk assessment of shedding can so far only be based on less well established study designs and/or methods
- Determination of infectiousness complicated by matrices (inhibition, toxicity)
- Cross contamination!

Expected extent of shedding

DNA	Viral vector	DNA	Viral vector	Viral vector
Non- integrating	Non- integrating	Integrating	Integrating	Integrating
No replication	Replication deficient	No replication	Replication deficient	Replication competent

Risk of shedding

Routes of administration

- Route of administration and tropism determine extent and route of shedding
 - intravenous administration, depending on tropism distribution to relevant tissues
 - bladder and prostate tumours
 - brain

Biodistribution

- Tropism:
 - Tropism affects shedding
 - Difference between targeted and non-targeted tissues in wash-out
 - Extracellular vector probably rapidly degraded (depending on tissue)

Biodistribution

Biodistribution

Animal species

- Permissive species to vector
- Tropism preferably similar to humans
- Technical feasibility depending on relevant tissue/excreta to be studied
- Choice for 'routine' safety studies (e.g. toxicity) and shedding may be different – target tissue not always most relevant
- Normal animals, or disease model?

Animal species

- Mice:
 - Little injectable required more extensive studies possible in early phase of development
 - Numbers!
 - Technical limitations: access to body fluids very restricted, blood volume limited
- Rats
 - Less frequently used for preclinical research
 - Use of metabolic cages well established (CROs!)

Animal species

- Rabbits
 - Smallest commonly used non-rodent species
 - Established methods for obtaining semen
- Larger animals: easy access to body fluids, urine and faeces
 - Suitable animals include primates (cynomolgus, rhesus,marmoset monkeys), dogs, (mini-)pigs, etc.

- How predictable are animal experiments with respect to duration, extent and route of shedding?
 - More than with chemical entities, tropism and biodistribution are species-specific.
 - Animal species for shedding studies should be permissive, exhibit a relevant biodistribution profile, and meet the technical demands!
- Clinical route or worst case approach?
 - How important is shedding for gene therapy in brain?

- Do we need to test every GTP for shedding?
 - Same vector, different transgene
 - Use of marker genes (QPCR versus localisation)
- On which type of data should decisions for shedding studies be based?
 - Preclinical pharmacology or GLP-compliant data from biodistribution studies?
 - Should the eventual data be derived from GLPcompliant studies?
 - Additional animal studies to be performed (i.e. outside the standard safety package)?

- Are *in vivo* tests always required?
 - Even if as is known for AAV shed virus is probably inactive
- Could *in vitro* assays be employed?
 - Standard set of in vitro studies?
 - Can they replace/reduce in vivo studies?

- Analytical methods:
 - Guidance as to 'how' and 'which' desired.
 - Scientific evaluation of effect of matrices.
 - Urine and faeces probably hostile to live virus.
 - Effect of matrix on assay? Part of validation?

