Correlation Between Protection and *ex vivo* Neutralization in the Context of Pre-exposure Prophylaxis

> Dean Follmann National Institutes of Health

Motivation

- Monoclonal antibody (mAb) protective efficacy (PE) is due entirely to antibody
 - Estimate efficacy as a function of neutralization titer at exposure
- Vaccine efficacy (VE) is due to antibody and other things
 - Estimate efficacy as a function of neutralization titer at exposure
- Use same pseudo-virus neutralization assay for both trials
- Compare VE and PE curves to assess relative contribution of antibody to total vaccine effect.
- Evaluate neutralization titer as a Correlate of Protection (CoP) for mAbs

Jiskoot W., Kersten G.F.A., Mastrobattista E., Slütter B. (2019) Vaccines. In: Crommelin D., Sindelar R., Meibohm B. (eds) Pharmaceutical Biotechnology. Springer, Ghamahttps://doi.org/10.1007/978-3-030-00710-2_14

Two Trials

CAS + imb: casirivimab and imdevimab; mAb: monoclonal antibody; PCR: polymerase chain reaction

Outline of Approach

- Derive *individual* predicted titer for each day of follow-up
 - mAb trial: Use PK modeling & map to neutralization titer
 - Vaccine trial: Use measured peak antibody titer and estimated decay
- Use regression modeling to correlate COVID-19 with predicted titer

Subject	Day post injection	Arm	Predicted mAb titer	COVID- 19 case?
1417	8	mAb	10000	No
1417	9	mAb	9727	No
1417	10	mAb	9462	Yes
			•••	

From concentration to titer for mAb trial

Peak Titer and Decay for Vaccine Trial

Classified as internal/staff & coprom the ongitudina fullmmunogenicity Study

mAbs and vAbs by time since full immunization

mAbs vAbs

Cumulative Incidence of COVID-19

Correlate of Protection curve for mAb

Classified as internal/staff & contractors by the European Medicines Agency\${If.End}

Correlate of Protection Curve for mAb

Comparison of VE and PE as a function of titer at exposure

Quantifying The Difference in Efficacy

Neutralization Titer	mRNA-1273 Vaccine Efficacy VE	REGEN-COV Protective Efficacy PE	% Total Vaccine Effect Mediated by <i>Extant*</i> Antibody	Probability a Protected Vaccinee Would be Protected by mAb
100 IU/ml	91%	21%	9%	0.22
	(87,94)	(0%, 90%)	(0%, 88%)	(0.00, 0.97)
1000 IU50/ml	97%	92%	72%	0.95
	(95%,98%)	(83%, 99%)	(51%,100%)	(0.87 <i>,</i> 1.00)

*Circulating and mucosal antibody at exposure, excludes anamnestic responses from B-cells

Mediation formula is $log(1-PE)/log(1-VE) \ge 100\%$.

The probability that vaccine protection is due to antibody is PE/VE.

Low Titer Vaccinated Disease Cases Get Boosted

Vaccine vs mAb Protection

Conclusions

- Vaccine induced protection at higher titers mostly driven by extant antibody, less so at lower titers
- Strong correlation between titer and protection for mAbs supports titer as a mechanistic correlate of protection for mAbs
- Titer can aid in approval decisions for next generation mAbs
 - Trust but verify with post-approval endpoint studies?
- Ideal to get CoP curves for other mAbs

Collaborators

- NIAID: Dean Follmann, PhD^{1*}; Jonathan Fintzi¹, Michael P. Fay¹, Allyson Mateja⁴, Nicole Doria-Rose⁸, Mary Marovich¹
- Regeneron: Meagan P. O'Brien², Gary A. Herman², Andrea Hooper², Kenneth C Turner², Kuo- Chen Chan², Eduardo Forleo-Neto², Flonza Isa²
- Duke University: David Montefiori³
- Moderna: Jacqueline Miller⁹, Honghong Zhou⁹, Weiping Dang⁹
- Brigham and Women's Hospital: Lindsey R Baden⁵,
- Baylor College of Medicine: Hana M El Sahly⁶
- Fred Hutch: Holly Janes⁷ Youyi Fong Peter B. Gilbert^{7,11,12}
- Emory University: David Benkeser¹⁰
- UNC: Myron S. Cohen¹³

Backup Slides

Vaccination is Complex

Pollard AJ. Nat Rev Immunol. 2021 Feb;21(2):83-100.

Vaccine

(killainfected reells, helpcout) the European Medicines Agency { If. End }

Monoclonal Antibodies are Simple

Pollard AJ. Nat Rev Immunol. 2021 Feb;21(2):83-100.

(killainfected rees, shelp cout) the European Medicines Agency { If.End }

FIGURE 3 Layered defenses against SARS-CoV-2, or the "Swiss cheese" model of immunity. Multiple types of adaptive immunity with diverse mechanisms and locations likely provide layers of defense against COVID-19. Conceptually, layered defenses are like a "Swiss cheese model": even though each layer is imperfect, all together they make it highly unlikely that the pathogen breaches all of the layers of defense. Graphic inspired by the masking and public health layered defenses Swiss cheese model of Ian M. Mackay

Goldblatt, Alter, Crotty, Plotkin 2022 Immunological Reviews 2022;310:6–26.

IMMUNOLOGICAL REVIEWS -WILEY-

FIGURE 6 Antibody mechanisms of action. The cartoon depicts that potential contribution of Fab versus Fc mediated antibody functions at different antibody titers. Where neutralization alone may be sufficient to block transmission at peak titers (left). However, as titers wane, or variants evade large fractions of antibodies, the ability of antibodies to leverage immune effector functions may be vital to protection from disease

Goldblatt, Alter, Crotty, Plotkin 2022 Immunological Reviews: 2022;310:6–26.

How *much* does antibody contribute to protection?

DAG applies conditional on X Assume no unmeasured confounders

Deconstruction for an idealized 3-arm trial

Arm	Cases
Placebo	100
vAbs	20
Vaccine = vAbs + B/T cells	5

80% reduction from vAbs95% Total reduction from Vaccine75% additional reduction from B/T cells95% Total reduction from Vaccine

Probability a protected vaccinee would be protected if assigned to mAb arm: Idealized Trial

Arm	Cases
Placebo	100
vAbs	20
Vaccine = vAbs + B/T cells	5

Probability = 80/95

Proportion of total vaccine effect mediated by extant antibody at a titer of 10³

- $1 VE = \theta_I \qquad x \qquad \theta_D$
- Total Effect = Antibody "Indirect" x non-antibody "Direct"
- $0.03 = 0.03^{P} \times 0.03^{(1-P)}$
- $0.03 = 0.08 \times 0.03^{(1-P)}$
- $\log(0.03) = \log(0.08) + (1-P) \log(0.03)$

 \Rightarrow P = log(0.03)/log(0.08) = 0.72 \Rightarrow At a titer of 1000 or 10³ 72% of the Total effect is mediated via antibody

Pseudo-Virus neutralization assay in a 96-well plate

- Put infectable cells in well
- Fill up 16 wells with virus
- Mix with 8 5-fold dilutions of serum run in duplicate
- Record light intensity

How the Pseudo-Virus Neutralization Assay works

In each well a cage fight

Mix infectable cells person's serum w/antibodies pseudo-virus

Lights out=> antibody wins!

Concentration of Antibody

Strain Specific Neutralization Assay

Omicron Virus

Omicron Antibody Y

mAb CoP Model

- Cox model relates risk to neut titer at exposure time
- Use 3 parameter logistic curve: 0 effect if no Abs, <100% effect

mAb(t) = an *individual's projected* ID50 titer on day t based on predicted concentration converted to ID50 3PL has 0 PE with zero antibody, asymptotes to PE = 1 - T with saturated antibody

Vaccine CoP model

- Cox model for vaccine study
 - h(t) = h₀(t) exp{ A [B0 + B1 Ab(t)] + B2 X } I(t> E)
 - A vaccine indicator
 - X logit(risk score), minority status, High Risk
 - t calendar time
 - E entry time
 - Ab(t) predicted neutralization titer at time t Ab(t) = D57 0.0043 t
- VE(Ab) = 1 exp(B0+B1 Ab)

Assume no unmeasured confounders

Cox model with log-linear hazard ratio

PE curve – Asymptomatic Infection

Placebo
CAS+IMD