HIERARCHICAL MODELS
A framework for evidence synthesis

Innovative Methodology for Small Populations Research (InSPiRe), WP4 “Evidence synthesis”

Tim Friede
Dept. Medical Statistics
University Medical Center Göttingen
Göttingen, Germany
EVIDENCE SYNTHESIS

- **Pairwise meta-analysis**
 - comparing two treatments

- **Meta-regression**
 - including study-level covariates

- **Network meta-analysis**
 - comparing multiple treatments indirectly

- **RCT with historical controls**
 - integrating control group data from previous trials

- **Generalized (or cross design) synthesis**
 - combining data from different types of studies
HIERARCHICAL MODELS

Meta-analysis

Studies

Patients

Example: **Normal-normal hierarchical model (NNHM)** for random-effects meta-analysis

\[
y_i | \theta_i \sim \text{Normal}(\theta_i, s_i^2) \quad \theta_i | \Theta, \tau \sim \text{Normal}(\Theta, \tau^2)
\]
Empirical studies scraping large databases of meta-analyses (e.g. Cochrane Library) show

- Meta-analyses of (very) **few studies** common
- Extent of between-trial heterogeneity

METHODOLOGY

Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews

Rebecca M Turner,¹* Jonathan Davey,¹ Mike J Clarke,² Simon G Thompson³ and Julian PT Higgins¹

¹MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK. ²All-Ireland Hub for Trials Methodology Research, Centre for Public Health, Queen’s University Belfast, Northern Ireland and ³Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

*Corresponding author. MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, UK. E-mail: rebecca.turner@mrc-bsu.cam.ac.uk
STANDARD METHOD FAILS

 Redistribution or reproduction is permitted only as specified in the license agreement signed upon registration with CiteSeerX. English translation by CiteSeerX staff.

Standard method (DerSimonian-Laird, DL)

- Underestimates between-study heterogeneity
- Fails to account for uncertainty in estimation of heterogeneity

IntHout et al, 2014; Röver et al, 2015
WITH VERY FEW STUDIES: KNAPP-HARTUNG METHOD DOES NOT SOLVE THE PROBLEM

- 97.5% quantile of t-distribution with 1 df = 12.7 !!!
- Example from Friede et al (2017b)

Crins et al. (2014) example: acute graft rejection

<table>
<thead>
<tr>
<th>Method</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heffron (2003)</td>
<td>0.10 [0.03, 0.32]</td>
</tr>
<tr>
<td>Spada (2006)</td>
<td>0.28 [0.08, 1.00]</td>
</tr>
<tr>
<td>normal</td>
<td>0.16 [0.06, 0.46]</td>
</tr>
<tr>
<td>HKSJ</td>
<td>0.16 [0.00, 129.26]</td>
</tr>
<tr>
<td>mKH</td>
<td>0.16 [0.00, 129.26]</td>
</tr>
</tbody>
</table>

HSJK: Hartung-Knapp-Sidik-Jonkman; mHK: modified Knapp-Hartung; normal: DL
BAYESIAN META-ANALYSIS

- **Idea**: Weakly informative prior on between-trial heterogeneity for meta-analysis with few studies (Spiegelhalter et al., 2004), with uninformative prior on treatment effect
 - Avoids zero estimates of between-trial heterogeneity
 - Accounts for uncertainty in the estimation

- **Easy to compute**
 - Application of DIRECT algorithm (Röver & Friede, 2017a) (which is faster than MCMC sampling and does not require inspection of convergence diagnostics)
 - R package bayesmeta (available from CRAN)
EXAMPLE REVISITED

Bayesian intervals appear to be a reasonable compromise (supported by simulation studies in e.g. Friede et al, 2017a,b)

Crins et al. (2014) example: acute graft rejection

<table>
<thead>
<tr>
<th>Method</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heffron (2003)</td>
<td>0.10 [0.03, 0.32]</td>
</tr>
<tr>
<td>Spada (2006)</td>
<td>0.28 [0.08, 1.00]</td>
</tr>
<tr>
<td>half-normal(1.0)</td>
<td>0.16 [0.04, 0.78]</td>
</tr>
<tr>
<td>half-normal(0.5)</td>
<td>0.16 [0.05, 0.49]</td>
</tr>
<tr>
<td>normal</td>
<td>0.16 [0.06, 0.46]</td>
</tr>
<tr>
<td>HKSJ</td>
<td>0.16 [0.00, 129.26]</td>
</tr>
<tr>
<td>mKH</td>
<td>0.16 [0.00, 129.26]</td>
</tr>
</tbody>
</table>
AN EXAMPLE OF CROSS-DESIGN SYNTHESIS

Creutzfeldt-Jakob disease (CJD)
- prevalence of 1–9 cases per 1,000,000 people

Varges et al (2017) investigated doxycycline in early CJD:
- double-blinded randomized phase II trial (n=12)
- observational study (n=88) (Cox regression stratified by terciles of the propensity scores)
- survival time as primary outcome
Different quantities of interest in a random effects meta-analysis

- average effect (θ) across studies
- effect (θ_{k+1}) of a future study (prediction / extrapolation)
- effect (θ_i) of an individual study in the light of the other studies (shrinkage estimator)
SHRINKAGE ESTIMATOR: EXAMPLE IN CJD

RCT shrinkage interval width: 66% of original CI width

- Translates into 129% gain in sample size (about 27 instead of 12 patients)

Röver & Friede (2017b) in preparation
Idea: Use of heavy-tailed meta-analytic predictive (MAP) prior (Schmidli et al, 2014)

- $n_1 = 25, \ n_2 = 400, \ p(\tau) = HN(0.5), \ interested \ in \ \theta_1$

Röver & Friede (2017b) in preparation
MORE COMPLEX EXAMPLE: EARLY PRO-TECT TRIAL IN ALPORT DISEASE

- Alport syndrome is a rare genetic disorder that inevitably leads to end-stage kidney disease.
- Observational data suggest that the ACE inhibitor ramipril delays renal failure and improves life-expectancy in Alport patients.
- Our work (Unkel et al, 2017) is inspired by the ongoing EARLY PRO-TECT Alport trial in paediatric Alport patients (Gross et al. 2012).

Diagram:

- **Open-label arm**
 - \(n_{TO} \) patients receiving treatment

- **RCT**
 - \(n_{TR} \) patients receiving treatment
 - \(n_{CR} \) patients receiving placebo

- **Registry data**
 - \(n_{CO} \) patients receiving no treatment
CONCLUSIONS AND DISCUSSION

- **Hierarchical models**
 - flexible statistical framework for evidence synthesis

- **Bayesian inference**: advantages over traditional methods in the presence of heterogeneity and only (very) few studies
 - easy to apply using R package `bayesmeta`

- **Cross-design synthesis of available evidence**
 - Promising in rare diseases
 - more practical (and regulatory) experience needed
The InSPiRe WP4 “Evidence synthesis” team includes

- University Medical Center Göttingen (UMG): Tim Friede, Steffen Unkel, Christian Röver, Burak Günhan, Katharina Kramer
- Medical University Vienna (MUW): Martin Posch
- INSERM (Paris): Sarah Zohar
- University of Warwick: Nigel Stallard
- BfArM: Norbert Benda
- Novartis: Beat Neuenschwander, Simon Wandel

