Equivalence of dose-response curves

Holger Dette, Ruhr-Universität Bochum Kathrin Möllenhoff, Ruhr-Universität Bochum Stanislav Volgushev, University of Toronto Frank Bretz, Novartis Basel

FP7 HEALTH 2013 - 602552

Motivation I

Three examples:

- An application: Populations of different geographic regions may bear differences in efficacy (or safety) dose response
 - \longrightarrow Objective: Ability to extrapolate study results
 - \longrightarrow Demonstrating equivalence of curves becomes an issue
- Another application: Comparison of dose response relationships for two regimens

 \longrightarrow For example, demonstrate that once-daily and twice-daily applications of a drug are similar over a given dose range

Motivation I

Three examples:

- An application: Populations of different geographic regions may bear differences in efficacy (or safety) dose response
 - \longrightarrow Objective: Ability to extrapolate study results
 - \longrightarrow Demonstrating equivalence of curves becomes an issue
- Another application: Comparison of dose response relationships for two regimens

 \longrightarrow For example, demonstrate that once-daily and twice-daily applications of a drug are similar over a given dose range

Motivation II

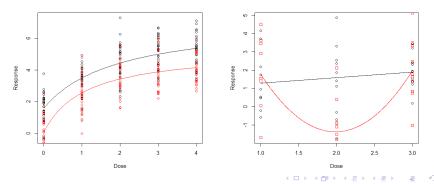
- Yet another application: Comparison of different drugs containing the same active substance in order to claim bioequivalence.
 → Traditional approaches based on AUC or Cmax may be misleading
 → Objective: Develop a test which takes the whole curve into
 - account
- IDEAL project: Focus on small population clinical trials (e.g. rare diseases)

 \longrightarrow Methodology should work for small sample sizes

Motivation II

 Yet another application: Comparison of different drugs containing the same active substance in order to claim bioequivalence.
→ Traditional approaches based on AUC or Cmax may be misleading

 \longrightarrow Objective: Develop a test which takes the whole curve into account


• IDEAL project: Focus on small population clinical trials (e.g. rare diseases)

 \longrightarrow Methodology should work for small sample sizes

Comparing curves - The setting

Two dose response profiles from different populations. For example:

European: $m_1(d, \theta_1)$ Japanese: $m_2(d, \theta_2)$

Problem of equivalence:

• Problem:

Are the dose response curves m_1 and m_2 similar (equivalent)?

If they are: We can use the information pooled across I populations

Problem of equivalence:

• Problem:

Are the dose response curves m_1 and m_2 similar (equivalent)?

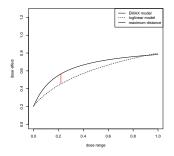
• If they are:

We can use the information pooled across both populations

Measures of equivalence

• We need a **measure** for the equivalence of m_1 and m_2 . Here we use the **maximum deviation between the curves:**

$$\mathbf{d} = \max_{\boldsymbol{d} \in \mathcal{D}} |m_1(\boldsymbol{d}, \theta_1) - m(\boldsymbol{d}, \theta_2)|$$


• Hypothesis of equivalence:

$$H_0: \mathbf{d} \ge \Delta$$
 versus $H_1: \mathbf{d} < \Delta$

(here Δ is a pre-specified constant depending on the particular application).

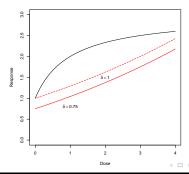
Example: maximal deviation

• EMAX and Log-linear model

Improvements obtained during IDEAL funding

• New tests for the hypothesis of equivalence

- Bretz, Dette, Liu, Möllenhoff, Trampisch (2017) Assessing the equivalence of dose response and target doses in two non-overlapping subgroups. (to appear in *Statistics in Medicine*)
- Dette, Möllenhoff, Volgushev, and Bretz, (2017) Equivalence of dose response curves (to appear in *JASA*)
- This methodology is universally applicable


Improvements obtained during IDEAL funding

• New tests for the hypothesis of equivalence

- Bretz, Dette, Liu, Möllenhoff, Trampisch (2017) Assessing the equivalence of dose response and target doses in two non-overlapping subgroups. (to appear in *Statistics in Medicine*)
- Dette, Möllenhoff, Volgushev, and Bretz, (2017) Equivalence of dose response curves (to appear in *JASA*)
- This methodology is universally applicable

Example: EMAX and an exponential model

- EMAX model : $m_1(d, \theta_1) = 1 + rac{2d}{1+d}$
- Exponential model: $m_2(d, \theta_2) = \delta + 2.2 \cdot (\exp\left(\frac{d}{8}\right) 1),$
- Dose range $\mathcal{D} = [0, 4]$, five dose levels
- Hypotheses: $H_0: \mathbf{d} \geq 1$ versus $H_1: \mathbf{d} < 1$

Holger Dette Equivalence of dose-response curves

Simulated level

• Hypotheses $H_0: \mathbf{d} \geq 1$ versus $H_1: \mathbf{d} < 1$

			$\alpha = 0.05$		$\alpha = 0.1$			
[]			(σ_1^2, σ_2^2)		(σ_1^2, σ_2^2)			
(n_1, n_2)	d	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.5)	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.5)	
(10, 10)	1.5	0.001	0.001	0.000	0.000	0.004	0.000	
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
(10, 10)	1.25	0.005	0.011	0.006	0.013	0.030	0.020	
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
(10, 10)	1	0.045	0.037	0.036	0.102	0.086	0.090	
		(0.007)	(0.000)	(0.001)	(0.021)	(0.002)	(0.007)	
(10, 20)	1.5	0.000	0.002	0.000	0.000	0.002	0.000	
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
(10, 20)	1.25	0.004	0.013	0.005	0.015	0.025	0.009	
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
(10, 20)	1	0.045	0.046	0.028	0.099	0.104	0.079	
		(0.017)	(0.002)	(0.004)	(0.042)	(0.011)	(0.017)	

표 문 표

Simuated power

• Hypotheses $H_0: \mathbf{d} \geq 1$ versus $H_1: \mathbf{d} < 1$

			lpha= 0.05		$\alpha = 0.1$		
			(σ_1^2, σ_2^2)			(σ_1^2, σ_2^2)	
(n_1, n_2)	d	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.5)	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.5)
(10, 10)	0.75	0.160	0.093	0.125	0.297	0.225	0.229
		(0.026)	(0.004)	(0.007)	(0.083)	(0.007)	(0.033)
(10, 10)	0.5	0.237	0.133	0.164	0.383	0.231	0.309
		(0.037)	(0.003)	(0.009)	(0.117)	(0.018)	(0.029)
(10, 20)	0.75	0.185	0.123	0.159	0.320	0.226	0.283
		(0.084)	(0.006)	(0.025)	(0.162)	(0.035)	(0.089)
(10, 20)	0.5	0.300	0.175	0.269	0.457	0.305	0.414
		(0.087)	(0.005)	(0.035)	(0.190)	(0.043)	(0.120)

3. 3

Conclusions and future research

• New powerful tests for the equivalence of curves

- estimate the distance directly
- generate quantiles by parametric bootstrap (non standard constrained estimation)
- applicable for small sample sizes
- Software is available: R package TestingSimilarity
- Once again: methodology is applicable, whenever curves have to be compared

Conclusions and future research


• New powerful tests for the equivalence of curves

- estimate the distance directly
- generate quantiles by parametric bootstrap (non standard constrained estimation)
- applicable for small sample sizes
- Software is available: R package TestingSimilarity
- Once again: methodology is applicable, whenever curves have to be compared

Bioequivalence

Collaboration with FDA (jointly with F. Mentré)

• Traditional bioequivalence studies focus on AUC and Cmax

- This can be misleading (both curves have the same AUC and Cmax)
- The new methodology compares these curves directly

Bioequivalence

Collaboration with FDA (jointly with F. Mentré)

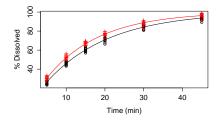
• Traditional bioequivalence studies focus on AUC and Cmax

- This can be misleading (both curves have the same AUC and Cmax)
- The new methodology compares these curves directly

Bioequivalence

Collaboration with FDA (jointly with F. Mentré)

• Traditional bioequivalence studies focus on AUC and Cmax



- This can be misleading (both curves have the same AUC and Cmax)
- The new methodology compares these curves directly

Comparison of dissolution profiles

Collaboration with O. Collignon and E. Kotzagiorgis (EMA)

- In vitro dissolution profile comparison of two formulations (test vs. reference product) in order to demonstrate bioequivalence
- Figure: twelve tablets per product, each measured at six time points

