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NLMEM — why attractive in small populatlons'? Hg

* Integrate information in data across
— Subjects
— time (longitudinal analysis)
— variables
— covariates/predictors

= Allow prior knowledge to be incorporated
— Drug/disease driven structural models

— Parameter constraints from
biological/pharmacological knowledge

— Other knowledge/assumptions as appropriate




Decisions using NLMEM — model contrasts
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Figure 3 Power curve comparison between the pharmacometric model-based power (gray triangles) and the t-test based power (black
diamonds), for the proof-of-concept scenario. (a) The power curves for the stroke example in which the difference in study size is a factor of
4.3 (90 vs. 388 total number of patients) is displayed. (b) In the diabetes example, the difference in study size was 8.4-fold (10 vs. 84 total

number of patients) in favor of the pharmacometric approach.

Karlsson et al. CPT:PSP 2:e23 (2013)
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Decisions using NLMEM — parameter uncertair(}
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Clarification on Precision Criteria to
Derive Sample Size When Designing

Pediatric Pharmacokinetic Studies
J Clin Pharmacol 2012 52: 1601

Yaning Wang, PhD, Pravin R. Jadhav, PhD, Mallika Lala, PhD,
and Jogarao V. Gobburu, PhD

One of the important goals of the pediatric PK
study is to ensure the precise estimate of important
PK parameters, such as clearance and volume of
distribution, to justify the choice of a safe and effec-
tive dose from a PK perspective. To achieve this
goal, a standard regulatory requirement has been
drafted and communicated to the sponsors, where
applicable, as follows:

The study must be prospectively powered to target a
95% CI [confidence interval] within 60% and 140%
of the geometric mean estimates of clearance and
volume of distribution for DRUG NAME in each
pediatric sub-group with at least 80% power.




Decisions using NLMEM — predictive distributio
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Simulated Study

Model-based analyses for pivotal decisions, with an application to equivalence testing for biosimilars
Bieth et al, PAGE 2012




Power calculations for NLMEM

= How to do timely and robust EA
NLMEM power calculations? & 2 T
A % .| Full " Red.
= Resampling of individual \ \ o/
likelihood contributions from |
one large simulated trial _ .
(Vong et al., 2012; Nordgren -
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Hypothesis tests for NLMEM - Type 1 error /("

= Permutation test for NLMEM for
— prespecified model (static or time-varying predictors)
— model developed using blinded data and mixture model
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Deng et al. 2015, Harling et al. 2016
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NLMEM — Model averaging for dose—response

= A model-averaging
technique for longitudinal sines | oty monst| | Axree
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NLMEM - Parameter imprecision estimates
Rl X

_ dOFV distribution
= Development of a graphical X |
diagnostic for parameter i
Imprecision >
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= Poor small sample
performance of bootstrap Y 7] (BooTyeerio
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= Development of a Sampling- METHOD e [inimizetion_successful

Importance-Resampling

procedure for NLMEM better TS0 « sample p parameter vectors
- from covariance matrix

suited for small samples

IMPORTANCE e Calculate weights based on fit
WEIGTHING Step 2 to original data

e Resample M vectors based on
weights from step 2

e Compute confidence intervals

RESAMPLING Step

Dosne et al., 2016a; Dosne et al., 2016b




NLME Model-based adaptive optimal design (/\
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Simulated model based adaptive optimal design of adult to
children bridging study using FDA stopping criteria
= |nterim analysis after every cohort
= Update of design for next cohort
= Stopping if precision is sufficient
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Hooker et al., 2015




NLMEM - Impact of model approximation

= |nvestigations of the impact of model
approximation on assessment of drug effects
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Methods/software developed for NLMEM

« Sample size/power calculation

 Type 1 error control

* Prespecified analyes using >1 model
 Model-based adaptive optimal design

« Diagonstics for parameter imprecision estimates
 SIR for NLMEM

 Model misspecification sensitivity analysis




Discussion
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= What level of prespecification of analysis is
demanded?

= What level of model misspecification is
acceptable?

Are present methods for misspecification
diagnosis (& consequences) sufficient?
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