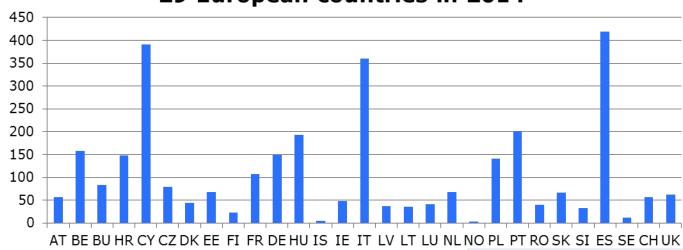


Joint EMA/EFSA scientific opinion of the RONAFA advisory group on measures to reduce the need to use antimicrobial agents in animal husbandry in the EU

ESVAC meeting 3 March, 2017 EMA



Introduction

ESVAC 2016:

Sales of antimicrobials (mg/PCU) in 29 European countries in 2014

Ref. Ares(2015)1419977 - 31/0

Lowest user: 3.1 mg/PCU

Highest user: 418.8 mg/PCU

>100x difference!

Brussels, SANTE/G4/RP/hh(2015)

Dear Mr Url and Mr Pott,

ubject: Request for a joint EFSA and EMA scientific opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety

'RONAFA': Reduction Of the Need for Antimicrobials in Foodproducing animals and Alternatives

Terms of Reference for the opinion provided by the European Commission

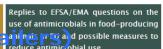
- Review the measures that have been taken by MSs to reduce the use of, and need to use, antimicrobials in food-producing animals
- Review 'alternatives' to the use of antimicrobials
- Assess the impacts of the measures and alternatives on the occurrence of AMR
- Recommend options to reduce antimicrobial use and for responsible use

Working Group and Data/information

RONAFA group, collaboration between experts from EMA, EFSA

Review of information from:

- National antimicrobial use and AMR surveillance reports
- EU:ESVAC sales report, ECDC/EFSA AMR surveillance reports
- Publications in scientific journals, literature reviews (Alternational)
- Surveys and questionnaires (FVE, DG SANTE/FVO, food Tell
- Grey literature, hearing expert



Sales of veterinary antimicrobial agents in 29 European countries in 2014

Trends from 2011 to 2014 Sixth ESVAC report

ANTIMICROBIAL USE IN FOOD-PRODUCING ANIMALS

This presentation will focus at high level on a selection of the **eleven** recommended options to reduce AMU and the supporting information from the report.


- 1. Development of national strategies and action plans
- 2. Harmonised integrated **systems for monitoring AMU and AMR** in animals, humans and food
- 3. Establishing targets for reduction of AMU, especially for CIAs
- 4. On-farm health management with professional input
- 5. Responsibility by veterinarians for prescribing
- 6. Increased oversight of **preventive and metaphylactic** use, especially for groups of animals
- 7. Training and education, raising public awareness
- 8. Availability of rapid and reliable diagnostics
- 9. Improvement of **husbandry and management** procedures for disease prevention and eradication; use of **vaccination**
- 10. Re-thinking of livestock systems
- 11. Development of alternative treatments to AMs
- 4 Psentation title (to edit, click View > Header and Footer)

Option 2: Harmonised systems for monitoring **AMU** and surveillance for **AMR**, **integrating data** from humans, animals, food

- Monitoring impacts of policies on AMU
- Impacts of AMU on AMR
- Transfer of AMR between reservoirs
 'One Health'

e.g.

Associations between antimicrobial use and the prevalence of resistant micro-organisms

Is it possible to benchmark livestock farms based on resistance data?

ESBL producing Escherichia coli

food as a potential dissemination route to humans

Option 3: National (high-level) reduction targets

e.g. Targets set by Dutch government, relative to 2009

2011: 20% reduction

2013: 50% reduction

2015: 70% reduction

By 2014, NL had achieved a 58% reduction in AMU (MARAN, 2015)

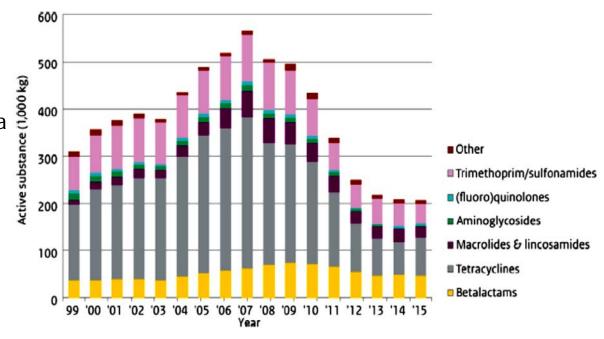
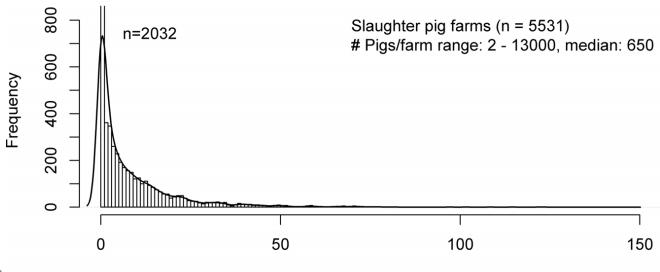


Figure 4: Antimicrobial veterinary medicinal product sales from 1999-2015 in kg (thousands) in the Netherlands (source: MARAN, 2016)

- Set according to national circumstances
- With underlying supporting package of reduction measures
- Presentation title (to edit, click View > Header and Footer)

Option 3: Farm level benchmarking


AMU monitoring systems should ideally measure farm level use, and at level of livestock production stage, to allow benchmarking between farms for different sectors

Denmark - 'Yellow Card' initiative (2010) targeted pig farms using >2x the average for the production group

Netherlands – sector specific levels, target farms > 75th percentile

Freq distribution of animal defined daily dosage/year for slaughter pig farms in NL, 2011

(Bos, 2013)

ADDD/Y

Options 4 & 5: Farm health plans and increasing the responsibility taken by veterinarians for prescribing antimicrobials

e.g. Danish pig production-

- Veterinary Advisory Service Contract (2010)
- Treatment guidelines (2010)
- Yellow card (2010)
- → 25% reduction in AMU per pig produced in DK from 2009 – 2011 (Jensen, 2014)

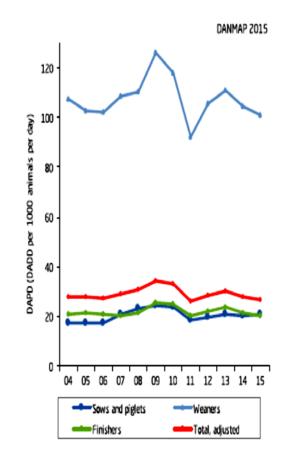
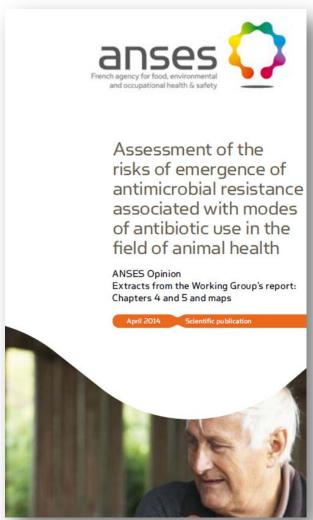
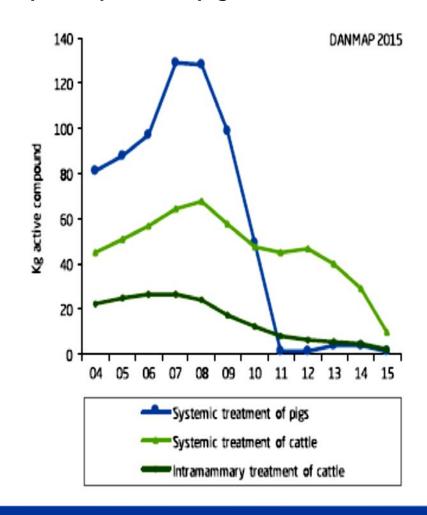



Figure 9: Antimicrobial consumption in the pig production, and the distribution on age groups, Denmark (source: (DANMAP, 2016) – see also original report)

Option 6: Increased oversight of preventive and metaphylactic AMU

- Preventive use to be phased out except in exceptional cases.
- Specific conditions given for exceptional cases where prevention may still be needed.
- Phase-out of preventive use based on review
 by livestock sector professionals of endemic diseases, risk factors, local husbandry.
- Metaphylactic use to be refined: Principles
 to be developed at national level. Criteria to be
 defined for initiation of treatment. Recognised
 alternatives measures identified.

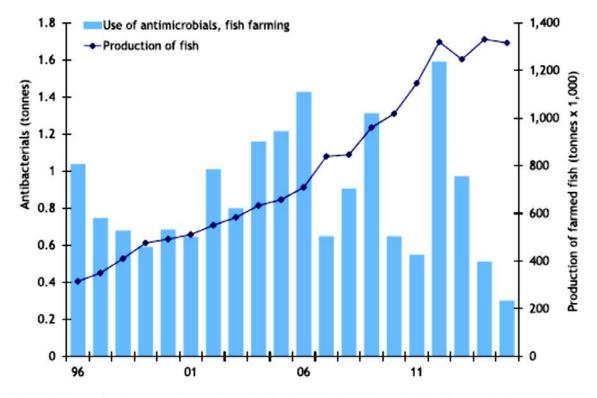


Options 3, 5 & 7: Measures on critically important antimicrobials

- Livestock sector targets for CIAs, voluntary sector bans
- Susceptibility testing prior to use of high priority CIAs (NL, SE, DK) – highly effective
- Treatment guidelines

- e.g. Denmark, use of 3/4G Cephs in pigs
- Treatment guidelines for pigs (2010)
- Voluntary ban on use of 3/4G cephs in pig sector (2010)

Consumption of 3/4G
Cephalosporins in pigs & cattle in DK


Option 9: Improvement of husbandry for disease prevention, control and eradication

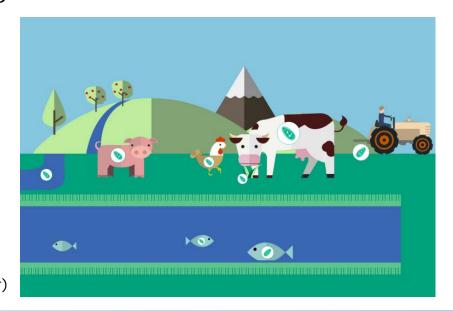
- Preventing spread of infections between farms: external biosecurity, compartmentalisation according to health status (e.g. SPF), eradication
 - Eradication of PRRS from pigs in Sweden (Carlsson, 2009)
 - Eradication of BVD from Scandinavian countries (Stahl, 2012)
- Preventing spread of disease on the farm: internal biosecurity (biocontainment), housing, production groupings 'all-in, all-out'
- Increasing disease resilience: nutrition, genetics, vaccination, stress reduction

e.g. Norway: Use of vaccines in fish production

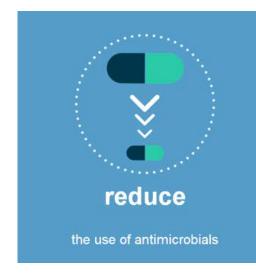
- Fish production increased >3x from 1996 to 2015 (1.3M tonnes)
- AMU remains c. 1 tonne/year
- Government/industry investment in vaccine development (vibriosis, furunculosis)
- Mandatory use of vaccines (Ronafa, Appendix C)

Option 11: Development of treatments which are alternatives to antimicrobials

- Literature review: Limited robust scientific evidence of impacts on health parameters
- Some authorised as zootechnical feed additives
- Some show reduction of disease risk; studies rarely in line with veterinary 'medicinal' claims
- Positive impacts on health parameters shown for e.g.
 - organic acids (necrotic enteritis in poultry, PWD in pigs)
 - probiotics (diarrhoea in calves and piglets)
 - bacteriophages (shedding of zoonotic pathogens)
 - o immunomodulators (aquaculture, intramammary infections)
 - o **zinc oxide** (diarrhoea in pigs)
 - teat sealants (intramammary infections)


Options

- an EU regulatory framework for 'alternatives'
- Additional research controlled & meaningful clinical trials


Features of successful strategies to reduce AMU

- Integrated, multifaceted approach (reflecting multiplicity of factors that underlie AMU)
- Take account of local livestock production systems
- Involve all relevant stakeholders

In conclusion

Setting targets

Increase responsibility of veterinarians

Preventive use should be phased out

Consider alternatives to antimicrobials

Research new alternatives

Develop an EU legal framework for alternatives

Improve disease prevention and control

Consider alternative farming systems

Education and awareness

Thank you for your attention

Further information

See next slide

European Medicines Agency

30 Churchill Place • Canary Wharf • London E14 5EU • United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact

References

RONAFA Opinion (EFSA website): http://www.efsa.europa.eu/en/efsajournal/pub/4666 RONAFA Opinion (EMA website):

http://www.ema.europa.eu/docs/en_GB/document_library/Report/2017/01/WC500220032.pdf
Animated infographic:

http://www.efsa.europa.eu/en/interactive_pages/Antimicrobial_Resistance

ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 2014. Assessment of the risks of emergence of antimicrobial resistance associated with modes of antibiotic use in the field of animal health.

Bos MEH, Taverne FJ, van Geijlswijk IM, Mouton JW, Mevius DJ, Heederik DJJ, et al. (2013) Consumption of Antimicrobials in Pigs, Veal Calves, and Broilers in The Netherlands: Quantitative Results of Nationwide Collection of Data in 2011. PLoS ONE 8(10): e77525

Carlsson U, Wallgren P, Renstrom L, Lindberg A, Eriksson H, Thoren P, Eliasson-Selling L, Lundeheim N, Norregard E and Thorn C, 2009. Emergence of porcine reproductive and respiratory syndrome in Sweden: detection, response and eradication. Transboundary and Emerging Diseases, 56, 121–131.

DANMAP (Danish Integrated Antimicrobial Resistance Monitoring and Research Programme), 2016. DANMAP 2015 - use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark.

Jensen VF, de Knegt L, Andersen VD and Wingstrand A, 2014. Temporal relationship between decrease in antimicrobial prescription for Danish pigs and the "Yellow Card" legal intervention directed at reduction of antimicrobial use. Preventive Veterinary Medicine, 117, 554–564.

Stahl K and Alenius S, 2012. BVDV control and eradication in Europe-an update.

17 Presentation title (to edit, click View > Header and Footer)