Application of RNA technologies Clinical – An Industry Perspective

Michael Wenger, M.D.

Cancer vaccine research – off-the-shelf and individualized approaches

Fixed Antigen Approach

- Off-the-shelf <u>indication-specific</u> mRNA cancer vaccine approach (e.g., lung cancer, prostate cancer)
- Targeting a fixed combination of shared antigens^{1,2}
 - Non-mutated tumor antigens shared across patients
 - Applicable for almost all types of tumor antigens

- Individualized mRNA cancer vaccine approach
- Targeting 20 neo-antigens unique to each patient^{3,4}
 - Majority of neo-antigens are unique to individual patients
 - Applicable across solid tumor types

Challenges when developing mRNA-based medicines

- Concept of "platforms"
 - Assumption: the safety of mRNA-based vaccines is, at least in part, driven by the MoA and not by the encoded tumor-associated antigen
 - Clinical and pre-clinical safety data may be extrapolated across platform candidates
 - Across multiple oncology indications, or even beyond?
 - Established dose range for one platform compound may inform on dose range for other candidates
- Leveraging existing post-marketing experience for RNA-based vaccines
 - How can the global exposure to RNA-based infectious diseases vaccines inform on the use of RNA medicinal products based on the same platform in other therapeutic areas, e.g., oncology, auto-immune diseases?
- How does dose-finding work when there is
 - Little correlation between mass (per µg dose of mRNA) and translation?
 - Translation and immunogenicity?
 - Immunogenicity and tumor shrinkage?

Beyond vaccines: mRNA to produce cytokines in vivo

Cytokines encoded by mRNA: A novel therapeutic concept

Systemic delivery with potentially minimal immunogenicity

- Backbone optimized and nucleoside-modified mRNA encoding cytokine fused to human albumin
- Liver-targeting LNP formulation with intravenous delivery
- Encoded cytokines translated within cells

Designed for optimized safety, tolerability and dosing

- Prolonged serum half-life
- High bioavailability
- Lower and less frequent dosing

↑ T cell proliferation

↑ T cell survival

LNP, lipid nanoparticle; PK, pharmacokinetic; IL-2, Interleukin-2; IL7, Interleukin-7; UTR, untranslated region RiboCytokine[®] is a registered trademark of BioNTech

Example: BNT151-01 Open-label, multicenter Phase 1/2a, first-in-human trial mRNA encodes for IL-2var

Evaluation of dose escalation, safety, pharmacokinetics and pharmacodynamics of BNT151 with expansion cohorts in multiple solid tumor indications

A relatively conventional Phase 1/1b design. Challenges lie in the details

5

NSCLC, Non-small Cell Lung Cancer; DL, dose level; MTD, maximum tolerated dose; RP2D, recommended Phase 2 dose; G2, grade 2; DLT, dose limiting toxicity; SoC, Standard of Care; SCCHN, Squamous cell carcinoma of the head and neck; HCC, Hepatocellular carcinoma; RCC, Renal cell carcinoma; TNBC, Triple-negative breast cancer; CPI; checkpoint inhibitor

Other challenges (and some opportunities)

- Lack of consistent understanding of genomic non-integration of RNA
 - Many queries and inconsistent interpretations on the need and duration of safety observation
- How can we deal with learning algorithms?
 - Screening for and detection of neoantigens for individualized vaccines requires tumor sampling
 - Sampling may lead to several thousands neoantigens available for mRNA production, but only few (up to ~20) comprise of a vaccine
 - Powerful algorithms select neoantigens with highest selectivity, binding affinity, and immunogenicity
 - Algorithms improve with the help of Al
- Immunotherapy due to its nature may work best in a low-tumor burden setting
 - Neoadjuvant, perioperative, and adjuvant concepts may be seen more frequently
 - These typically require very large trials, or novel endpoints (pCR), or both
 - Surrogate endpoints have not been consistently established, but are explored frequently (e.g., ctDNA)

