EMA EFPIA workshop Breakout Session 2

Assessing the Probability of Drug-Induced

QTc-Interval Prolongation During Early Clinical

Drug Development

Oscar Della Pasqua GSK

Background

 Drugs that prolong QT interval are associated with increased risk for ventricular arrhythmias (TdP) and sudden death

mean <5ms, no risk 5-20ms, unclear risk >20ms, substantially increased risk

- In almost all cases drugs should be thoroughly evaluated for possible effects on the QT interval in early clinical development.
- A positive thorough QT study will almost always call for an extended ECG safety evaluation during later stages of development

ECG monitoring can account for up to 22% of Phase I costs. Drug-induced prolongation of QT interval is #1 cause of approval delays and #2 cause of approved drug withdrawal

Background - TQT

- ICH E14 recommends the double-delta methods for analysing and interpreting ECG findings
- Issues with double-delta method
 - Exposure information is not taken into consideration
 - Possible high false-positive rates

a negative TQT is one in which the upper bound of the 95% one-sided confidence interval for the largest time-matched mean effect of the drug on the QTc interval excludes 10 ms

Modelling of QT interval prolongation

We propose the use of a parametric Bayesian approach to describe QT interval and assess the probability of prolongation during First-Time-in-Human trials

$$QT = QT_0 \cdot RR^{-\alpha} + A \cdot \cos\left(\frac{2\pi}{24}(t - \phi)\right) + slope \cdot C$$
individual heart rate correction circadian rhythm exposure-effect

- •QT₀ is the intercept of the QT-RR relationship
 - Sex included as covariate
 - Inter-occasion variability
- • α individual heart rate correction factor (Fredericia α = 0.33, Bazett α = 0.5)
- •C is the predicted concentration of drug at time of ECG measurement

FTIH Studies

- What is a FTIH study?
 - Phase I program during which PK, PD, safety and tolerability are evaluated
 - Traditionally small, dose escalated
 - Healthy volunteers or patients may be included
- Can modelling of FTIH study data provide evidence of a compound's liability for QTc interval prolongation?

FTIH – A Simulation Exercise

• Typical FTIH, n=6 per cohort

Subject	Day 1	Day 8	Day 15	Day 21	Day28	
1	PLACEBO	D1	D2	D3	D4	
2	D1	D2	PLACEBO	D3	D4	
3	D1	PLACEBO	D2	D3	D4	
4	D1	D2	D3	D4	PLACEBO	
5	D1	D2	D3	PLACEBO	D4	
6	D1	D2	PLACEBO	D3	D4	

FTIH – A Simulation Exercise

• Modified FTIH, n=6 per cohort

Subject	Day 1	Day 8	Day 15	Day 21	Day28	Day 35
1	PLACEBO	D1	D2	D3	D4	MOXI
2	D1	D2	PLACEBO	D3	D4	MOXI
3	D1	PLACEBO	D2	D3	D4	MOXI
4	D1	D2	D3	D4	PLACEBO	MOXI
5	D1	D2	D3	PLACEBO	D4	MOXI
6	D1	D2	PLACEBO	D3	D4	MOXI

Comparison - protocol designs

TQT

- 3 pre-dose baseline obs.
- 13 post-dose obs.

FTIH

- 3 pre-dose baseline obs.
- 12 post-dose obs.

Sampling	Dose		Post-dose										
Time	0	0.5	1	1.5	2	2.5	3	4	6	8	12	18	24
PK		х	x	х	х	х	х	х	х	х	х	х	х
PD		х	х	х	х			х		х	х		х

- Crossover, placebo controlled, single dose
- N = 16, 30, 46, 60
- Analysis method: double-delta

- Crossover, placebo controlled, dose escalation
- \circ N = 12, 18, 27
- Analysis method: Bayesian hierarchical model

M&S Results – FTIH typical design

M&S Results – FTIH + moxifloxacin PK priors

Sensibility/ Specificity

TQT

4 ms var on SLP		CRbl 16	CRbl 30	CRbI 46	CRbl 60	
DD	Specificity	0,71	0,965	0,94	1	
טט	Sensitivity	1	1	1	1	
BUGS	Specificity	1	1	1	1	
D003	Sensitivity	1	1	1	1	

False positive rates

False Negative / False Positive Rates

FTIH

Bayesian
with P(10 ms
inc)>99%

Bayesian
with P(10 ms
inc)>95%

Bayesian
with P(10 ms
inc)>90%

Conclusions

- The use of a Bayesian approach provides similarly low rate of false negatives compared to double-delta method
- The double-delta method shows an unacceptably high rate of false positives and is highly susceptible to the level of noise in the data
- The proposed PKPD modelling approach yields a low rate of false positives and reliable estimates of the drug effect on QTc interval, requiring as little as 12 subjects in a crossover study design.
- This Bayesian analysis also facilitates the clinical interpretation of the risk associated with QTc interval prolongation, which may help the decision process throughout the development of new compounds.

Backup slides

FTIH – A Simulation Exercise

• Modified FTIH, n=9 per cohort

Subject	Day 1	Day 8	Day 15	Day 21	Day28	Day 35
1	PLACEBO	D1	D2	D3	D4	MOXI
2	D1	D2	PLACEBO	D3	D4	MOXI
3	D1	PLACEBO	D2	D3	D4	MOXI
4	D1	D2	D3	D4	PLACEBO	MOXI
5	D1	D2	D3	PLACEBO	D4	MOXI
6	D1	D2	PLACEBO	D3	D4	MOXI
7	PLACEBO	D1	D2	D3	D4	MOXI
8	D1	D2	D3	D4	PLACEBO	MOXI
9	D1	D2	PLACEBO	D3	D4	MOXI

Simulation Method

M&S Results - FTIH + moxifloxacin arm

Definitions

$$specificity = \frac{number\ of\ True\ Negatives}{number\ of\ True\ Negatives + number\ of\ False\ Positives}$$

 Definition of false positive (drug effect = 2 or 5 ms): Double-delta or Bayesian analysis does detect ≥10 ms effect

$$sensitivity = \frac{number\ of\ True\ Positives}{number\ of\ True\ Positives + number\ of\ False\ Negatives}$$

 Definition of false negative (drug effect =10 ms): Double-delta or Bayesian analysis does not detect >10 ms effect

References

- 1. Chain, A.S.Y., Krudys, K., Danhof, M., Della Pasqua, O. Assessing the Probability of Drug-Induced QTc-Interval Prolongation During Clinical Drug Development. *Clin Pharmacol Ther* **90**, 867-875 (2011).
- 2. Anne Chain, Francesco Bellanti, Meindert Danhof, Oscar Della Pasqua. Can First-Time-In-Human Trials Replace Thorough QT Studies?, PAGE 20 (2011) Abstr 2172 [www.page-meeting.org/?abstract=2172]