Bayesian borrowing in clinical trial test decisions: Frequentist type I error rate and power

Annette Kopp-Schneider
Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany

Joint work with Silvia Calderazzo, Vivienn Weru (Biostatistics, DKFZ), Manuel Wiesenfarth (Cogitars)

Hypothesis testing with Bayesian methods

 Test decision in Bayesian framework: reject $H_0 \Leftrightarrow P(H_1 \mid \text{current data, prior}) > 1 - \alpha$

- Bayesian decision using "non-informative"/calibrated prior \equiv Frequentist decision: reject $H_0 \Leftrightarrow P(H_1 \mid \text{current data, non-informative prior}) > 1 - \alpha$ has Type 1 Error (T1E) probability = α .
- Borrowing from external data by incorporating information into the prior.
- {current data such that $P(H_1 \mid ...) > 1 \alpha$ } \equiv rejection region based on current data.

Does borrowing increase power?

Problem

Fair comparison of Operating Characteristics (OC) w/ and w/o borrowing?

Does borrowing increase power?

Problem

Fair comparison of Operating Characteristics (OC) w/ and w/o borrowing?

Solution

",test calibrated to borrowing" = test w/o borrowing, but T1E set to α_R instead of α

- \rightarrow test calibrated to borrowing and test w/ borrowing have same T1E (= α_R)
- → evaluate: power(test w/ borrowing) power(test calibrated to borrowing)

(AKS et al. 2024)

Comparing frequentist OC w/ and w/o borrowing

power(test w/ borrowing) - power(test calibrated to borrowing)

Power difference = 0: No power gain by borrowing.

In general:

- If a uniformly most powerful (UMP) test exists in the specific hypothesis test situation
 - → no test can have more power.
- True irrespective of borrowing approach!

(AKS et al. 2020)

Hybrid control arm trial:

Adaptive borrowing of external control data to current control data

Set-up

- Gaussian endpoint, H_0 : $\theta_T \theta_C \le 0$ vs. H_1 : $\theta_T \theta_C > 0$
- Frequentist T1E = $\alpha=0.025$, evaluated at $\theta_T-\theta_C=0$; power evaluated at $\theta_T-\theta_C=1$.

Available information

- Current control mean \overline{d}_C and treatment mean \overline{d}_T (with expectation θ_C and θ_T , variance known).
- External control data mean \overline{d}_{FC} .

Challenge

- Potential problem: Heterogeneity between \bar{d}_{EC} and θ_C (aka prior-data conflict).
- Solution: Use <u>adaptive borrowing</u> approach.

Hypothesis testing:

$$P(H_1 | ...) > 1 - \alpha$$

Decision based on \overline{d}_C and \overline{d}_T

Hypothesis testing:

$$P(H_1 | ...) > 1 - \alpha$$

Decision based on \overline{d}_C and \overline{d}_T

Hypothesis testing:

$$P(H_1 | ...) > 1 - \alpha$$

 \Leftrightarrow

Decision based on $(\overline{d}_C, \overline{d}_T, \overline{d}_{EC})$

w/o borrowing: H_0 rejection probability (aka "power curve")

w/o borrowing: H_0 rejection probability

H_0 rejection probability in hybrid control trials: w/o and w borrowing

H_0 rejection probability in hybrid control trials

H_0 rejection probability in hybrid control trials

"Sweet spot":

(No T1E inflation) AND (power gain)

- T1E w/ borrowing, $\alpha_B (\theta_C = \theta_T; \bar{d}_{EC})$, varies with $\theta_C \bar{d}_{EC}$
- θ_C is unknown!
- For fair comparison of test w/ and test w/o borrowing:

Calibrate test w/o borrowing to have the same T1E as the test w/ borrowing (instead of $\alpha = 0.025$)

ightarrow Since $heta_C$ is unknown: calibrate to worst case $\max_{ heta_C} lpha_B ig(heta_C = heta_T; ar{d}_{EC}ig)$

Power (at $\theta_T - \theta_C = 1$) of test calibrated to borrowing = 0.86

Evaluate power difference:

Power(test w/ borrowing) —
Power(calibrated test w/o borrowing)

Conclusions

- Whenever there is a Uniformly Most Powerful test → No frequentist power gain possible!
- True for any borrowing method, also for robust methods.
- Borrowing for 1-arm trial or to treatment effect in 2-arm trial: typically test w/borrowing = test w/o borrowing (at adjusted T1E)

Borrowing in hybrid control trial: typically (small) power loss

But: Power gains are possible if you trust similarity of current and external data, i.e., leave frequentist framework

e.g.

- Instead of evaluating OCs for all $\theta_C \in (-\infty, \infty)$: restrict θ_C to $\left|\theta_C \bar{d}_{EC}\right| < \Delta$
- Use Bayesian metric: Assume sampling prior for θ_C and evaluate average OCs \rightarrow Nicky Best

References

- Kopp-Schneider A, Calderazzo S, Wiesenfarth M. (2020) Power gains by using external information in clinical trials are typically not possible when requiring strict type I error control. Biometrical Journal 62(2): 361-374.
- Kopp-Schneider A, Wiesenfarth M, Held L, Calderazzo S (2024) Simulating and reporting frequentist operating characteristics of clinical trials that borrow external information: Towards a fair comparison in case of one-arm and hybrid control two-arm trials. Pharmaceutical Statistics 23(1): 4-19.

Additional work of the group:

- Calderazzo S, Wiesenfarth M, & Kopp-Schneider A (2022). A decision-theoretic approach to Bayesian clinical trial design and evaluation of robustness to prior-data conflict. Biostatistics 23(1), 328-344.
- Calderazzo S, Wiesenfarth M, Kopp-Schneider A (2024) Robust incorporation of historical information with known type I error rate inflation. Biometrical Journal 66 (1), 2200322.
- Calderazzo S, Tarima S, Reid C, Flournoy N, Friede T, Geller N, Rosenberger JL, Stallard N, Ursino M, Vandemeulebroecke M, Van Lancker K, Zohar S (2024) Coping with Information Loss and the Use of Auxiliary Sources of Data: A Report from the NISS Ingram Olkin Forum Series on Unplanned Clinical Trial Disruptions. Statistics in Biopharmaceutical Research 16(2), 141-157.
- Kopp-Schneider A, Wiesenfarth M, Witt R, Edelmann D, Witt O, Abel U, Monitoring futility and efficacy in phase II trials with Bayesian posterior distributions A calibration approach. Biometrical Journal 61, 488-502 (2019)
- Weru V, Kopp-Schneider A, Wiesenfarth M, Weber S, Calderazzo S (2024). Information borrowing in Bayesian clinical trials: choice of tuning parameters for the robust mixture prior. arXiv:2412.03185
- Wiesenfarth M, Calderazzo S (2020). Quantification of prior impact in terms of effective current sample size. *Biometrics 76*(1), 326-336.
- Zocholl D, Wiesenfarth M, Rauch G, Kopp-Schneider A (2022). On the feasibility of pediatric dose-finding trials in small samples with information from a preceding trial in adults. Journal of Biopharmarmaceutical Statistics 32(5), 652-670.

