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Hypothesis testing with Bayesian methods

* Test decision in Bayesian framework: Ho:0 < 0o vs. Hy:0> 90\

reject Hy < P(H,| current data, prior) > 1 —«

\

(Posteriorldistribution\

Ho " H )

* Bayesian decision using ,,non-informative“/calibrated prior = Frequentist decision:
reject Hy & P(H;| current data, non-informative prior) > 1 — «

has Type 1 Error (T1E) probability = a.
* Borrowing from external data by incorporating information into the prior.

* {current data such that P(H;| ...) > 1 — a } = rejection region based on current data.
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Operating Characteristics (OC) =
and w/o borrowing? -% iy
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Solution ’
,test calibrated to borrowing” = test w/o borrowing, but T1E set to instead of

—> test calibrated to borrowing and test w/ borrowing have same T1E (= ajp)

— evaluate: power(test w/ borrowing) — power(test calibrated to borrowing)
(AKS et al. 2024)
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Comparing frequentist OC
w/ and w/o borrowing

power(test w/ borrowing) — power(test calibrated to borrowing)

Power difference = 0: No power gain by borrowing.

In general:

* If a uniformly most powerful (UMP) test exists in the specific hypothesis test situation
— no test can have more power.

* True irrespective of borrowing approach! (AKS et al. 2020)
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Hybrid control arm trial:
Adaptive borrowing of external control data to current control data

Set-up )
* Gaussian endpoint, Hy: 0 — 0, < 0vs. H;: 0 — 0, > 0

* Frequentist TIE = a = 0.025, evaluated at 8 — 6, = 0; power evaluatedat 8 — 6, = 1. y
Available information )
* Current control mean HC and treatment mean ET (with expectation 8, and 87, variance known).

* External control data mean dg. y
Challenge h
* Potential problem: Heterogeneity between JEC and 6. (aka prior-data conflict).

* Solution: Use adaptive borrowing approach. y
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Hypothesis testing: P(H{|..)>1—a &
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Hypothesis testing: P(H{|..)>1—a &

threshold for H rejection
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w/o borrowing: H rejection probability (aka , power curve®)

H, rejection probability as function of 8 — 6

1.0 7 HO:QT—HCSO

Hl:HT—96>0

Power = 0.782

H rejection probability

a=20.025
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w/o borrowing: H rejection probability
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H rejection probability in hybrid control trials: w/o and w borrowing
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H rejection probability in hybrid control trials
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H rejection probability in hybrid control trials
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Hybrid control arm trial: Frequentist OC
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Hybrid control arm trial: Frequentist OC
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Hybrid control arm trial: Frequentist OC
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Hybrid control arm trial: Frequentist OC
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Hybrid control arm trial: Frequentist OC
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Conclusions

* Whenever there is a Uniformly Most Powerful test — No frequentist power gain possible!

* True for any borrowing method, also for robust methods.

* Borrowing for 1-arm trial or to treatment effect in 2-arm trial: .
typically test w/ borrowing = test w/o borrowing (at adjusted T1E) |-

* Borrowing in hybrid control trial: typically (small) power loss

But: Power gains are possible if you trust similarity of current and external data,
i.e., leave frequentist framework

e.g.
* Instead of evaluating OCs for all §; € (—oo, ®): restrict O to |8, — dgc| < A

05 A GDA

* Use Bayesian metric: Assume sampling prior for 8, and evaluate average OCs — Nicky Best
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