

Bayesian borrowing for paediatric extrapolation: The DINAMO study

Martin Oliver Sailer¹, Igor Tartakovsky¹
Workshop on Bayesian Statistics in Clinical Development
17th June 2025
EMA, Amsterdam

1 Boehringer Ingelheim Pharma GmbH & Co. KG

Outline

- The DINAMO trial
- Bayesian analysis using pharmacometric modelling
- Additional Bayesian analysis using robust MAP priors
- Study results
- Summary

The DINAMO trial

Background

- The worldwide increase in overweight and obesity in children and adolescents has led to an upsurge in T2D in young people^{1, 2}
- Clinical course of youth-onset T2D is more aggressive than in adults³
- SGLT2 inhibitor empagliflozin and DPP-4 inhibitor linagliptin are well-established treatments for adults with type 2 diabetes mellitus (T2D)
- Lack of oral treatments for T2D in youth, only oral metformin and injected insulin generally approved until recent approval of GLP-1 analogues
- To overcome this limitation, the <u>DI</u>abetes study of li<u>NAg</u>liptin and e<u>M</u>pagliflozin in children and ad<u>O</u>lescents (DINAMO) trial was conducted
- Main objective of the DINAMO trial: to assess the efficacy and safety of a dosing regimen with empagliflozin, with potential dose increase from 10 to 25 mg, and linagliptin 5 mg, both compared with a shared placebo group

^{1.} Nolan CJ, Damm P, Prentki M. Lancet 2011;378:169-81; 2. Lawrence JM et al. JAMA 2021;326:717-27.;

^{3.} Al-Saeed AH et al. Diabetes Care 2016;39:823-9

DINAMO study design

 To compare the efficacy and safety of empagliflozin versus placebo, and linagliptin versus placebo, in children and adolescents (aged 10–17 years) with T2D¹

^{1.} Laffel LM *et al. Lancet Diabetes Endocrinol* 2023;11:169-81. HbA1c, glycated haemoglobin; T2D, type 2 diabetes.

*Re-randomisation at Week 14 for participants not achieving HbA1c <7% at Week 12

Primary analysis and supplementary Bayesian analysis

- Primary endpoint: Change in HbA1c from baseline to week 26
- Primary analysis: ANCOVA model with baseline HbA1c as a continuous covariate, and with categorical covariates for treatment and age group
- Stand-alone inference with 85% planned power
- Potential underpowering: After recruitment was completed, high standard deviation was observed in early blinded data
- Reopening recruitment wasn't considered best option
- Study team proposed supplementary Bayesian analysis
 - Power gain through borrowing of historical data
 - Dedicated SAP prepared and approach discussed with FDA prior to planned read-out

ANCOVA: analysis of covariance

Supplementary Bayesian analysis

Direct borrowing from adult data to pediatric population not possible:
 Exchangeability assumption violated

Main approach

- Pharmacometric (PMx) model for change in HbA1c(%) in empagliflozin / linagliptin used to leverage data from trials in adults
- Assumption: Conditional exchangeability between adults / children with T2D treated with empagliflozin / linagliptin, after exposure-response adjustment

Additional analysis

- Robust MAP prior analysis based on data in children with T2D treated with drugs with same mechanism of action
- Assumption: Exchangeability between children with T2D treated with dapagliflozin and empagliflozin / sitagliptin and linagliptin

MAP prior: meta-analytic predictive prior (Schmidli et al. 2014)

Bayesian analysis using pharmacometric modelling

Supplementary Bayesian analysis: overview

Model for empagliflozin*

- PK data on >5,000 patients from 14 studies
 - adult data and limited data on adolescents
- Population PK model fitted to data
 - Two-compartment model with sequential zero-first order absorption and fixed allometric scaling of all clearance and volume parameters
- Population PK model used to predict the area under the concentration-time curve at steady state (AUC_{ss})
- PK-PD data on >6,000 patients from 10 studies including placebo patients
- PK-PD model fitted to the data
 - Turnover exposure-response model was developed to describe HbA1c
 - Similar exposure-response relationship in adults and pediatrics supported by UGE assessment

UGE: urinary glucose excretion

* Same approach applied to linagliptin data

Robust mixture prior approach

- Model for placebo-corrected treatment effect (change in HbA1c(%)) $\theta_{\rm I}$
- Prior distribution of treatment effect (robust parametric mixture distribution)

$$p_I(\theta_I) = w_I Norm(\mu_I, v_I^*) + (1 - w_I) Norm(\mu_I, \sigma_I^2)$$

Weight of informative part of mixture prior.

Elicited with experts from trial steering committee. $w_{\rm I}=0.65$ for empagliflozin and linagliptin agreed with FDA

Mean of informative part of mixture prior.

Calculated as mean of 5,000 means from PK-PD simulation for DINAMO population.

Variance of informative part of mixture prior. Simulation based, with limit $\text{ESS}_{\text{ELIR}} \leq 100$ set by expert elicitation.

Variance of robust part of mixture prior.
Unit-information prior:
ESS_{ELIR} equal to 1 for robust component.

 Posterior distribution of treatment effect calculated from prior and summary statistics of covariate-adjusted treatment effect in DINAMO

I: treatment group of interest, i.e. empagliflozin or linagliptin; ESS: Effective sample size; ELIR: Expected local information ratio (Neuenschwander et al. 2020)

Additional Bayesian analysis using robust MAP priors

Robust MAP prior analysis for linagliptin*

- Prior based on paediatric data in T2D from other DPP-4 inhibitors
- Two studies with Januvia (sitagliptin) were identified

Januvia 100mg ² HbA1c change at Week 20	95	0.23	95	0.06	-0.17 (-0.62, 0.28)
Januvia 100mg ³ HbA1c change at Week 20	113	0.09	107	-0.23	-0.33 (-0.70, 0.05)

Robust component of prior

Prior:
$$p_L(\theta_l) = 0.47Norm(-0.25, 0.17^2) + 0.11Norm(-0.23, 0.32^2) + (0.42Norm(-0.23, 2.12^2))$$

 Posterior distribution of treatment effect calculated from prior and summary statistics of covariate-adjusted treatment effect in DINAMO

FDA, Statistical Review and Evaluation, NDAs 201280, 201281, 208026

^{*} Same approach applied to empagliflozin data

Study results

Bayesian analysis* based on exposure-response data - empagliflozin

	Mean	SD	P2.5%	P5%	Median	P95%	P97.5%	Prob. superiority
Prior (exposure-response based)	-1.01	1.37	-4.37	-3.46	-1.01	1.43	2.34	0.885
Likelihood (DINAMO data)+	-0.84	0.33	-1.50	-	-	-	-0.19	-
Posterior distribution	-0.945	0.207	-1.34	-1.27	-0.949	-0.605	-0.524	>0.999

⁺ From DINAMO primary analysis, adjusted mean, SE and 95% confidence interval (p=0.0116)

- The primary DINAMO analysis confirmed superior efficacy
- Bayesian Borrowing analysis confirmed evidence for clinically meaningful efficacy
 - Overall probability for superiority >0.999, point estimate -0.945
 - 95% credible interval (-1.34, -0.524)

SD: standard deviation; Pn%: percentile; Prob.: probability

* Performed in R with the RBesT package (Weber et al. 2021)

Bayesian analysis based on exposure-response data - empagliflozin

Assessment of prior-data conflict

Sensitivity tipping point analysis for weight of prior (Best et al. 2021)

Bayesian analysis based on exposure-response data - linagliptin

	Mean	SD	P2.5%	P5%	Median	P95%	P97.5%	Prob. superiority
Prior (exposure-response based)	-0.635	1.42	-4.12	-3.18	-0.635	1.91	2.85	0.859
Likelihood (DINAMO data)*	-0.34	0.33	-0.99	-	-	-	0.30	-
Posterior distribution	-0.514	0.219	-0.919	-0.854	-0.523	-0.151	-0.052	0.982

^{*} From DINAMO primary analysis, adjusted mean, SE and 95% confidence interval (p=0.2935)

- The primary DINAMO analysis did not confirm superior efficacy
- Bayesian Borrowing analysis provided evidence for superior efficacy
 - Overall probability for superiority of 0.982, point estimate -0.514
 - 95% credible interval (-0.919, -0.052)

Bayesian analysis based on exposure-response data - linagliptin

Assessment of prior-data conflict

Sensitivity tipping point analysis
Tipping point w=0.542

Bayesian analysis based on robust MAP prior - linagliptin

Figure 5: Linagliptin placebo-corrected treatment effect distributions

Source Statistical Reviewer's Analyses

Assessment of prior-data conflict

FDA, Statistical Review and Evaluation, NDAs 201280, 201281, 208026

Figure 6: Linagliptin placebo-corrected treatment effects and 95% equal-tailed credible intervals for different weights

Sensitivity tipping point analysis

Summary

Summary

- DINAMO showed that an empagliflozin dosing regimen provided clinically and statistically meaningful reductions in HbA1c in youth with T2D
- Bayesian Borrowing analysis confirmed evidence for clinically meaningful efficacy of empagliflozin
- Pharmacometrics-enhanced Bayesian borrowing combines advantages of mechanistic modelling of differences between adults & youth with advantages of partial extrapolation through Bayesian Dynamic Borrowing
- Additional Bayesian analysis used paediatric trial data from drugs with same mechanism of action

Additional information available

Randomized Controlled Trial > Ther Innov Regul Sci. 2025 Jan;59(1):112-123. doi: 10.1007/s43441-024-00707-5. Epub 2024 Oct 7.

Pharmacometrics-Enhanced Bayesian Borrowing for Pediatric Extrapolation - A Case Study of the DINAMO Trial

Martin Oliver Sailer ¹, Dietmar Neubacher ², Curtis Johnston ³, James Rogers ³, Matthew Wiens ³ Alejandro Pérez-Pitarch ⁴ ⁵, Igor Tartakovsky ⁴, Jan Marquard ⁶, Lori M Laffel ⁷

Affiliations + expand

PMID: 39373938 PMCID: PMC11706882 DOI: 10.1007/s43441-024-00707-5

Bayesian Borrowing in the DINAMO Pediatric Study using Informative Priors METRUM Derived from Model-based Extrapolation

Curtis Johnston¹, Matthew Wiens¹, James Rogers¹, Alejandro Pérez-Pitarch², Oliver Sailer², Igor Tartakovsky², Valerie Nock² Metrum Research Group, Tariffeille, CT. USA, ³Bochringer Ingelheim Pharma GmbH & Co KG

Disclosure

 The DINAMO trial (NCT03429543) was funded by the Boehringer Ingelheim (BI) and Eli Lilly and Company Alliance

References

References

- Al-Saeed AH, Constantino MI, Molyneaux L, et al. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: the impact of youth-onset type 2 diabetes. *Diabetes Care* 2016; 39: 823-29.
- Best N, Price RG, Pouliquen IJ, Keene ON (2021): Assessing efficacy in important subgroups in confirmatory trials: An example using Bayesian dynamic borrowing. Pharmaceutical Statistics, 20, 551-562. Website: doi.org/10.1002/pst.209.
- FDA. Statistical Review and Evaluation. NDAs 201280, 201281, 208026. Tradjenta (linagliptin), Jentadueto (linagliptin + metformin), Jentadueto XR (linagliptin + metformin extended release); 2023. Website: www.fda.gov/media/172950/download?attachment (accessed 19 May 2025).
- Johnston C, Wiens M, Rogers J, et al. (2023): Bayesian Borrowing in the DINAMO Pediatric Study using Informative Priors Derived from Model-based Extrapolation. Poster, American Conference on Pharmacometrics, 5-8 November 2023.
- Lawrence JM, Divers J, Isom S, et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017. *JAMA* 2021; 326: 717-27.
- LM Laffel, Th Danne, GJ Klingensmith, et al. Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): a multicentre, randomised, double-blind, parallel group, phase 3 trial. *Lancet Diabetes Endocrinol.* 2023; 11: 169-81.

References

- Neuenschwander B, Weber S, Schmidli H, O'Hagan A (2020): Predictively consistent prior effective sample sizes. *Biometrics*. 76:578-587. Website: doi.org/10.1111/biom.13252.
- Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011; 378: 169-81.
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: www.R-project.org/.
- Sailer MO, Neubacher D, Johnston C, et al. (2023): Pharmacometrics-enhanced Bayesian borrowing for pediatric extrapolation - A case study of the DINAMO™ Trial. Presentation, PSI Conference, 11-14 June 2023.
- Sailer MO, Neubacher D, Johnston C, et al. (2025): Pharmacometrics-Enhanced Bayesian Borrowing for Pediatric Extrapolation - A Case Study of the DINAMO Trial. Ther Innov Regul Sci 59: 112-123. Website: doi: 10.1007/s43441-024-00707-5.
- Schmidli H, Gsteiger S, Roychoudhury S, O'Hagan A, Spiegelhalter DJ, Neuenschwander B (2014): Robust Meta-Analytic-Predictive Priors in Clinical Trials with Historical Control Information. *Biometrics*, 70, 1023-32. Website: doi:10.1111/biom.12242.
- Weber S, Li Y, Seaman JW, Kakizume T, Schmidli H (2021): Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. *Journal of Statistical Software*, 100, 1-32. Website: doi: 10.18637/jss.v100.i19.