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Considerations for bridging between animal models and humans

*  Correlates and mechanisms of immunity may be distinct

e  Stability of antibodies allows “surrogate” for complex immune response

* Bridging of immune correlate to humans may be context specific
“Super-lethal” infectious challenge models are not necessary to bridge predict

vaccine benefit in humans



Vaccine-induced host immune responses vary across platforms
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Immune Correlate of Protection

Correlate of Protection
{CoP)
Mechanistic Correlate of Non-Mechanistic Correlate
Protection (mCoP) of Protection (nCoP)

Figure 1. A correlate of protection (CoP) may be either a mechanism of
protection, mCoP, or a nonmechanism of protection, termed nCoP, which
predicts vaccine efficacy through its (partial) correlation with another
immune response(s) that mechanistically protects.
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rAd5-vaccine induced anti-GP titers correlate with immune protection
(Ab assessed immediately pre-challenge)
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Mechanism of rAd5 vaccine protection

Passive Transfer of Vx serum

CDS8 Depletion of Vx Animals
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* Antibodies play a role and correlate with, but are not sufficient for, vaccine protection
e CD8T cells are required for vaccine protection
* Antibodies are a quantitative surrogate marker for overall vaccine resposnes

= Sullivan, NJ, Nature Medicine 2011




T-cell Quality Differs between Protective and Nonprotective Vaccines

Protective Non-protective
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CD8 T-cell quality (IFNy*TNF™*) is associated with protective vaccine

Adapted: Zhou Y & Sullivan N, Curr Opin Immunol. 2015



Dynamic nature of T-cells vs. stable and quantitative Ab titer
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T-cell response dynamics vary across subjects
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Single blood sampling and variability in T-cell kinetics across individual NHPs
represent challenges in identifying T-cell correlates.



CD8+ T-cell correlate of protection for ChAd3 Ebola vaccine does
not reach statistical significance
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Predictive value of Ab vs CD8 correlates for ChAd vaccine

ROC analysis
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* T-cell correlates do not significantly improve prediction beyond using Ab titer alone

J. Gu, D. Follmann, Y. Zhou, unpublished



Can we use antibody titer as a
universal predictor of vaccine
protection for a given pathogen?



Context-dependence of Ab correlate:
Antigen composition impacts on 85% protective titer
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= Sullivan, NJ and Follmann, D (unpublished data)



Context-dependence of Ab correlate
85% protective titer is vector-specific
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rAd5 Ab protective correlate does not predict protection by rAdx

=  Callendret B, et al. (2018). PLoS One 13(2):1-24.



Context-dependence of Ab correlate
Vaccine-challenge interval

EMA: “Dose, admin route and timing of administration reflective of intended use in humans”
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The Paradox of immune response evolution
and the desire for both rapid and durable \Vaccine Protection

Rapid protection

Durable immunity
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Do correlates defined with short vaccine-
challenge intervals predict protection at
other intervals?



ChAd3 but not ChAd63 primes for long term protection
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Context-dependence of Ab correlate
Acute challenge protective titer does not predict long-term protection

MVA boost: Ab 4 weeks post boost 10 months post vaccine
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ChAd63 post boost titers
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* Correlates determined in “acute” challenge model do not predict durable protection

* Vector-dependence of Ab titer correlate
* Post boost titers do not predict durable protection

Stanley DA, et al. (2014) Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat Med 20(10):1126-9.



Impact of animal model design on immune bridging

1970’s and 80’s: model aimed at high lethality

* 500-1000 PFU, TCID,
 Uniform lethality

2000’s : Accepted model remains the same but data show:

e <10 PFU uniformly lethal
* Vaccine studies performed at 1000x LD99



Choice of animal challenge model dose
will impact on human immune response bridging
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Shared opportunistic data

NHP model
Virus challenge at multiple doses

< 1E-6 % survival probability at any dose.

Immune

response BU, CEPI, BARDA, NIH, Battelle, Quantics



Data sharing facilitates identification of
challenge dose “sweet spot”

Power calculations for varying control and vaccine survival probability
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Choice of animal challenge model route

may impact on human immune response bridging

Respiratory:
Coronavirus: SARS-CoV-2
Pneumovirus: RSV

Encephalitis:
Togaviridae (+RNA): V/W/E-EEV
Flaviviridae (+RNA): JEV, WNV

Hemorhaggic fever:

Arenaviridae (ambisense /-RNA): Lassa
virus e N
Filovirus (-RNA): Ebola, Marburg virus S N

MPOX:
Clade 1b
Clade 2b

Model

Intranasal
Intratracheal

Intraperitoneal

Intramuscular

Intravenous

Bridgeable immune

response?
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Considerations for bridging between animal models and humans

1. Bounds of durability can be estimated with NHP challenges but possibly not with antibody titers
2. Durability of protection in NHP may be predictive of durability in humans (the NHP/Human vaccine
protection and durability relationship is reasonably predictive for SARS-CoV-2)
3. Antibody correlate of protection is context dependent and empirical
* Antigen composition (monovalent vs. bivalent vs. multivalent)
e Vaccine platform and regimen
* Pre-existing vector immunity
* (Quantitative correlate changes with interval between vaccination and challenge
4. Animal model challenge dose and route should be optimized for bridging to humans — more is not

better and may misrepresent normal human exposure immune responses



